
www.ts.data61.csiro.au

Reasoning about
Translation Lookaside Buffers (TLBs)
LPAR-21
Hira T. Syeda and Gerwin Klein
Trustworthy Systems @ Data61

May 2017

 Reasoning about Translation Lookaside Buffers Hira T. Syeda2

What is a TLB

Programs
va

CPU

MMU

mappings

pa Memory
va

Page
Table

 Reasoning about Translation Lookaside Buffers Hira T. Syeda2

What is a TLB

Programs
va

CPU

MMU

mappings

pa

TLB

Memory
va

Page
Table

- TLB
- dedicated cache for page table walks
- architecture specific

 Reasoning about Translation Lookaside Buffers Hira T. Syeda3

TLB Effects on Program Execution

 Reasoning about Translation Lookaside Buffers Hira T. Syeda3

- TLB being cache
- has no functional effects
- only makes execution faster, if maintained correctly
- is an assumption in seL4 proofs

TLB Effects on Program Execution

 Reasoning about Translation Lookaside Buffers Hira T. Syeda3

- TLB being cache
- has no functional effects
- only makes execution faster, if maintained correctly
- is an assumption in seL4 proofs

- Programs must avoid accessing
- incoherent entries
- inconsistent entries

TLB Effects on Program Execution

 Reasoning about Translation Lookaside Buffers Hira T. Syeda3

- TLB being cache
- has no functional effects
- only makes execution faster, if maintained correctly
- is an assumption in seL4 proofs

- Programs must avoid accessing
- incoherent entries
- inconsistent entries

- Deserves support by the hardware model

TLB Effects on Program Execution

 Reasoning about Translation Lookaside Buffers Hira T. Syeda3

- TLB being cache
- has no functional effects
- only makes execution faster, if maintained correctly
- is an assumption in seL4 proofs

- Programs must avoid accessing
- incoherent entries
- inconsistent entries

- Deserves support by the hardware model

- Extend seL4 program logic for TLB reasoning
- a formal TLB model for ARMv7 architecture

TLB Effects on Program Execution

 Reasoning about Translation Lookaside Buffers Hira T. Syeda

- Formal model of ARMv7-style TLB in Isabelle/HOL
- lookup function

4

Contributions

 Reasoning about Translation Lookaside Buffers Hira T. Syeda

- Formal model of ARMv7-style TLB in Isabelle/HOL
- lookup function

4

Contributions

- Extension to MMU model
- mmu_translate, mmu_read, mmu_write
- integration to ARMv7 formalised ISA

 Reasoning about Translation Lookaside Buffers Hira T. Syeda

- Formal model of ARMv7-style TLB in Isabelle/HOL
- lookup function

4

Contributions

ARMv7

mmu_translate

abs_mmu_translate

- Extension to MMU model
- mmu_translate, mmu_read, mmu_write
- integration to ARMv7 formalised ISA

- Data refinement for
- abstracting hardware details
- easier reasoning

 Reasoning about Translation Lookaside Buffers Hira T. Syeda

- Formal model of ARMv7-style TLB in Isabelle/HOL
- lookup function

4

Contributions

ARMv7

mmu_translate

abs_mmu_translate

- Extension to MMU model
- mmu_translate, mmu_read, mmu_write
- integration to ARMv7 formalised ISA

- Data refinement for
- abstracting hardware details
- easier reasoning

 Reasoning about Translation Lookaside Buffers Hira T. Syeda5

ARMv7-style TLB

TLB

CPU

Memory

Page Tables

 Reasoning about Translation Lookaside Buffers Hira T. Syeda5

ARMv7-style TLB

TLB

CPU
va

Memory

Page Tables

 Reasoning about Translation Lookaside Buffers Hira T. Syeda5

ARMv7-style TLB

TLB

CPU
va

Hit (pa)

Memory

TLB Entry Page Tables

 Reasoning about Translation Lookaside Buffers Hira T. Syeda5

ARMv7-style TLB

TLB

CPU
va

Hit (pa)

Miss

Memory

TLB Entry Page Tables

 Reasoning about Translation Lookaside Buffers Hira T. Syeda5

ARMv7-style TLB

TLB

CPU
va

Hit (pa)

Miss

translation
Memory

TLB Entry

TLB Entry

Page Tables

 Reasoning about Translation Lookaside Buffers Hira T. Syeda5

ARMv7-style TLB

TLB

CPU

Memory

Page Tables

 Reasoning about Translation Lookaside Buffers Hira T. Syeda5

ARMv7-style TLB

TLB

CPU

Memory

Page Tables

 Reasoning about Translation Lookaside Buffers Hira T. Syeda5

ARMv7-style TLB

TLB

CPU

Memory

Page Tables

 Reasoning about Translation Lookaside Buffers Hira T. Syeda5

ARMv7-style TLB

TLB

CPU

Memory

Page Tables

- TLB maintenance operations
- flush entries after write to page table
- lazy invalidation
- Address Space IDentifier - ASID

 Reasoning about Translation Lookaside Buffers Hira T. Syeda6

ARMv7-style
Formal Model of TLB

Reasoning about Translation Lookaside Bu↵ers Syeda Hira Taqdees and Gerwin Klein

where the type asid is an abbreviation for 8 word.
To accommodate our later refinements of this model in Sect. 5, we generalised the physical

base address in this definition from 20 or 12 word to 20 or 12 word option. In the TLB base
model, these will always be entries with Some.

With the TLB state formalised, we can now describe the basic TLB operations. For any
given 32-bit virtual address and ASID, a TLB lookup finds the corresponding TLB entry. A
lookup can have three kinds of results:

datatype lookup_type = Miss | Incon | Hit tlb_entry

These results are: either there is no corresponding entry and the TLB needs to be refilled (Miss),
or there is more than one matching entry and the TLB is inconsistent (Incon), or there is exactly
one correct result (Hit).

We say a TLB entry matches a pair of ASID a and virtual address va when the entry
has the same ASID a and the top bits of va equal the virtual base address of the entry. Let
entry_range e be the set of addresses matched by TLB entry e, and asid_of e the ASID of e,
then we can define the lookup operation as

entry_set :: tlb) asid) 32 word) tlb_entry set

entry_set t a va = {e 2 t | va 2 entry_range e ^ a = asid_of e}

lookup :: tlb_entry set) 8 word) 32 word) lookup_type
lookup t a va ⌘

let S = entry_set t a va
in if S = ; then Miss

else if 9 x. S = {x} then Hit (the_elem S) else Incon

where the_elem {x} = x.
Any result Hit e for a given vaddr va can be translated directly into a paddr pa by replacing

the high bits of va with the 12-bit or 20-bit physical base address stored in e.
The TLB reload operation simply adds entries to the set, i.e. there is nothing specific to

formalise. The TLB maintenance operations remove entries from the set:

selective_invalidation :: tlb) asid) 32 word) tlb

selective_invalidation t a va = t - entry_set t a va

asid_invalidation :: tlb) asid) tlb

asid_invalidation t a ⌘ t - {e 2 t | asid_of e = a}

va_invalidation :: tlb) 32 word) tlb

va_invalidation t va ⌘ t - {e 2 t | va 2 entry_range e}

The operation selective_invalidation selectively removes the entry or entries covering the
given virtual address and ASID. This may do nothing if there is no such entry, may remove
exactly one entry, or all (inconsistent) entries that match. Similarly, asid_invalidation and
va_invalidation remove all entries that match a particular ASID (ignoring the address) or all
entries that match a particular virtual address (ignoring ASIDs), respectively.

These operational definitions have the expected declarative properties. For instance:

Lemma 1. All invalidation operations produce subsets of the original TLB.

selective_invalidation t a va ✓ t

asid_invalidation t a ✓ t

va_invalidation t va ✓ t

Proof. By unfolding definitions.

5

Reasoning about Translation Lookaside Bu↵ers Syeda Hira Taqdees and Gerwin Klein

where the type asid is an abbreviation for 8 word.
To accommodate our later refinements of this model in Sect. 5, we generalised the physical

base address in this definition from 20 or 12 word to 20 or 12 word option. In the TLB base
model, these will always be entries with Some.

With the TLB state formalised, we can now describe the basic TLB operations. For any
given 32-bit virtual address and ASID, a TLB lookup finds the corresponding TLB entry. A
lookup can have three kinds of results:

datatype lookup_type = Miss | Incon | Hit tlb_entry

These results are: either there is no corresponding entry and the TLB needs to be refilled (Miss),
or there is more than one matching entry and the TLB is inconsistent (Incon), or there is exactly
one correct result (Hit).

We say a TLB entry matches a pair of ASID a and virtual address va when the entry
has the same ASID a and the top bits of va equal the virtual base address of the entry. Let
entry_range e be the set of addresses matched by TLB entry e, and asid_of e the ASID of e,
then we can define the lookup operation as

entry_set :: tlb) asid) 32 word) tlb_entry set

entry_set t a va = {e 2 t | va 2 entry_range e ^ a = asid_of e}

lookup :: tlb_entry set) 8 word) 32 word) lookup_type
lookup t a va ⌘

let S = entry_set t a va
in if S = ; then Miss

else if 9 x. S = {x} then Hit (the_elem S) else Incon

where the_elem {x} = x.
Any result Hit e for a given vaddr va can be translated directly into a paddr pa by replacing

the high bits of va with the 12-bit or 20-bit physical base address stored in e.
The TLB reload operation simply adds entries to the set, i.e. there is nothing specific to

formalise. The TLB maintenance operations remove entries from the set:

selective_invalidation :: tlb) asid) 32 word) tlb

selective_invalidation t a va = t - entry_set t a va

asid_invalidation :: tlb) asid) tlb

asid_invalidation t a ⌘ t - {e 2 t | asid_of e = a}

va_invalidation :: tlb) 32 word) tlb

va_invalidation t va ⌘ t - {e 2 t | va 2 entry_range e}

The operation selective_invalidation selectively removes the entry or entries covering the
given virtual address and ASID. This may do nothing if there is no such entry, may remove
exactly one entry, or all (inconsistent) entries that match. Similarly, asid_invalidation and
va_invalidation remove all entries that match a particular ASID (ignoring the address) or all
entries that match a particular virtual address (ignoring ASIDs), respectively.

These operational definitions have the expected declarative properties. For instance:

Lemma 1. All invalidation operations produce subsets of the original TLB.

selective_invalidation t a va ✓ t

asid_invalidation t a ✓ t

va_invalidation t va ✓ t

Proof. By unfolding definitions.

5

Reasoning about Translation Lookaside Bu↵ers Syeda Hira Taqdees and Gerwin Klein

4 A Formal MMU Model for ARM-style architectures

In this section, we present an operational model of ARMv7-style address translation including
the TLB in Isabelle/HOL. We will later extend this model with an ARMv7-A-style intermediate
translation cache in Sect. 6. The ARM architecture provides multiple address translation modes
that di↵er in the number of levels and number of bits being translated. Without loss of generality
for the treatment of TLBs we focus on one of these modes here — the others are analogous.
This mode provides four sizes of pages (small, large, section, and super section; c.f. [2, Chapter
B3]) and a two-level page table structure. The location of the root of the page table structure in
main memory is determined by a hardware register, the translation table root register TTBR0.

The hardware memory management unit (MMU) of ARMv7 consists of a TLB that caches
entries and the machinery required for resolving address translations using the page table from
main memory when needed. For page table operations, we reuse Kolanski’s existing ARM page
table model [11], and integrate it with the TLB formalisation that we build up in this section
to form a model of the MMU.

The ARM architecture manual [2] describes the TLB as a black box, i.e. by its external
interface only. It does not specify the replacement strategy or its exact internal state. We use
the same approach and base our abstraction directly on the architecture manual: we specify TLB
lookup, TLB reloading, as well as maintenance operations for invalidating (evicting) outdated
entries either by a tag called address space identifier (ASID), or by address in the current ASID,
or by address globally for all ASIDs. Together with Kolanski’s ARM page table model, this
will then form the basis for specifying the semantics of the memory reads and writes that we
eventually want to reason about.

Kolanski’s model di↵erentiates between virtual and physical address by type, and we con-
tinue in that tradition. He defines addresses addr_t as:

datatype (’a, ’p) addr_t = Addr ’a

where ’a is the address size (e.g. 32 word) and ’p is a tag which can be physical or virtual.
For modelling the addresses of an ARMv7-style machine, we specialise addr_t as:

vaddr = (32 word,virtual) addr_t paddr = (32 word,physical) addr_t

We use addr_val (Addr a) = a to extract the address.

4.1 Formal Model of the TLB

We now present the operational model of the TLB itself and its maintenance operations. The
next section will then develop this into a full MMU model and integrate it with memory reads
and writes in the Cambridge ARM semantics.

Figure 1: An Abstraction of TLB

The state of a TLB is straightforward: it is merely
a set of TLB entries, where a TLB entry consists of an
ASID tag, a virtual base address, a physical base address,
and potentially a set of flags for access control and other
page attributes. Figure 1 gives a visual representation.
Corresponding to the four page sizes of the architecture,
there are four di↵erent sizes of TLB entries. To keep
the presentation small, we show only two of these in the
paper, one with 20 bit base addresses for small pages and one with 12 bit for sections. Formally:

type synonym tlb = tlb_entry set

datatype tlb_entry = EntrySmall asid (20 word) (20 word option) flags

| EntrySection asid (12 word) (12 word option) flags

4

Reasoning about Translation Lookaside Bu↵ers Syeda Hira Taqdees and Gerwin Klein

where the type asid is an abbreviation for 8 word.
To accommodate our later refinements of this model in Sect. 5, we generalised the physical

base address in this definition from 20 or 12 word to 20 or 12 word option. In the TLB base
model, these will always be entries with Some.

With the TLB state formalised, we can now describe the basic TLB operations. For any
given 32-bit virtual address and ASID, a TLB lookup finds the corresponding TLB entry. A
lookup can have three kinds of results:

datatype lookup_type = Miss | Incon | Hit tlb_entry

These results are: either there is no corresponding entry and the TLB needs to be refilled (Miss),
or there is more than one matching entry and the TLB is inconsistent (Incon), or there is exactly
one correct result (Hit).

We say a TLB entry matches a pair of ASID a and virtual address va when the entry
has the same ASID a and the top bits of va equal the virtual base address of the entry. Let
entry_range e be the set of addresses matched by TLB entry e, and asid_of e the ASID of e,
then we can define the lookup operation as

entry_set :: tlb) asid) 32 word) tlb_entry set

entry_set t a va = {e 2 t | va 2 entry_range e ^ a = asid_of e}

lookup :: tlb_entry set) 8 word) 32 word) lookup_type
lookup t a va ⌘

let S = entry_set t a va
in if S = ; then Miss

else if 9 x. S = {x} then Hit (the_elem S) else Incon

where the_elem {x} = x.
Any result Hit e for a given vaddr va can be translated directly into a paddr pa by replacing

the high bits of va with the 12-bit or 20-bit physical base address stored in e.
The TLB reload operation simply adds entries to the set, i.e. there is nothing specific to

formalise. The TLB maintenance operations remove entries from the set:

selective_invalidation :: tlb) asid) 32 word) tlb

selective_invalidation t a va = t - entry_set t a va

asid_invalidation :: tlb) asid) tlb

asid_invalidation t a ⌘ t - {e 2 t | asid_of e = a}

va_invalidation :: tlb) 32 word) tlb

va_invalidation t va ⌘ t - {e 2 t | va 2 entry_range e}

The operation selective_invalidation selectively removes the entry or entries covering the
given virtual address and ASID. This may do nothing if there is no such entry, may remove
exactly one entry, or all (inconsistent) entries that match. Similarly, asid_invalidation and
va_invalidation remove all entries that match a particular ASID (ignoring the address) or all
entries that match a particular virtual address (ignoring ASIDs), respectively.

These operational definitions have the expected declarative properties. For instance:

Lemma 1. All invalidation operations produce subsets of the original TLB.

selective_invalidation t a va ✓ t

asid_invalidation t a ✓ t

va_invalidation t va ✓ t

Proof. By unfolding definitions.

5

 Reasoning about Translation Lookaside Buffers Hira T. Syeda6

ARMv7-style
Formal Model of TLB

Reasoning about Translation Lookaside Bu↵ers Syeda Hira Taqdees and Gerwin Klein

where the type asid is an abbreviation for 8 word.
To accommodate our later refinements of this model in Sect. 5, we generalised the physical

base address in this definition from 20 or 12 word to 20 or 12 word option. In the TLB base
model, these will always be entries with Some.

With the TLB state formalised, we can now describe the basic TLB operations. For any
given 32-bit virtual address and ASID, a TLB lookup finds the corresponding TLB entry. A
lookup can have three kinds of results:

datatype lookup_type = Miss | Incon | Hit tlb_entry

These results are: either there is no corresponding entry and the TLB needs to be refilled (Miss),
or there is more than one matching entry and the TLB is inconsistent (Incon), or there is exactly
one correct result (Hit).

We say a TLB entry matches a pair of ASID a and virtual address va when the entry
has the same ASID a and the top bits of va equal the virtual base address of the entry. Let
entry_range e be the set of addresses matched by TLB entry e, and asid_of e the ASID of e,
then we can define the lookup operation as

entry_set :: tlb) asid) 32 word) tlb_entry set

entry_set t a va = {e 2 t | va 2 entry_range e ^ a = asid_of e}

lookup :: tlb_entry set) 8 word) 32 word) lookup_type
lookup t a va ⌘

let S = entry_set t a va
in if S = ; then Miss

else if 9 x. S = {x} then Hit (the_elem S) else Incon

where the_elem {x} = x.
Any result Hit e for a given vaddr va can be translated directly into a paddr pa by replacing

the high bits of va with the 12-bit or 20-bit physical base address stored in e.
The TLB reload operation simply adds entries to the set, i.e. there is nothing specific to

formalise. The TLB maintenance operations remove entries from the set:

selective_invalidation :: tlb) asid) 32 word) tlb

selective_invalidation t a va = t - entry_set t a va

asid_invalidation :: tlb) asid) tlb

asid_invalidation t a ⌘ t - {e 2 t | asid_of e = a}

va_invalidation :: tlb) 32 word) tlb

va_invalidation t va ⌘ t - {e 2 t | va 2 entry_range e}

The operation selective_invalidation selectively removes the entry or entries covering the
given virtual address and ASID. This may do nothing if there is no such entry, may remove
exactly one entry, or all (inconsistent) entries that match. Similarly, asid_invalidation and
va_invalidation remove all entries that match a particular ASID (ignoring the address) or all
entries that match a particular virtual address (ignoring ASIDs), respectively.

These operational definitions have the expected declarative properties. For instance:

Lemma 1. All invalidation operations produce subsets of the original TLB.

selective_invalidation t a va ✓ t

asid_invalidation t a ✓ t

va_invalidation t va ✓ t

Proof. By unfolding definitions.

5

Reasoning about Translation Lookaside Bu↵ers Syeda Hira Taqdees and Gerwin Klein

where the type asid is an abbreviation for 8 word.
To accommodate our later refinements of this model in Sect. 5, we generalised the physical

base address in this definition from 20 or 12 word to 20 or 12 word option. In the TLB base
model, these will always be entries with Some.

With the TLB state formalised, we can now describe the basic TLB operations. For any
given 32-bit virtual address and ASID, a TLB lookup finds the corresponding TLB entry. A
lookup can have three kinds of results:

datatype lookup_type = Miss | Incon | Hit tlb_entry

These results are: either there is no corresponding entry and the TLB needs to be refilled (Miss),
or there is more than one matching entry and the TLB is inconsistent (Incon), or there is exactly
one correct result (Hit).

We say a TLB entry matches a pair of ASID a and virtual address va when the entry
has the same ASID a and the top bits of va equal the virtual base address of the entry. Let
entry_range e be the set of addresses matched by TLB entry e, and asid_of e the ASID of e,
then we can define the lookup operation as

entry_set :: tlb) asid) 32 word) tlb_entry set

entry_set t a va = {e 2 t | va 2 entry_range e ^ a = asid_of e}

lookup :: tlb_entry set) 8 word) 32 word) lookup_type
lookup t a va ⌘

let S = entry_set t a va
in if S = ; then Miss

else if 9 x. S = {x} then Hit (the_elem S) else Incon

where the_elem {x} = x.
Any result Hit e for a given vaddr va can be translated directly into a paddr pa by replacing

the high bits of va with the 12-bit or 20-bit physical base address stored in e.
The TLB reload operation simply adds entries to the set, i.e. there is nothing specific to

formalise. The TLB maintenance operations remove entries from the set:

selective_invalidation :: tlb) asid) 32 word) tlb

selective_invalidation t a va = t - entry_set t a va

asid_invalidation :: tlb) asid) tlb

asid_invalidation t a ⌘ t - {e 2 t | asid_of e = a}

va_invalidation :: tlb) 32 word) tlb

va_invalidation t va ⌘ t - {e 2 t | va 2 entry_range e}

The operation selective_invalidation selectively removes the entry or entries covering the
given virtual address and ASID. This may do nothing if there is no such entry, may remove
exactly one entry, or all (inconsistent) entries that match. Similarly, asid_invalidation and
va_invalidation remove all entries that match a particular ASID (ignoring the address) or all
entries that match a particular virtual address (ignoring ASIDs), respectively.

These operational definitions have the expected declarative properties. For instance:

Lemma 1. All invalidation operations produce subsets of the original TLB.

selective_invalidation t a va ✓ t

asid_invalidation t a ✓ t

va_invalidation t va ✓ t

Proof. By unfolding definitions.

5

Reasoning about Translation Lookaside Bu↵ers Syeda Hira Taqdees and Gerwin Klein

4 A Formal MMU Model for ARM-style architectures

In this section, we present an operational model of ARMv7-style address translation including
the TLB in Isabelle/HOL. We will later extend this model with an ARMv7-A-style intermediate
translation cache in Sect. 6. The ARM architecture provides multiple address translation modes
that di↵er in the number of levels and number of bits being translated. Without loss of generality
for the treatment of TLBs we focus on one of these modes here — the others are analogous.
This mode provides four sizes of pages (small, large, section, and super section; c.f. [2, Chapter
B3]) and a two-level page table structure. The location of the root of the page table structure in
main memory is determined by a hardware register, the translation table root register TTBR0.

The hardware memory management unit (MMU) of ARMv7 consists of a TLB that caches
entries and the machinery required for resolving address translations using the page table from
main memory when needed. For page table operations, we reuse Kolanski’s existing ARM page
table model [11], and integrate it with the TLB formalisation that we build up in this section
to form a model of the MMU.

The ARM architecture manual [2] describes the TLB as a black box, i.e. by its external
interface only. It does not specify the replacement strategy or its exact internal state. We use
the same approach and base our abstraction directly on the architecture manual: we specify TLB
lookup, TLB reloading, as well as maintenance operations for invalidating (evicting) outdated
entries either by a tag called address space identifier (ASID), or by address in the current ASID,
or by address globally for all ASIDs. Together with Kolanski’s ARM page table model, this
will then form the basis for specifying the semantics of the memory reads and writes that we
eventually want to reason about.

Kolanski’s model di↵erentiates between virtual and physical address by type, and we con-
tinue in that tradition. He defines addresses addr_t as:

datatype (’a, ’p) addr_t = Addr ’a

where ’a is the address size (e.g. 32 word) and ’p is a tag which can be physical or virtual.
For modelling the addresses of an ARMv7-style machine, we specialise addr_t as:

vaddr = (32 word,virtual) addr_t paddr = (32 word,physical) addr_t

We use addr_val (Addr a) = a to extract the address.

4.1 Formal Model of the TLB

We now present the operational model of the TLB itself and its maintenance operations. The
next section will then develop this into a full MMU model and integrate it with memory reads
and writes in the Cambridge ARM semantics.

Figure 1: An Abstraction of TLB

The state of a TLB is straightforward: it is merely
a set of TLB entries, where a TLB entry consists of an
ASID tag, a virtual base address, a physical base address,
and potentially a set of flags for access control and other
page attributes. Figure 1 gives a visual representation.
Corresponding to the four page sizes of the architecture,
there are four di↵erent sizes of TLB entries. To keep
the presentation small, we show only two of these in the
paper, one with 20 bit base addresses for small pages and one with 12 bit for sections. Formally:

type synonym tlb = tlb_entry set

datatype tlb_entry = EntrySmall asid (20 word) (20 word option) flags

| EntrySection asid (12 word) (12 word option) flags

4

Reasoning about Translation Lookaside Bu↵ers Syeda Hira Taqdees and Gerwin Klein

where the type asid is an abbreviation for 8 word.
To accommodate our later refinements of this model in Sect. 5, we generalised the physical

base address in this definition from 20 or 12 word to 20 or 12 word option. In the TLB base
model, these will always be entries with Some.

With the TLB state formalised, we can now describe the basic TLB operations. For any
given 32-bit virtual address and ASID, a TLB lookup finds the corresponding TLB entry. A
lookup can have three kinds of results:

datatype lookup_type = Miss | Incon | Hit tlb_entry

These results are: either there is no corresponding entry and the TLB needs to be refilled (Miss),
or there is more than one matching entry and the TLB is inconsistent (Incon), or there is exactly
one correct result (Hit).

We say a TLB entry matches a pair of ASID a and virtual address va when the entry
has the same ASID a and the top bits of va equal the virtual base address of the entry. Let
entry_range e be the set of addresses matched by TLB entry e, and asid_of e the ASID of e,
then we can define the lookup operation as

entry_set :: tlb) asid) 32 word) tlb_entry set

entry_set t a va = {e 2 t | va 2 entry_range e ^ a = asid_of e}

lookup :: tlb_entry set) 8 word) 32 word) lookup_type
lookup t a va ⌘

let S = entry_set t a va
in if S = ; then Miss

else if 9 x. S = {x} then Hit (the_elem S) else Incon

where the_elem {x} = x.
Any result Hit e for a given vaddr va can be translated directly into a paddr pa by replacing

the high bits of va with the 12-bit or 20-bit physical base address stored in e.
The TLB reload operation simply adds entries to the set, i.e. there is nothing specific to

formalise. The TLB maintenance operations remove entries from the set:

selective_invalidation :: tlb) asid) 32 word) tlb

selective_invalidation t a va = t - entry_set t a va

asid_invalidation :: tlb) asid) tlb

asid_invalidation t a ⌘ t - {e 2 t | asid_of e = a}

va_invalidation :: tlb) 32 word) tlb

va_invalidation t va ⌘ t - {e 2 t | va 2 entry_range e}

The operation selective_invalidation selectively removes the entry or entries covering the
given virtual address and ASID. This may do nothing if there is no such entry, may remove
exactly one entry, or all (inconsistent) entries that match. Similarly, asid_invalidation and
va_invalidation remove all entries that match a particular ASID (ignoring the address) or all
entries that match a particular virtual address (ignoring ASIDs), respectively.

These operational definitions have the expected declarative properties. For instance:

Lemma 1. All invalidation operations produce subsets of the original TLB.

selective_invalidation t a va ✓ t

asid_invalidation t a ✓ t

va_invalidation t va ✓ t

Proof. By unfolding definitions.

5

 Reasoning about Translation Lookaside Buffers Hira T. Syeda6

ARMv7-style
Formal Model of TLB

where the type asid is an abbreviation for 8 word.
To accommodate our later refinements of this model in Sect. 5, we generalised the physical

base address in this definition from 20 or 12 word to 20 or 12 word option. In the TLB base
model, these will always be entries with Some.

With the TLB state formalised, we can now describe the basic TLB operations. For any
given 32-bit virtual address and ASID, a TLB lookup finds the corresponding TLB entry. A
lookup can have three kinds of results:

datatype lookup_type = Miss | Incon | Hit tlb_entry

These results are: either there is no corresponding entry and the TLB needs to be refilled (Miss),
or there is more than one matching entry and the TLB is inconsistent (Incon), or there is exactly
one correct result (Hit).

We say a TLB entry matches a pair of ASID a and virtual address va when the entry
has the same ASID a and the top bits of va equal the virtual base address of the entry. Let
entry_range e be the set of addresses matched by TLB entry e, and asid_of e the ASID of e,
then we can define the lookup operation as

entry_set :: tlb) asid) 32 word) tlb_entry set
entry_set t a va = {e 2 t | va 2 entry_range e ^ a = asid_of e}

lookup :: tlb_entry set) 8 word) 32 word) lookup_type
lookup t a va ⌘

let S = entry_set t a va
in if S = ; then Miss

else if 9 x. S = {x} then Hit (the_elem S) else Incon

where the_elem {x} = x.
Any result Hit e for a given vaddr va can be translated directly into a paddr pa by replacing

the high bits of va with the 12-bit or 20-bit physical base address stored in e.
The TLB reload operation simply adds entries to the set, i.e. there is nothing specific to

formalise. The TLB maintenance operations remove entries from the set:

selective_invalidation :: tlb) asid) 32 word) tlb
selective_invalidation t a va = t - entry_set t a va

asid_invalidation :: tlb) asid) tlb
asid_invalidation t a ⌘ t - {e 2 t | asid_of e = a}

va_invalidation :: tlb) 32 word) tlb
va_invalidation t va ⌘ t - {e 2 t | va 2 entry_range e}

The operation selective_invalidation selectively removes the entry or entries covering the
given virtual address and ASID. This may do nothing if there is no such entry, may remove
exactly one entry, or all (inconsistent) entries that match. Similarly, asid_invalidation and
va_invalidation remove all entries that match a particular ASID (ignoring the address) or all
entries that match a particular virtual address (ignoring ASIDs), respectively.

These operational definitions have the expected declarative properties. For instance:

Lemma 1. All invalidation operations produce subsets of the original TLB.

selective_invalidation t a va ✓ t
asid_invalidation t a ✓ t
va_invalidation t va ✓ t

Proof. By unfolding definitions.

Reasoning about Translation Lookaside Bu↵ers Syeda Hira Taqdees and Gerwin Klein

where the type asid is an abbreviation for 8 word.
To accommodate our later refinements of this model in Sect. 5, we generalised the physical

base address in this definition from 20 or 12 word to 20 or 12 word option. In the TLB base
model, these will always be entries with Some.

With the TLB state formalised, we can now describe the basic TLB operations. For any
given 32-bit virtual address and ASID, a TLB lookup finds the corresponding TLB entry. A
lookup can have three kinds of results:

datatype lookup_type = Miss | Incon | Hit tlb_entry

These results are: either there is no corresponding entry and the TLB needs to be refilled (Miss),
or there is more than one matching entry and the TLB is inconsistent (Incon), or there is exactly
one correct result (Hit).

We say a TLB entry matches a pair of ASID a and virtual address va when the entry
has the same ASID a and the top bits of va equal the virtual base address of the entry. Let
entry_range e be the set of addresses matched by TLB entry e, and asid_of e the ASID of e,
then we can define the lookup operation as

entry_set :: tlb) asid) 32 word) tlb_entry set

entry_set t a va = {e 2 t | va 2 entry_range e ^ a = asid_of e}

lookup :: tlb_entry set) 8 word) 32 word) lookup_type
lookup t a va ⌘

let S = entry_set t a va
in if S = ; then Miss

else if 9 x. S = {x} then Hit (the_elem S) else Incon

where the_elem {x} = x.
Any result Hit e for a given vaddr va can be translated directly into a paddr pa by replacing

the high bits of va with the 12-bit or 20-bit physical base address stored in e.
The TLB reload operation simply adds entries to the set, i.e. there is nothing specific to

formalise. The TLB maintenance operations remove entries from the set:

selective_invalidation :: tlb) asid) 32 word) tlb

selective_invalidation t a va = t - entry_set t a va

asid_invalidation :: tlb) asid) tlb

asid_invalidation t a ⌘ t - {e 2 t | asid_of e = a}

va_invalidation :: tlb) 32 word) tlb

va_invalidation t va ⌘ t - {e 2 t | va 2 entry_range e}

The operation selective_invalidation selectively removes the entry or entries covering the
given virtual address and ASID. This may do nothing if there is no such entry, may remove
exactly one entry, or all (inconsistent) entries that match. Similarly, asid_invalidation and
va_invalidation remove all entries that match a particular ASID (ignoring the address) or all
entries that match a particular virtual address (ignoring ASIDs), respectively.

These operational definitions have the expected declarative properties. For instance:

Lemma 1. All invalidation operations produce subsets of the original TLB.

selective_invalidation t a va ✓ t

asid_invalidation t a ✓ t

va_invalidation t va ✓ t

Proof. By unfolding definitions.

5

Reasoning about Translation Lookaside Bu↵ers Syeda Hira Taqdees and Gerwin Klein

where the type asid is an abbreviation for 8 word.
To accommodate our later refinements of this model in Sect. 5, we generalised the physical

base address in this definition from 20 or 12 word to 20 or 12 word option. In the TLB base
model, these will always be entries with Some.

With the TLB state formalised, we can now describe the basic TLB operations. For any
given 32-bit virtual address and ASID, a TLB lookup finds the corresponding TLB entry. A
lookup can have three kinds of results:

datatype lookup_type = Miss | Incon | Hit tlb_entry

These results are: either there is no corresponding entry and the TLB needs to be refilled (Miss),
or there is more than one matching entry and the TLB is inconsistent (Incon), or there is exactly
one correct result (Hit).

We say a TLB entry matches a pair of ASID a and virtual address va when the entry
has the same ASID a and the top bits of va equal the virtual base address of the entry. Let
entry_range e be the set of addresses matched by TLB entry e, and asid_of e the ASID of e,
then we can define the lookup operation as

entry_set :: tlb) asid) 32 word) tlb_entry set

entry_set t a va = {e 2 t | va 2 entry_range e ^ a = asid_of e}

lookup :: tlb_entry set) 8 word) 32 word) lookup_type
lookup t a va ⌘

let S = entry_set t a va
in if S = ; then Miss

else if 9 x. S = {x} then Hit (the_elem S) else Incon

where the_elem {x} = x.
Any result Hit e for a given vaddr va can be translated directly into a paddr pa by replacing

the high bits of va with the 12-bit or 20-bit physical base address stored in e.
The TLB reload operation simply adds entries to the set, i.e. there is nothing specific to

formalise. The TLB maintenance operations remove entries from the set:

selective_invalidation :: tlb) asid) 32 word) tlb

selective_invalidation t a va = t - entry_set t a va

asid_invalidation :: tlb) asid) tlb

asid_invalidation t a ⌘ t - {e 2 t | asid_of e = a}

va_invalidation :: tlb) 32 word) tlb

va_invalidation t va ⌘ t - {e 2 t | va 2 entry_range e}

The operation selective_invalidation selectively removes the entry or entries covering the
given virtual address and ASID. This may do nothing if there is no such entry, may remove
exactly one entry, or all (inconsistent) entries that match. Similarly, asid_invalidation and
va_invalidation remove all entries that match a particular ASID (ignoring the address) or all
entries that match a particular virtual address (ignoring ASIDs), respectively.

These operational definitions have the expected declarative properties. For instance:

Lemma 1. All invalidation operations produce subsets of the original TLB.

selective_invalidation t a va ✓ t

asid_invalidation t a ✓ t

va_invalidation t va ✓ t

Proof. By unfolding definitions.

5

Reasoning about Translation Lookaside Bu↵ers Syeda Hira Taqdees and Gerwin Klein

4 A Formal MMU Model for ARM-style architectures

In this section, we present an operational model of ARMv7-style address translation including
the TLB in Isabelle/HOL. We will later extend this model with an ARMv7-A-style intermediate
translation cache in Sect. 6. The ARM architecture provides multiple address translation modes
that di↵er in the number of levels and number of bits being translated. Without loss of generality
for the treatment of TLBs we focus on one of these modes here — the others are analogous.
This mode provides four sizes of pages (small, large, section, and super section; c.f. [2, Chapter
B3]) and a two-level page table structure. The location of the root of the page table structure in
main memory is determined by a hardware register, the translation table root register TTBR0.

The hardware memory management unit (MMU) of ARMv7 consists of a TLB that caches
entries and the machinery required for resolving address translations using the page table from
main memory when needed. For page table operations, we reuse Kolanski’s existing ARM page
table model [11], and integrate it with the TLB formalisation that we build up in this section
to form a model of the MMU.

The ARM architecture manual [2] describes the TLB as a black box, i.e. by its external
interface only. It does not specify the replacement strategy or its exact internal state. We use
the same approach and base our abstraction directly on the architecture manual: we specify TLB
lookup, TLB reloading, as well as maintenance operations for invalidating (evicting) outdated
entries either by a tag called address space identifier (ASID), or by address in the current ASID,
or by address globally for all ASIDs. Together with Kolanski’s ARM page table model, this
will then form the basis for specifying the semantics of the memory reads and writes that we
eventually want to reason about.

Kolanski’s model di↵erentiates between virtual and physical address by type, and we con-
tinue in that tradition. He defines addresses addr_t as:

datatype (’a, ’p) addr_t = Addr ’a

where ’a is the address size (e.g. 32 word) and ’p is a tag which can be physical or virtual.
For modelling the addresses of an ARMv7-style machine, we specialise addr_t as:

vaddr = (32 word,virtual) addr_t paddr = (32 word,physical) addr_t

We use addr_val (Addr a) = a to extract the address.

4.1 Formal Model of the TLB

We now present the operational model of the TLB itself and its maintenance operations. The
next section will then develop this into a full MMU model and integrate it with memory reads
and writes in the Cambridge ARM semantics.

Figure 1: An Abstraction of TLB

The state of a TLB is straightforward: it is merely
a set of TLB entries, where a TLB entry consists of an
ASID tag, a virtual base address, a physical base address,
and potentially a set of flags for access control and other
page attributes. Figure 1 gives a visual representation.
Corresponding to the four page sizes of the architecture,
there are four di↵erent sizes of TLB entries. To keep
the presentation small, we show only two of these in the
paper, one with 20 bit base addresses for small pages and one with 12 bit for sections. Formally:

type synonym tlb = tlb_entry set

datatype tlb_entry = EntrySmall asid (20 word) (20 word option) flags

| EntrySection asid (12 word) (12 word option) flags

4

Reasoning about Translation Lookaside Bu↵ers Syeda Hira Taqdees and Gerwin Klein

where the type asid is an abbreviation for 8 word.
To accommodate our later refinements of this model in Sect. 5, we generalised the physical

base address in this definition from 20 or 12 word to 20 or 12 word option. In the TLB base
model, these will always be entries with Some.

With the TLB state formalised, we can now describe the basic TLB operations. For any
given 32-bit virtual address and ASID, a TLB lookup finds the corresponding TLB entry. A
lookup can have three kinds of results:

datatype lookup_type = Miss | Incon | Hit tlb_entry

These results are: either there is no corresponding entry and the TLB needs to be refilled (Miss),
or there is more than one matching entry and the TLB is inconsistent (Incon), or there is exactly
one correct result (Hit).

We say a TLB entry matches a pair of ASID a and virtual address va when the entry
has the same ASID a and the top bits of va equal the virtual base address of the entry. Let
entry_range e be the set of addresses matched by TLB entry e, and asid_of e the ASID of e,
then we can define the lookup operation as

entry_set :: tlb) asid) 32 word) tlb_entry set

entry_set t a va = {e 2 t | va 2 entry_range e ^ a = asid_of e}

lookup :: tlb_entry set) 8 word) 32 word) lookup_type
lookup t a va ⌘

let S = entry_set t a va
in if S = ; then Miss

else if 9 x. S = {x} then Hit (the_elem S) else Incon

where the_elem {x} = x.
Any result Hit e for a given vaddr va can be translated directly into a paddr pa by replacing

the high bits of va with the 12-bit or 20-bit physical base address stored in e.
The TLB reload operation simply adds entries to the set, i.e. there is nothing specific to

formalise. The TLB maintenance operations remove entries from the set:

selective_invalidation :: tlb) asid) 32 word) tlb

selective_invalidation t a va = t - entry_set t a va

asid_invalidation :: tlb) asid) tlb

asid_invalidation t a ⌘ t - {e 2 t | asid_of e = a}

va_invalidation :: tlb) 32 word) tlb

va_invalidation t va ⌘ t - {e 2 t | va 2 entry_range e}

The operation selective_invalidation selectively removes the entry or entries covering the
given virtual address and ASID. This may do nothing if there is no such entry, may remove
exactly one entry, or all (inconsistent) entries that match. Similarly, asid_invalidation and
va_invalidation remove all entries that match a particular ASID (ignoring the address) or all
entries that match a particular virtual address (ignoring ASIDs), respectively.

These operational definitions have the expected declarative properties. For instance:

Lemma 1. All invalidation operations produce subsets of the original TLB.

selective_invalidation t a va ✓ t

asid_invalidation t a ✓ t

va_invalidation t va ✓ t

Proof. By unfolding definitions.

5

 Reasoning about Translation Lookaside Buffers Hira T. Syeda6

ARMv7-style
Formal Model of TLB

where the type asid is an abbreviation for 8 word.
To accommodate our later refinements of this model in Sect. 5, we generalised the physical

base address in this definition from 20 or 12 word to 20 or 12 word option. In the TLB base
model, these will always be entries with Some.

With the TLB state formalised, we can now describe the basic TLB operations. For any
given 32-bit virtual address and ASID, a TLB lookup finds the corresponding TLB entry. A
lookup can have three kinds of results:

datatype lookup_type = Miss | Incon | Hit tlb_entry

These results are: either there is no corresponding entry and the TLB needs to be refilled (Miss),
or there is more than one matching entry and the TLB is inconsistent (Incon), or there is exactly
one correct result (Hit).

We say a TLB entry matches a pair of ASID a and virtual address va when the entry
has the same ASID a and the top bits of va equal the virtual base address of the entry. Let
entry_range e be the set of addresses matched by TLB entry e, and asid_of e the ASID of e,
then we can define the lookup operation as

entry_set :: tlb) asid) 32 word) tlb_entry set
entry_set t a va = {e 2 t | va 2 entry_range e ^ a = asid_of e}

lookup :: tlb_entry set) 8 word) 32 word) lookup_type
lookup t a va ⌘

let S = entry_set t a va
in if S = ; then Miss

else if 9 x. S = {x} then Hit (the_elem S) else Incon

where the_elem {x} = x.
Any result Hit e for a given vaddr va can be translated directly into a paddr pa by replacing

the high bits of va with the 12-bit or 20-bit physical base address stored in e.
The TLB reload operation simply adds entries to the set, i.e. there is nothing specific to

formalise. The TLB maintenance operations remove entries from the set:

selective_invalidation :: tlb) asid) 32 word) tlb
selective_invalidation t a va = t - entry_set t a va

asid_invalidation :: tlb) asid) tlb
asid_invalidation t a ⌘ t - {e 2 t | asid_of e = a}

va_invalidation :: tlb) 32 word) tlb
va_invalidation t va ⌘ t - {e 2 t | va 2 entry_range e}

The operation selective_invalidation selectively removes the entry or entries covering the
given virtual address and ASID. This may do nothing if there is no such entry, may remove
exactly one entry, or all (inconsistent) entries that match. Similarly, asid_invalidation and
va_invalidation remove all entries that match a particular ASID (ignoring the address) or all
entries that match a particular virtual address (ignoring ASIDs), respectively.

These operational definitions have the expected declarative properties. For instance:

Lemma 1. All invalidation operations produce subsets of the original TLB.

selective_invalidation t a va ✓ t
asid_invalidation t a ✓ t
va_invalidation t va ✓ t

Proof. By unfolding definitions.

4 A Formal MMU Model for ARM-style architectures

In this section, we present an operational model of ARMv7-style address translation including
the TLB in Isabelle/HOL. We will later extend this model with an ARMv7-A-style intermediate
translation cache in Sect. 6. The ARM architecture provides multiple address translation modes
that di↵er in the number of levels and number of bits being translated. Without loss of generality
for the treatment of TLBs we focus on one of these modes here — the others are analogous.
This mode provides four sizes of pages (small, large, section, and super section; c.f. [2, Chapter
B3]) and a two-level page table structure. The location of the root of the page table structure in
main memory is determined by a hardware register, the translation table root register TTBR0.

The hardware memory management unit (MMU) of ARMv7 consists of a TLB that caches
entries and the machinery required for resolving address translations using the page table from
main memory when needed. For page table operations, we reuse Kolanski’s existing ARM page
table model [12], and integrate it with the TLB formalisation that we build up in this section
to form a model of the MMU.

The ARM architecture manual [2] describes the TLB as a black box, i.e. by its external
interface only. It does not specify the replacement strategy or its exact internal state. We use
the same approach and base our abstraction directly on the architecture manual: we specify TLB
lookup, TLB reloading, as well as maintenance operations for invalidating (evicting) outdated
entries either by a tag called address space identifier (ASID), or by address in the current ASID,
or by address globally for all ASIDs. Together with Kolanski’s ARM page table model, this
will then form the basis for specifying the semantics of the memory reads and writes that we
eventually want to reason about.

Kolanski’s model di↵erentiates between virtual and physical address by type, and we con-
tinue in that tradition. He defines addresses addr_t as:

datatype (’a, ’p) addr_t = Addr ’a

where ’a is the address size (e.g. 32 word) and ’p is a tag which can be physical or virtual.
For modelling the addresses of an ARMv7-style machine, we specialise addr_t as:

vaddr = (32 word,virtual) addr_t paddr = (32 word,physical) addr_t

We use addr_val (Addr a) = a to extract the address.

4.1 Formal Model of the TLB

We now present the operational model of the TLB itself and its maintenance operations. The
next section will then develop this into a full MMU model and integrate it with memory reads
and writes in the Cambridge ARM semantics.

Figure 1: An Abstraction of TLB

The state of a TLB is straightforward: it is merely
a set of TLB entries, where a TLB entry consists of an
ASID tag, a virtual base address, a physical base address,
and potentially a set of flags for access control and other
page attributes. Figure 1 gives a visual representation.
Corresponding to the four page sizes of the architecture,
there are four di↵erent sizes of TLB entries. To keep
the presentation small, we show only two of these in the
paper, one with 20 bit base addresses for small pages and one with 12 bit for sections. Formally:

type synonym tlb = tlb_entry set

datatype tlb_entry = EntrySmall asid (20 word) (20 word option) flags
| EntrySection asid (12 word) (12 word option) flags

Reasoning about Translation Lookaside Bu↵ers Syeda Hira Taqdees and Gerwin Klein

where the type asid is an abbreviation for 8 word.
To accommodate our later refinements of this model in Sect. 5, we generalised the physical

base address in this definition from 20 or 12 word to 20 or 12 word option. In the TLB base
model, these will always be entries with Some.

With the TLB state formalised, we can now describe the basic TLB operations. For any
given 32-bit virtual address and ASID, a TLB lookup finds the corresponding TLB entry. A
lookup can have three kinds of results:

datatype lookup_type = Miss | Incon | Hit tlb_entry

These results are: either there is no corresponding entry and the TLB needs to be refilled (Miss),
or there is more than one matching entry and the TLB is inconsistent (Incon), or there is exactly
one correct result (Hit).

We say a TLB entry matches a pair of ASID a and virtual address va when the entry
has the same ASID a and the top bits of va equal the virtual base address of the entry. Let
entry_range e be the set of addresses matched by TLB entry e, and asid_of e the ASID of e,
then we can define the lookup operation as

entry_set :: tlb) asid) 32 word) tlb_entry set

entry_set t a va = {e 2 t | va 2 entry_range e ^ a = asid_of e}

lookup :: tlb_entry set) 8 word) 32 word) lookup_type
lookup t a va ⌘

let S = entry_set t a va
in if S = ; then Miss

else if 9 x. S = {x} then Hit (the_elem S) else Incon

where the_elem {x} = x.
Any result Hit e for a given vaddr va can be translated directly into a paddr pa by replacing

the high bits of va with the 12-bit or 20-bit physical base address stored in e.
The TLB reload operation simply adds entries to the set, i.e. there is nothing specific to

formalise. The TLB maintenance operations remove entries from the set:

selective_invalidation :: tlb) asid) 32 word) tlb

selective_invalidation t a va = t - entry_set t a va

asid_invalidation :: tlb) asid) tlb

asid_invalidation t a ⌘ t - {e 2 t | asid_of e = a}

va_invalidation :: tlb) 32 word) tlb

va_invalidation t va ⌘ t - {e 2 t | va 2 entry_range e}

The operation selective_invalidation selectively removes the entry or entries covering the
given virtual address and ASID. This may do nothing if there is no such entry, may remove
exactly one entry, or all (inconsistent) entries that match. Similarly, asid_invalidation and
va_invalidation remove all entries that match a particular ASID (ignoring the address) or all
entries that match a particular virtual address (ignoring ASIDs), respectively.

These operational definitions have the expected declarative properties. For instance:

Lemma 1. All invalidation operations produce subsets of the original TLB.

selective_invalidation t a va ✓ t

asid_invalidation t a ✓ t

va_invalidation t va ✓ t

Proof. By unfolding definitions.

5

Reasoning about Translation Lookaside Bu↵ers Syeda Hira Taqdees and Gerwin Klein

where the type asid is an abbreviation for 8 word.
To accommodate our later refinements of this model in Sect. 5, we generalised the physical

base address in this definition from 20 or 12 word to 20 or 12 word option. In the TLB base
model, these will always be entries with Some.

With the TLB state formalised, we can now describe the basic TLB operations. For any
given 32-bit virtual address and ASID, a TLB lookup finds the corresponding TLB entry. A
lookup can have three kinds of results:

datatype lookup_type = Miss | Incon | Hit tlb_entry

These results are: either there is no corresponding entry and the TLB needs to be refilled (Miss),
or there is more than one matching entry and the TLB is inconsistent (Incon), or there is exactly
one correct result (Hit).

We say a TLB entry matches a pair of ASID a and virtual address va when the entry
has the same ASID a and the top bits of va equal the virtual base address of the entry. Let
entry_range e be the set of addresses matched by TLB entry e, and asid_of e the ASID of e,
then we can define the lookup operation as

entry_set :: tlb) asid) 32 word) tlb_entry set

entry_set t a va = {e 2 t | va 2 entry_range e ^ a = asid_of e}

lookup :: tlb_entry set) 8 word) 32 word) lookup_type
lookup t a va ⌘

let S = entry_set t a va
in if S = ; then Miss

else if 9 x. S = {x} then Hit (the_elem S) else Incon

where the_elem {x} = x.
Any result Hit e for a given vaddr va can be translated directly into a paddr pa by replacing

the high bits of va with the 12-bit or 20-bit physical base address stored in e.
The TLB reload operation simply adds entries to the set, i.e. there is nothing specific to

formalise. The TLB maintenance operations remove entries from the set:

selective_invalidation :: tlb) asid) 32 word) tlb

selective_invalidation t a va = t - entry_set t a va

asid_invalidation :: tlb) asid) tlb

asid_invalidation t a ⌘ t - {e 2 t | asid_of e = a}

va_invalidation :: tlb) 32 word) tlb

va_invalidation t va ⌘ t - {e 2 t | va 2 entry_range e}

The operation selective_invalidation selectively removes the entry or entries covering the
given virtual address and ASID. This may do nothing if there is no such entry, may remove
exactly one entry, or all (inconsistent) entries that match. Similarly, asid_invalidation and
va_invalidation remove all entries that match a particular ASID (ignoring the address) or all
entries that match a particular virtual address (ignoring ASIDs), respectively.

These operational definitions have the expected declarative properties. For instance:

Lemma 1. All invalidation operations produce subsets of the original TLB.

selective_invalidation t a va ✓ t

asid_invalidation t a ✓ t

va_invalidation t va ✓ t

Proof. By unfolding definitions.

5

Reasoning about Translation Lookaside Bu↵ers Syeda Hira Taqdees and Gerwin Klein

4 A Formal MMU Model for ARM-style architectures

In this section, we present an operational model of ARMv7-style address translation including
the TLB in Isabelle/HOL. We will later extend this model with an ARMv7-A-style intermediate
translation cache in Sect. 6. The ARM architecture provides multiple address translation modes
that di↵er in the number of levels and number of bits being translated. Without loss of generality
for the treatment of TLBs we focus on one of these modes here — the others are analogous.
This mode provides four sizes of pages (small, large, section, and super section; c.f. [2, Chapter
B3]) and a two-level page table structure. The location of the root of the page table structure in
main memory is determined by a hardware register, the translation table root register TTBR0.

The hardware memory management unit (MMU) of ARMv7 consists of a TLB that caches
entries and the machinery required for resolving address translations using the page table from
main memory when needed. For page table operations, we reuse Kolanski’s existing ARM page
table model [11], and integrate it with the TLB formalisation that we build up in this section
to form a model of the MMU.

The ARM architecture manual [2] describes the TLB as a black box, i.e. by its external
interface only. It does not specify the replacement strategy or its exact internal state. We use
the same approach and base our abstraction directly on the architecture manual: we specify TLB
lookup, TLB reloading, as well as maintenance operations for invalidating (evicting) outdated
entries either by a tag called address space identifier (ASID), or by address in the current ASID,
or by address globally for all ASIDs. Together with Kolanski’s ARM page table model, this
will then form the basis for specifying the semantics of the memory reads and writes that we
eventually want to reason about.

Kolanski’s model di↵erentiates between virtual and physical address by type, and we con-
tinue in that tradition. He defines addresses addr_t as:

datatype (’a, ’p) addr_t = Addr ’a

where ’a is the address size (e.g. 32 word) and ’p is a tag which can be physical or virtual.
For modelling the addresses of an ARMv7-style machine, we specialise addr_t as:

vaddr = (32 word,virtual) addr_t paddr = (32 word,physical) addr_t

We use addr_val (Addr a) = a to extract the address.

4.1 Formal Model of the TLB

We now present the operational model of the TLB itself and its maintenance operations. The
next section will then develop this into a full MMU model and integrate it with memory reads
and writes in the Cambridge ARM semantics.

Figure 1: An Abstraction of TLB

The state of a TLB is straightforward: it is merely
a set of TLB entries, where a TLB entry consists of an
ASID tag, a virtual base address, a physical base address,
and potentially a set of flags for access control and other
page attributes. Figure 1 gives a visual representation.
Corresponding to the four page sizes of the architecture,
there are four di↵erent sizes of TLB entries. To keep
the presentation small, we show only two of these in the
paper, one with 20 bit base addresses for small pages and one with 12 bit for sections. Formally:

type synonym tlb = tlb_entry set

datatype tlb_entry = EntrySmall asid (20 word) (20 word option) flags

| EntrySection asid (12 word) (12 word option) flags

4

Reasoning about Translation Lookaside Bu↵ers Syeda Hira Taqdees and Gerwin Klein

where the type asid is an abbreviation for 8 word.
To accommodate our later refinements of this model in Sect. 5, we generalised the physical

base address in this definition from 20 or 12 word to 20 or 12 word option. In the TLB base
model, these will always be entries with Some.

With the TLB state formalised, we can now describe the basic TLB operations. For any
given 32-bit virtual address and ASID, a TLB lookup finds the corresponding TLB entry. A
lookup can have three kinds of results:

datatype lookup_type = Miss | Incon | Hit tlb_entry

These results are: either there is no corresponding entry and the TLB needs to be refilled (Miss),
or there is more than one matching entry and the TLB is inconsistent (Incon), or there is exactly
one correct result (Hit).

We say a TLB entry matches a pair of ASID a and virtual address va when the entry
has the same ASID a and the top bits of va equal the virtual base address of the entry. Let
entry_range e be the set of addresses matched by TLB entry e, and asid_of e the ASID of e,
then we can define the lookup operation as

entry_set :: tlb) asid) 32 word) tlb_entry set

entry_set t a va = {e 2 t | va 2 entry_range e ^ a = asid_of e}

lookup :: tlb_entry set) 8 word) 32 word) lookup_type
lookup t a va ⌘

let S = entry_set t a va
in if S = ; then Miss

else if 9 x. S = {x} then Hit (the_elem S) else Incon

where the_elem {x} = x.
Any result Hit e for a given vaddr va can be translated directly into a paddr pa by replacing

the high bits of va with the 12-bit or 20-bit physical base address stored in e.
The TLB reload operation simply adds entries to the set, i.e. there is nothing specific to

formalise. The TLB maintenance operations remove entries from the set:

selective_invalidation :: tlb) asid) 32 word) tlb

selective_invalidation t a va = t - entry_set t a va

asid_invalidation :: tlb) asid) tlb

asid_invalidation t a ⌘ t - {e 2 t | asid_of e = a}

va_invalidation :: tlb) 32 word) tlb

va_invalidation t va ⌘ t - {e 2 t | va 2 entry_range e}

The operation selective_invalidation selectively removes the entry or entries covering the
given virtual address and ASID. This may do nothing if there is no such entry, may remove
exactly one entry, or all (inconsistent) entries that match. Similarly, asid_invalidation and
va_invalidation remove all entries that match a particular ASID (ignoring the address) or all
entries that match a particular virtual address (ignoring ASIDs), respectively.

These operational definitions have the expected declarative properties. For instance:

Lemma 1. All invalidation operations produce subsets of the original TLB.

selective_invalidation t a va ✓ t

asid_invalidation t a ✓ t

va_invalidation t va ✓ t

Proof. By unfolding definitions.

5

 Reasoning about Translation Lookaside Buffers Hira T. Syeda6

ARMv7-style
Formal Model of TLB

ASID
virtual base

address
physical base

address
permission

bits
tlb_entry
format

where the type asid is an abbreviation for 8 word.
To accommodate our later refinements of this model in Sect. 5, we generalised the physical

base address in this definition from 20 or 12 word to 20 or 12 word option. In the TLB base
model, these will always be entries with Some.

With the TLB state formalised, we can now describe the basic TLB operations. For any
given 32-bit virtual address and ASID, a TLB lookup finds the corresponding TLB entry. A
lookup can have three kinds of results:

datatype lookup_type = Miss | Incon | Hit tlb_entry

These results are: either there is no corresponding entry and the TLB needs to be refilled (Miss),
or there is more than one matching entry and the TLB is inconsistent (Incon), or there is exactly
one correct result (Hit).

We say a TLB entry matches a pair of ASID a and virtual address va when the entry
has the same ASID a and the top bits of va equal the virtual base address of the entry. Let
entry_range e be the set of addresses matched by TLB entry e, and asid_of e the ASID of e,
then we can define the lookup operation as

entry_set :: tlb) asid) 32 word) tlb_entry set
entry_set t a va = {e 2 t | va 2 entry_range e ^ a = asid_of e}

lookup :: tlb_entry set) 8 word) 32 word) lookup_type
lookup t a va ⌘

let S = entry_set t a va
in if S = ; then Miss

else if 9 x. S = {x} then Hit (the_elem S) else Incon

where the_elem {x} = x.
Any result Hit e for a given vaddr va can be translated directly into a paddr pa by replacing

the high bits of va with the 12-bit or 20-bit physical base address stored in e.
The TLB reload operation simply adds entries to the set, i.e. there is nothing specific to

formalise. The TLB maintenance operations remove entries from the set:

selective_invalidation :: tlb) asid) 32 word) tlb
selective_invalidation t a va = t - entry_set t a va

asid_invalidation :: tlb) asid) tlb
asid_invalidation t a ⌘ t - {e 2 t | asid_of e = a}

va_invalidation :: tlb) 32 word) tlb
va_invalidation t va ⌘ t - {e 2 t | va 2 entry_range e}

The operation selective_invalidation selectively removes the entry or entries covering the
given virtual address and ASID. This may do nothing if there is no such entry, may remove
exactly one entry, or all (inconsistent) entries that match. Similarly, asid_invalidation and
va_invalidation remove all entries that match a particular ASID (ignoring the address) or all
entries that match a particular virtual address (ignoring ASIDs), respectively.

These operational definitions have the expected declarative properties. For instance:

Lemma 1. All invalidation operations produce subsets of the original TLB.

selective_invalidation t a va ✓ t
asid_invalidation t a ✓ t
va_invalidation t va ✓ t

Proof. By unfolding definitions.

4 A Formal MMU Model for ARM-style architectures

In this section, we present an operational model of ARMv7-style address translation including
the TLB in Isabelle/HOL. We will later extend this model with an ARMv7-A-style intermediate
translation cache in Sect. 6. The ARM architecture provides multiple address translation modes
that di↵er in the number of levels and number of bits being translated. Without loss of generality
for the treatment of TLBs we focus on one of these modes here — the others are analogous.
This mode provides four sizes of pages (small, large, section, and super section; c.f. [2, Chapter
B3]) and a two-level page table structure. The location of the root of the page table structure in
main memory is determined by a hardware register, the translation table root register TTBR0.

The hardware memory management unit (MMU) of ARMv7 consists of a TLB that caches
entries and the machinery required for resolving address translations using the page table from
main memory when needed. For page table operations, we reuse Kolanski’s existing ARM page
table model [12], and integrate it with the TLB formalisation that we build up in this section
to form a model of the MMU.

The ARM architecture manual [2] describes the TLB as a black box, i.e. by its external
interface only. It does not specify the replacement strategy or its exact internal state. We use
the same approach and base our abstraction directly on the architecture manual: we specify TLB
lookup, TLB reloading, as well as maintenance operations for invalidating (evicting) outdated
entries either by a tag called address space identifier (ASID), or by address in the current ASID,
or by address globally for all ASIDs. Together with Kolanski’s ARM page table model, this
will then form the basis for specifying the semantics of the memory reads and writes that we
eventually want to reason about.

Kolanski’s model di↵erentiates between virtual and physical address by type, and we con-
tinue in that tradition. He defines addresses addr_t as:

datatype (’a, ’p) addr_t = Addr ’a

where ’a is the address size (e.g. 32 word) and ’p is a tag which can be physical or virtual.
For modelling the addresses of an ARMv7-style machine, we specialise addr_t as:

vaddr = (32 word,virtual) addr_t paddr = (32 word,physical) addr_t

We use addr_val (Addr a) = a to extract the address.

4.1 Formal Model of the TLB

We now present the operational model of the TLB itself and its maintenance operations. The
next section will then develop this into a full MMU model and integrate it with memory reads
and writes in the Cambridge ARM semantics.

Figure 1: An Abstraction of TLB

The state of a TLB is straightforward: it is merely
a set of TLB entries, where a TLB entry consists of an
ASID tag, a virtual base address, a physical base address,
and potentially a set of flags for access control and other
page attributes. Figure 1 gives a visual representation.
Corresponding to the four page sizes of the architecture,
there are four di↵erent sizes of TLB entries. To keep
the presentation small, we show only two of these in the
paper, one with 20 bit base addresses for small pages and one with 12 bit for sections. Formally:

type synonym tlb = tlb_entry set

datatype tlb_entry = EntrySmall asid (20 word) (20 word option) flags
| EntrySection asid (12 word) (12 word option) flags

Reasoning about Translation Lookaside Bu↵ers Syeda Hira Taqdees and Gerwin Klein

where the type asid is an abbreviation for 8 word.
To accommodate our later refinements of this model in Sect. 5, we generalised the physical

base address in this definition from 20 or 12 word to 20 or 12 word option. In the TLB base
model, these will always be entries with Some.

With the TLB state formalised, we can now describe the basic TLB operations. For any
given 32-bit virtual address and ASID, a TLB lookup finds the corresponding TLB entry. A
lookup can have three kinds of results:

datatype lookup_type = Miss | Incon | Hit tlb_entry

These results are: either there is no corresponding entry and the TLB needs to be refilled (Miss),
or there is more than one matching entry and the TLB is inconsistent (Incon), or there is exactly
one correct result (Hit).

We say a TLB entry matches a pair of ASID a and virtual address va when the entry
has the same ASID a and the top bits of va equal the virtual base address of the entry. Let
entry_range e be the set of addresses matched by TLB entry e, and asid_of e the ASID of e,
then we can define the lookup operation as

entry_set :: tlb) asid) 32 word) tlb_entry set

entry_set t a va = {e 2 t | va 2 entry_range e ^ a = asid_of e}

lookup :: tlb_entry set) 8 word) 32 word) lookup_type
lookup t a va ⌘

let S = entry_set t a va
in if S = ; then Miss

else if 9 x. S = {x} then Hit (the_elem S) else Incon

where the_elem {x} = x.
Any result Hit e for a given vaddr va can be translated directly into a paddr pa by replacing

the high bits of va with the 12-bit or 20-bit physical base address stored in e.
The TLB reload operation simply adds entries to the set, i.e. there is nothing specific to

formalise. The TLB maintenance operations remove entries from the set:

selective_invalidation :: tlb) asid) 32 word) tlb

selective_invalidation t a va = t - entry_set t a va

asid_invalidation :: tlb) asid) tlb

asid_invalidation t a ⌘ t - {e 2 t | asid_of e = a}

va_invalidation :: tlb) 32 word) tlb

va_invalidation t va ⌘ t - {e 2 t | va 2 entry_range e}

The operation selective_invalidation selectively removes the entry or entries covering the
given virtual address and ASID. This may do nothing if there is no such entry, may remove
exactly one entry, or all (inconsistent) entries that match. Similarly, asid_invalidation and
va_invalidation remove all entries that match a particular ASID (ignoring the address) or all
entries that match a particular virtual address (ignoring ASIDs), respectively.

These operational definitions have the expected declarative properties. For instance:

Lemma 1. All invalidation operations produce subsets of the original TLB.

selective_invalidation t a va ✓ t

asid_invalidation t a ✓ t

va_invalidation t va ✓ t

Proof. By unfolding definitions.

5

Reasoning about Translation Lookaside Bu↵ers Syeda Hira Taqdees and Gerwin Klein

where the type asid is an abbreviation for 8 word.
To accommodate our later refinements of this model in Sect. 5, we generalised the physical

base address in this definition from 20 or 12 word to 20 or 12 word option. In the TLB base
model, these will always be entries with Some.

With the TLB state formalised, we can now describe the basic TLB operations. For any
given 32-bit virtual address and ASID, a TLB lookup finds the corresponding TLB entry. A
lookup can have three kinds of results:

datatype lookup_type = Miss | Incon | Hit tlb_entry

These results are: either there is no corresponding entry and the TLB needs to be refilled (Miss),
or there is more than one matching entry and the TLB is inconsistent (Incon), or there is exactly
one correct result (Hit).

We say a TLB entry matches a pair of ASID a and virtual address va when the entry
has the same ASID a and the top bits of va equal the virtual base address of the entry. Let
entry_range e be the set of addresses matched by TLB entry e, and asid_of e the ASID of e,
then we can define the lookup operation as

entry_set :: tlb) asid) 32 word) tlb_entry set

entry_set t a va = {e 2 t | va 2 entry_range e ^ a = asid_of e}

lookup :: tlb_entry set) 8 word) 32 word) lookup_type
lookup t a va ⌘

let S = entry_set t a va
in if S = ; then Miss

else if 9 x. S = {x} then Hit (the_elem S) else Incon

where the_elem {x} = x.
Any result Hit e for a given vaddr va can be translated directly into a paddr pa by replacing

the high bits of va with the 12-bit or 20-bit physical base address stored in e.
The TLB reload operation simply adds entries to the set, i.e. there is nothing specific to

formalise. The TLB maintenance operations remove entries from the set:

selective_invalidation :: tlb) asid) 32 word) tlb

selective_invalidation t a va = t - entry_set t a va

asid_invalidation :: tlb) asid) tlb

asid_invalidation t a ⌘ t - {e 2 t | asid_of e = a}

va_invalidation :: tlb) 32 word) tlb

va_invalidation t va ⌘ t - {e 2 t | va 2 entry_range e}

The operation selective_invalidation selectively removes the entry or entries covering the
given virtual address and ASID. This may do nothing if there is no such entry, may remove
exactly one entry, or all (inconsistent) entries that match. Similarly, asid_invalidation and
va_invalidation remove all entries that match a particular ASID (ignoring the address) or all
entries that match a particular virtual address (ignoring ASIDs), respectively.

These operational definitions have the expected declarative properties. For instance:

Lemma 1. All invalidation operations produce subsets of the original TLB.

selective_invalidation t a va ✓ t

asid_invalidation t a ✓ t

va_invalidation t va ✓ t

Proof. By unfolding definitions.

5

Reasoning about Translation Lookaside Bu↵ers Syeda Hira Taqdees and Gerwin Klein

4 A Formal MMU Model for ARM-style architectures

In this section, we present an operational model of ARMv7-style address translation including
the TLB in Isabelle/HOL. We will later extend this model with an ARMv7-A-style intermediate
translation cache in Sect. 6. The ARM architecture provides multiple address translation modes
that di↵er in the number of levels and number of bits being translated. Without loss of generality
for the treatment of TLBs we focus on one of these modes here — the others are analogous.
This mode provides four sizes of pages (small, large, section, and super section; c.f. [2, Chapter
B3]) and a two-level page table structure. The location of the root of the page table structure in
main memory is determined by a hardware register, the translation table root register TTBR0.

The hardware memory management unit (MMU) of ARMv7 consists of a TLB that caches
entries and the machinery required for resolving address translations using the page table from
main memory when needed. For page table operations, we reuse Kolanski’s existing ARM page
table model [11], and integrate it with the TLB formalisation that we build up in this section
to form a model of the MMU.

The ARM architecture manual [2] describes the TLB as a black box, i.e. by its external
interface only. It does not specify the replacement strategy or its exact internal state. We use
the same approach and base our abstraction directly on the architecture manual: we specify TLB
lookup, TLB reloading, as well as maintenance operations for invalidating (evicting) outdated
entries either by a tag called address space identifier (ASID), or by address in the current ASID,
or by address globally for all ASIDs. Together with Kolanski’s ARM page table model, this
will then form the basis for specifying the semantics of the memory reads and writes that we
eventually want to reason about.

Kolanski’s model di↵erentiates between virtual and physical address by type, and we con-
tinue in that tradition. He defines addresses addr_t as:

datatype (’a, ’p) addr_t = Addr ’a

where ’a is the address size (e.g. 32 word) and ’p is a tag which can be physical or virtual.
For modelling the addresses of an ARMv7-style machine, we specialise addr_t as:

vaddr = (32 word,virtual) addr_t paddr = (32 word,physical) addr_t

We use addr_val (Addr a) = a to extract the address.

4.1 Formal Model of the TLB

We now present the operational model of the TLB itself and its maintenance operations. The
next section will then develop this into a full MMU model and integrate it with memory reads
and writes in the Cambridge ARM semantics.

Figure 1: An Abstraction of TLB

The state of a TLB is straightforward: it is merely
a set of TLB entries, where a TLB entry consists of an
ASID tag, a virtual base address, a physical base address,
and potentially a set of flags for access control and other
page attributes. Figure 1 gives a visual representation.
Corresponding to the four page sizes of the architecture,
there are four di↵erent sizes of TLB entries. To keep
the presentation small, we show only two of these in the
paper, one with 20 bit base addresses for small pages and one with 12 bit for sections. Formally:

type synonym tlb = tlb_entry set

datatype tlb_entry = EntrySmall asid (20 word) (20 word option) flags

| EntrySection asid (12 word) (12 word option) flags

4

Reasoning about Translation Lookaside Bu↵ers Syeda Hira Taqdees and Gerwin Klein

where the type asid is an abbreviation for 8 word.
To accommodate our later refinements of this model in Sect. 5, we generalised the physical

base address in this definition from 20 or 12 word to 20 or 12 word option. In the TLB base
model, these will always be entries with Some.

With the TLB state formalised, we can now describe the basic TLB operations. For any
given 32-bit virtual address and ASID, a TLB lookup finds the corresponding TLB entry. A
lookup can have three kinds of results:

datatype lookup_type = Miss | Incon | Hit tlb_entry

These results are: either there is no corresponding entry and the TLB needs to be refilled (Miss),
or there is more than one matching entry and the TLB is inconsistent (Incon), or there is exactly
one correct result (Hit).

We say a TLB entry matches a pair of ASID a and virtual address va when the entry
has the same ASID a and the top bits of va equal the virtual base address of the entry. Let
entry_range e be the set of addresses matched by TLB entry e, and asid_of e the ASID of e,
then we can define the lookup operation as

entry_set :: tlb) asid) 32 word) tlb_entry set

entry_set t a va = {e 2 t | va 2 entry_range e ^ a = asid_of e}

lookup :: tlb_entry set) 8 word) 32 word) lookup_type
lookup t a va ⌘

let S = entry_set t a va
in if S = ; then Miss

else if 9 x. S = {x} then Hit (the_elem S) else Incon

where the_elem {x} = x.
Any result Hit e for a given vaddr va can be translated directly into a paddr pa by replacing

the high bits of va with the 12-bit or 20-bit physical base address stored in e.
The TLB reload operation simply adds entries to the set, i.e. there is nothing specific to

formalise. The TLB maintenance operations remove entries from the set:

selective_invalidation :: tlb) asid) 32 word) tlb

selective_invalidation t a va = t - entry_set t a va

asid_invalidation :: tlb) asid) tlb

asid_invalidation t a ⌘ t - {e 2 t | asid_of e = a}

va_invalidation :: tlb) 32 word) tlb

va_invalidation t va ⌘ t - {e 2 t | va 2 entry_range e}

The operation selective_invalidation selectively removes the entry or entries covering the
given virtual address and ASID. This may do nothing if there is no such entry, may remove
exactly one entry, or all (inconsistent) entries that match. Similarly, asid_invalidation and
va_invalidation remove all entries that match a particular ASID (ignoring the address) or all
entries that match a particular virtual address (ignoring ASIDs), respectively.

These operational definitions have the expected declarative properties. For instance:

Lemma 1. All invalidation operations produce subsets of the original TLB.

selective_invalidation t a va ✓ t

asid_invalidation t a ✓ t

va_invalidation t va ✓ t

Proof. By unfolding definitions.

5

 Reasoning about Translation Lookaside Buffers Hira T. Syeda6

ARMv7-style
Formal Model of TLB

ASID
virtual base

address
physical base

address
permission

bits
tlb_entry
format

4 A Formal MMU Model for ARM-style architectures

In this section, we present an operational model of ARMv7-style address translation including
the TLB in Isabelle/HOL. We will later extend this model with an ARMv7-A-style intermediate
translation cache in Sect. 6. The ARM architecture provides multiple address translation modes
that di↵er in the number of levels and number of bits being translated. Without loss of generality
for the treatment of TLBs we focus on one of these modes here — the others are analogous.
This mode provides four sizes of pages (small, large, section, and super section; c.f. [2, Chapter
B3]) and a two-level page table structure. The location of the root of the page table structure in
main memory is determined by a hardware register, the translation table root register TTBR0.

The hardware memory management unit (MMU) of ARMv7 consists of a TLB that caches
entries and the machinery required for resolving address translations using the page table from
main memory when needed. For page table operations, we reuse Kolanski’s existing ARM page
table model [12], and integrate it with the TLB formalisation that we build up in this section
to form a model of the MMU.

The ARM architecture manual [2] describes the TLB as a black box, i.e. by its external
interface only. It does not specify the replacement strategy or its exact internal state. We use
the same approach and base our abstraction directly on the architecture manual: we specify TLB
lookup, TLB reloading, as well as maintenance operations for invalidating (evicting) outdated
entries either by a tag called address space identifier (ASID), or by address in the current ASID,
or by address globally for all ASIDs. Together with Kolanski’s ARM page table model, this
will then form the basis for specifying the semantics of the memory reads and writes that we
eventually want to reason about.

Kolanski’s model di↵erentiates between virtual and physical address by type, and we con-
tinue in that tradition. He defines addresses addr_t as:

datatype (’a, ’p) addr_t = Addr ’a

where ’a is the address size (e.g. 32 word) and ’p is a tag which can be physical or virtual.
For modelling the addresses of an ARMv7-style machine, we specialise addr_t as:

vaddr = (32 word,virtual) addr_t paddr = (32 word,physical) addr_t

We use addr_val (Addr a) = a to extract the address.

4.1 Formal Model of the TLB

We now present the operational model of the TLB itself and its maintenance operations. The
next section will then develop this into a full MMU model and integrate it with memory reads
and writes in the Cambridge ARM semantics.

Figure 1: An Abstraction of TLB

The state of a TLB is straightforward: it is merely
a set of TLB entries, where a TLB entry consists of an
ASID tag, a virtual base address, a physical base address,
and potentially a set of flags for access control and other
page attributes. Figure 1 gives a visual representation.
Corresponding to the four page sizes of the architecture,
there are four di↵erent sizes of TLB entries. To keep
the presentation small, we show only two of these in the
paper, one with 20 bit base addresses for small pages and one with 12 bit for sections. Formally:

type synonym tlb = tlb_entry set

datatype tlb_entry = EntrySmall asid (20 word) (20 word option) flags
| EntrySection asid (12 word) (12 word option) flags

where the type asid is an abbreviation for 8 word.
To accommodate our later refinements of this model in Sect. 5, we generalised the physical

base address in this definition from 20 or 12 word to 20 or 12 word option. In the TLB base
model, these will always be entries with Some.

With the TLB state formalised, we can now describe the basic TLB operations. For any
given 32-bit virtual address and ASID, a TLB lookup finds the corresponding TLB entry. A
lookup can have three kinds of results:

datatype lookup_type = Miss | Incon | Hit tlb_entry

These results are: either there is no corresponding entry and the TLB needs to be refilled (Miss),
or there is more than one matching entry and the TLB is inconsistent (Incon), or there is exactly
one correct result (Hit).

We say a TLB entry matches a pair of ASID a and virtual address va when the entry
has the same ASID a and the top bits of va equal the virtual base address of the entry. Let
entry_range e be the set of addresses matched by TLB entry e, and asid_of e the ASID of e,
then we can define the lookup operation as

entry_set :: tlb) asid) 32 word) tlb_entry set
entry_set t a va = {e 2 t | va 2 entry_range e ^ a = asid_of e}

lookup :: tlb_entry set) 8 word) 32 word) lookup_type
lookup t a va ⌘

let S = entry_set t a va
in if S = ; then Miss

else if 9 x. S = {x} then Hit (the_elem S) else Incon

where the_elem {x} = x.
Any result Hit e for a given vaddr va can be translated directly into a paddr pa by replacing

the high bits of va with the 12-bit or 20-bit physical base address stored in e.
The TLB reload operation simply adds entries to the set, i.e. there is nothing specific to

formalise. The TLB maintenance operations remove entries from the set:

selective_invalidation :: tlb) asid) 32 word) tlb
selective_invalidation t a va = t - entry_set t a va

asid_invalidation :: tlb) asid) tlb
asid_invalidation t a ⌘ t - {e 2 t | asid_of e = a}

va_invalidation :: tlb) 32 word) tlb
va_invalidation t va ⌘ t - {e 2 t | va 2 entry_range e}

The operation selective_invalidation selectively removes the entry or entries covering the
given virtual address and ASID. This may do nothing if there is no such entry, may remove
exactly one entry, or all (inconsistent) entries that match. Similarly, asid_invalidation and
va_invalidation remove all entries that match a particular ASID (ignoring the address) or all
entries that match a particular virtual address (ignoring ASIDs), respectively.

These operational definitions have the expected declarative properties. For instance:

Lemma 1. All invalidation operations produce subsets of the original TLB.

selective_invalidation t a va ✓ t
asid_invalidation t a ✓ t
va_invalidation t va ✓ t

Proof. By unfolding definitions.

4 A Formal MMU Model for ARM-style architectures

In this section, we present an operational model of ARMv7-style address translation including
the TLB in Isabelle/HOL. We will later extend this model with an ARMv7-A-style intermediate
translation cache in Sect. 6. The ARM architecture provides multiple address translation modes
that di↵er in the number of levels and number of bits being translated. Without loss of generality
for the treatment of TLBs we focus on one of these modes here — the others are analogous.
This mode provides four sizes of pages (small, large, section, and super section; c.f. [2, Chapter
B3]) and a two-level page table structure. The location of the root of the page table structure in
main memory is determined by a hardware register, the translation table root register TTBR0.

The hardware memory management unit (MMU) of ARMv7 consists of a TLB that caches
entries and the machinery required for resolving address translations using the page table from
main memory when needed. For page table operations, we reuse Kolanski’s existing ARM page
table model [12], and integrate it with the TLB formalisation that we build up in this section
to form a model of the MMU.

The ARM architecture manual [2] describes the TLB as a black box, i.e. by its external
interface only. It does not specify the replacement strategy or its exact internal state. We use
the same approach and base our abstraction directly on the architecture manual: we specify TLB
lookup, TLB reloading, as well as maintenance operations for invalidating (evicting) outdated
entries either by a tag called address space identifier (ASID), or by address in the current ASID,
or by address globally for all ASIDs. Together with Kolanski’s ARM page table model, this
will then form the basis for specifying the semantics of the memory reads and writes that we
eventually want to reason about.

Kolanski’s model di↵erentiates between virtual and physical address by type, and we con-
tinue in that tradition. He defines addresses addr_t as:

datatype (’a, ’p) addr_t = Addr ’a

where ’a is the address size (e.g. 32 word) and ’p is a tag which can be physical or virtual.
For modelling the addresses of an ARMv7-style machine, we specialise addr_t as:

vaddr = (32 word,virtual) addr_t paddr = (32 word,physical) addr_t

We use addr_val (Addr a) = a to extract the address.

4.1 Formal Model of the TLB

We now present the operational model of the TLB itself and its maintenance operations. The
next section will then develop this into a full MMU model and integrate it with memory reads
and writes in the Cambridge ARM semantics.

Figure 1: An Abstraction of TLB

The state of a TLB is straightforward: it is merely
a set of TLB entries, where a TLB entry consists of an
ASID tag, a virtual base address, a physical base address,
and potentially a set of flags for access control and other
page attributes. Figure 1 gives a visual representation.
Corresponding to the four page sizes of the architecture,
there are four di↵erent sizes of TLB entries. To keep
the presentation small, we show only two of these in the
paper, one with 20 bit base addresses for small pages and one with 12 bit for sections. Formally:

type synonym tlb = tlb_entry set

datatype tlb_entry = EntrySmall asid (20 word) (20 word option) flags
| EntrySection asid (12 word) (12 word option) flags

Reasoning about Translation Lookaside Bu↵ers Syeda Hira Taqdees and Gerwin Klein

where the type asid is an abbreviation for 8 word.
To accommodate our later refinements of this model in Sect. 5, we generalised the physical

base address in this definition from 20 or 12 word to 20 or 12 word option. In the TLB base
model, these will always be entries with Some.

With the TLB state formalised, we can now describe the basic TLB operations. For any
given 32-bit virtual address and ASID, a TLB lookup finds the corresponding TLB entry. A
lookup can have three kinds of results:

datatype lookup_type = Miss | Incon | Hit tlb_entry

These results are: either there is no corresponding entry and the TLB needs to be refilled (Miss),
or there is more than one matching entry and the TLB is inconsistent (Incon), or there is exactly
one correct result (Hit).

We say a TLB entry matches a pair of ASID a and virtual address va when the entry
has the same ASID a and the top bits of va equal the virtual base address of the entry. Let
entry_range e be the set of addresses matched by TLB entry e, and asid_of e the ASID of e,
then we can define the lookup operation as

entry_set :: tlb) asid) 32 word) tlb_entry set

entry_set t a va = {e 2 t | va 2 entry_range e ^ a = asid_of e}

lookup :: tlb_entry set) 8 word) 32 word) lookup_type
lookup t a va ⌘

let S = entry_set t a va
in if S = ; then Miss

else if 9 x. S = {x} then Hit (the_elem S) else Incon

where the_elem {x} = x.
Any result Hit e for a given vaddr va can be translated directly into a paddr pa by replacing

the high bits of va with the 12-bit or 20-bit physical base address stored in e.
The TLB reload operation simply adds entries to the set, i.e. there is nothing specific to

formalise. The TLB maintenance operations remove entries from the set:

selective_invalidation :: tlb) asid) 32 word) tlb

selective_invalidation t a va = t - entry_set t a va

asid_invalidation :: tlb) asid) tlb

asid_invalidation t a ⌘ t - {e 2 t | asid_of e = a}

va_invalidation :: tlb) 32 word) tlb

va_invalidation t va ⌘ t - {e 2 t | va 2 entry_range e}

The operation selective_invalidation selectively removes the entry or entries covering the
given virtual address and ASID. This may do nothing if there is no such entry, may remove
exactly one entry, or all (inconsistent) entries that match. Similarly, asid_invalidation and
va_invalidation remove all entries that match a particular ASID (ignoring the address) or all
entries that match a particular virtual address (ignoring ASIDs), respectively.

These operational definitions have the expected declarative properties. For instance:

Lemma 1. All invalidation operations produce subsets of the original TLB.

selective_invalidation t a va ✓ t

asid_invalidation t a ✓ t

va_invalidation t va ✓ t

Proof. By unfolding definitions.

5

Reasoning about Translation Lookaside Bu↵ers Syeda Hira Taqdees and Gerwin Klein

where the type asid is an abbreviation for 8 word.
To accommodate our later refinements of this model in Sect. 5, we generalised the physical

base address in this definition from 20 or 12 word to 20 or 12 word option. In the TLB base
model, these will always be entries with Some.

With the TLB state formalised, we can now describe the basic TLB operations. For any
given 32-bit virtual address and ASID, a TLB lookup finds the corresponding TLB entry. A
lookup can have three kinds of results:

datatype lookup_type = Miss | Incon | Hit tlb_entry

These results are: either there is no corresponding entry and the TLB needs to be refilled (Miss),
or there is more than one matching entry and the TLB is inconsistent (Incon), or there is exactly
one correct result (Hit).

We say a TLB entry matches a pair of ASID a and virtual address va when the entry
has the same ASID a and the top bits of va equal the virtual base address of the entry. Let
entry_range e be the set of addresses matched by TLB entry e, and asid_of e the ASID of e,
then we can define the lookup operation as

entry_set :: tlb) asid) 32 word) tlb_entry set

entry_set t a va = {e 2 t | va 2 entry_range e ^ a = asid_of e}

lookup :: tlb_entry set) 8 word) 32 word) lookup_type
lookup t a va ⌘

let S = entry_set t a va
in if S = ; then Miss

else if 9 x. S = {x} then Hit (the_elem S) else Incon

where the_elem {x} = x.
Any result Hit e for a given vaddr va can be translated directly into a paddr pa by replacing

the high bits of va with the 12-bit or 20-bit physical base address stored in e.
The TLB reload operation simply adds entries to the set, i.e. there is nothing specific to

formalise. The TLB maintenance operations remove entries from the set:

selective_invalidation :: tlb) asid) 32 word) tlb

selective_invalidation t a va = t - entry_set t a va

asid_invalidation :: tlb) asid) tlb

asid_invalidation t a ⌘ t - {e 2 t | asid_of e = a}

va_invalidation :: tlb) 32 word) tlb

va_invalidation t va ⌘ t - {e 2 t | va 2 entry_range e}

The operation selective_invalidation selectively removes the entry or entries covering the
given virtual address and ASID. This may do nothing if there is no such entry, may remove
exactly one entry, or all (inconsistent) entries that match. Similarly, asid_invalidation and
va_invalidation remove all entries that match a particular ASID (ignoring the address) or all
entries that match a particular virtual address (ignoring ASIDs), respectively.

These operational definitions have the expected declarative properties. For instance:

Lemma 1. All invalidation operations produce subsets of the original TLB.

selective_invalidation t a va ✓ t

asid_invalidation t a ✓ t

va_invalidation t va ✓ t

Proof. By unfolding definitions.

5

Reasoning about Translation Lookaside Bu↵ers Syeda Hira Taqdees and Gerwin Klein

4 A Formal MMU Model for ARM-style architectures

In this section, we present an operational model of ARMv7-style address translation including
the TLB in Isabelle/HOL. We will later extend this model with an ARMv7-A-style intermediate
translation cache in Sect. 6. The ARM architecture provides multiple address translation modes
that di↵er in the number of levels and number of bits being translated. Without loss of generality
for the treatment of TLBs we focus on one of these modes here — the others are analogous.
This mode provides four sizes of pages (small, large, section, and super section; c.f. [2, Chapter
B3]) and a two-level page table structure. The location of the root of the page table structure in
main memory is determined by a hardware register, the translation table root register TTBR0.

The hardware memory management unit (MMU) of ARMv7 consists of a TLB that caches
entries and the machinery required for resolving address translations using the page table from
main memory when needed. For page table operations, we reuse Kolanski’s existing ARM page
table model [11], and integrate it with the TLB formalisation that we build up in this section
to form a model of the MMU.

The ARM architecture manual [2] describes the TLB as a black box, i.e. by its external
interface only. It does not specify the replacement strategy or its exact internal state. We use
the same approach and base our abstraction directly on the architecture manual: we specify TLB
lookup, TLB reloading, as well as maintenance operations for invalidating (evicting) outdated
entries either by a tag called address space identifier (ASID), or by address in the current ASID,
or by address globally for all ASIDs. Together with Kolanski’s ARM page table model, this
will then form the basis for specifying the semantics of the memory reads and writes that we
eventually want to reason about.

Kolanski’s model di↵erentiates between virtual and physical address by type, and we con-
tinue in that tradition. He defines addresses addr_t as:

datatype (’a, ’p) addr_t = Addr ’a

where ’a is the address size (e.g. 32 word) and ’p is a tag which can be physical or virtual.
For modelling the addresses of an ARMv7-style machine, we specialise addr_t as:

vaddr = (32 word,virtual) addr_t paddr = (32 word,physical) addr_t

We use addr_val (Addr a) = a to extract the address.

4.1 Formal Model of the TLB

We now present the operational model of the TLB itself and its maintenance operations. The
next section will then develop this into a full MMU model and integrate it with memory reads
and writes in the Cambridge ARM semantics.

Figure 1: An Abstraction of TLB

The state of a TLB is straightforward: it is merely
a set of TLB entries, where a TLB entry consists of an
ASID tag, a virtual base address, a physical base address,
and potentially a set of flags for access control and other
page attributes. Figure 1 gives a visual representation.
Corresponding to the four page sizes of the architecture,
there are four di↵erent sizes of TLB entries. To keep
the presentation small, we show only two of these in the
paper, one with 20 bit base addresses for small pages and one with 12 bit for sections. Formally:

type synonym tlb = tlb_entry set

datatype tlb_entry = EntrySmall asid (20 word) (20 word option) flags

| EntrySection asid (12 word) (12 word option) flags

4

Reasoning about Translation Lookaside Bu↵ers Syeda Hira Taqdees and Gerwin Klein

where the type asid is an abbreviation for 8 word.
To accommodate our later refinements of this model in Sect. 5, we generalised the physical

base address in this definition from 20 or 12 word to 20 or 12 word option. In the TLB base
model, these will always be entries with Some.

With the TLB state formalised, we can now describe the basic TLB operations. For any
given 32-bit virtual address and ASID, a TLB lookup finds the corresponding TLB entry. A
lookup can have three kinds of results:

datatype lookup_type = Miss | Incon | Hit tlb_entry

These results are: either there is no corresponding entry and the TLB needs to be refilled (Miss),
or there is more than one matching entry and the TLB is inconsistent (Incon), or there is exactly
one correct result (Hit).

We say a TLB entry matches a pair of ASID a and virtual address va when the entry
has the same ASID a and the top bits of va equal the virtual base address of the entry. Let
entry_range e be the set of addresses matched by TLB entry e, and asid_of e the ASID of e,
then we can define the lookup operation as

entry_set :: tlb) asid) 32 word) tlb_entry set

entry_set t a va = {e 2 t | va 2 entry_range e ^ a = asid_of e}

lookup :: tlb_entry set) 8 word) 32 word) lookup_type
lookup t a va ⌘

let S = entry_set t a va
in if S = ; then Miss

else if 9 x. S = {x} then Hit (the_elem S) else Incon

where the_elem {x} = x.
Any result Hit e for a given vaddr va can be translated directly into a paddr pa by replacing

the high bits of va with the 12-bit or 20-bit physical base address stored in e.
The TLB reload operation simply adds entries to the set, i.e. there is nothing specific to

formalise. The TLB maintenance operations remove entries from the set:

selective_invalidation :: tlb) asid) 32 word) tlb

selective_invalidation t a va = t - entry_set t a va

asid_invalidation :: tlb) asid) tlb

asid_invalidation t a ⌘ t - {e 2 t | asid_of e = a}

va_invalidation :: tlb) 32 word) tlb

va_invalidation t va ⌘ t - {e 2 t | va 2 entry_range e}

The operation selective_invalidation selectively removes the entry or entries covering the
given virtual address and ASID. This may do nothing if there is no such entry, may remove
exactly one entry, or all (inconsistent) entries that match. Similarly, asid_invalidation and
va_invalidation remove all entries that match a particular ASID (ignoring the address) or all
entries that match a particular virtual address (ignoring ASIDs), respectively.

These operational definitions have the expected declarative properties. For instance:

Lemma 1. All invalidation operations produce subsets of the original TLB.

selective_invalidation t a va ✓ t

asid_invalidation t a ✓ t

va_invalidation t va ✓ t

Proof. By unfolding definitions.

5

 Reasoning about Translation Lookaside Buffers Hira T. Syeda6

ARMv7-style
Formal Model of TLB

ASID
virtual base

address
physical base

address
permission

bits
tlb_entry
format

flush operations
- selective_invalidation
- asid_invalidation
- va_invalidation

4 A Formal MMU Model for ARM-style architectures

In this section, we present an operational model of ARMv7-style address translation including
the TLB in Isabelle/HOL. We will later extend this model with an ARMv7-A-style intermediate
translation cache in Sect. 6. The ARM architecture provides multiple address translation modes
that di↵er in the number of levels and number of bits being translated. Without loss of generality
for the treatment of TLBs we focus on one of these modes here — the others are analogous.
This mode provides four sizes of pages (small, large, section, and super section; c.f. [2, Chapter
B3]) and a two-level page table structure. The location of the root of the page table structure in
main memory is determined by a hardware register, the translation table root register TTBR0.

The hardware memory management unit (MMU) of ARMv7 consists of a TLB that caches
entries and the machinery required for resolving address translations using the page table from
main memory when needed. For page table operations, we reuse Kolanski’s existing ARM page
table model [12], and integrate it with the TLB formalisation that we build up in this section
to form a model of the MMU.

The ARM architecture manual [2] describes the TLB as a black box, i.e. by its external
interface only. It does not specify the replacement strategy or its exact internal state. We use
the same approach and base our abstraction directly on the architecture manual: we specify TLB
lookup, TLB reloading, as well as maintenance operations for invalidating (evicting) outdated
entries either by a tag called address space identifier (ASID), or by address in the current ASID,
or by address globally for all ASIDs. Together with Kolanski’s ARM page table model, this
will then form the basis for specifying the semantics of the memory reads and writes that we
eventually want to reason about.

Kolanski’s model di↵erentiates between virtual and physical address by type, and we con-
tinue in that tradition. He defines addresses addr_t as:

datatype (’a, ’p) addr_t = Addr ’a

where ’a is the address size (e.g. 32 word) and ’p is a tag which can be physical or virtual.
For modelling the addresses of an ARMv7-style machine, we specialise addr_t as:

vaddr = (32 word,virtual) addr_t paddr = (32 word,physical) addr_t

We use addr_val (Addr a) = a to extract the address.

4.1 Formal Model of the TLB

We now present the operational model of the TLB itself and its maintenance operations. The
next section will then develop this into a full MMU model and integrate it with memory reads
and writes in the Cambridge ARM semantics.

Figure 1: An Abstraction of TLB

The state of a TLB is straightforward: it is merely
a set of TLB entries, where a TLB entry consists of an
ASID tag, a virtual base address, a physical base address,
and potentially a set of flags for access control and other
page attributes. Figure 1 gives a visual representation.
Corresponding to the four page sizes of the architecture,
there are four di↵erent sizes of TLB entries. To keep
the presentation small, we show only two of these in the
paper, one with 20 bit base addresses for small pages and one with 12 bit for sections. Formally:

type synonym tlb = tlb_entry set

datatype tlb_entry = EntrySmall asid (20 word) (20 word option) flags
| EntrySection asid (12 word) (12 word option) flags

where the type asid is an abbreviation for 8 word.
To accommodate our later refinements of this model in Sect. 5, we generalised the physical

base address in this definition from 20 or 12 word to 20 or 12 word option. In the TLB base
model, these will always be entries with Some.

With the TLB state formalised, we can now describe the basic TLB operations. For any
given 32-bit virtual address and ASID, a TLB lookup finds the corresponding TLB entry. A
lookup can have three kinds of results:

datatype lookup_type = Miss | Incon | Hit tlb_entry

These results are: either there is no corresponding entry and the TLB needs to be refilled (Miss),
or there is more than one matching entry and the TLB is inconsistent (Incon), or there is exactly
one correct result (Hit).

We say a TLB entry matches a pair of ASID a and virtual address va when the entry
has the same ASID a and the top bits of va equal the virtual base address of the entry. Let
entry_range e be the set of addresses matched by TLB entry e, and asid_of e the ASID of e,
then we can define the lookup operation as

entry_set :: tlb) asid) 32 word) tlb_entry set
entry_set t a va = {e 2 t | va 2 entry_range e ^ a = asid_of e}

lookup :: tlb_entry set) 8 word) 32 word) lookup_type
lookup t a va ⌘

let S = entry_set t a va
in if S = ; then Miss

else if 9 x. S = {x} then Hit (the_elem S) else Incon

where the_elem {x} = x.
Any result Hit e for a given vaddr va can be translated directly into a paddr pa by replacing

the high bits of va with the 12-bit or 20-bit physical base address stored in e.
The TLB reload operation simply adds entries to the set, i.e. there is nothing specific to

formalise. The TLB maintenance operations remove entries from the set:

selective_invalidation :: tlb) asid) 32 word) tlb
selective_invalidation t a va = t - entry_set t a va

asid_invalidation :: tlb) asid) tlb
asid_invalidation t a ⌘ t - {e 2 t | asid_of e = a}

va_invalidation :: tlb) 32 word) tlb
va_invalidation t va ⌘ t - {e 2 t | va 2 entry_range e}

The operation selective_invalidation selectively removes the entry or entries covering the
given virtual address and ASID. This may do nothing if there is no such entry, may remove
exactly one entry, or all (inconsistent) entries that match. Similarly, asid_invalidation and
va_invalidation remove all entries that match a particular ASID (ignoring the address) or all
entries that match a particular virtual address (ignoring ASIDs), respectively.

These operational definitions have the expected declarative properties. For instance:

Lemma 1. All invalidation operations produce subsets of the original TLB.

selective_invalidation t a va ✓ t
asid_invalidation t a ✓ t
va_invalidation t va ✓ t

Proof. By unfolding definitions.

4 A Formal MMU Model for ARM-style architectures

In this section, we present an operational model of ARMv7-style address translation including
the TLB in Isabelle/HOL. We will later extend this model with an ARMv7-A-style intermediate
translation cache in Sect. 6. The ARM architecture provides multiple address translation modes
that di↵er in the number of levels and number of bits being translated. Without loss of generality
for the treatment of TLBs we focus on one of these modes here — the others are analogous.
This mode provides four sizes of pages (small, large, section, and super section; c.f. [2, Chapter
B3]) and a two-level page table structure. The location of the root of the page table structure in
main memory is determined by a hardware register, the translation table root register TTBR0.

The hardware memory management unit (MMU) of ARMv7 consists of a TLB that caches
entries and the machinery required for resolving address translations using the page table from
main memory when needed. For page table operations, we reuse Kolanski’s existing ARM page
table model [12], and integrate it with the TLB formalisation that we build up in this section
to form a model of the MMU.

The ARM architecture manual [2] describes the TLB as a black box, i.e. by its external
interface only. It does not specify the replacement strategy or its exact internal state. We use
the same approach and base our abstraction directly on the architecture manual: we specify TLB
lookup, TLB reloading, as well as maintenance operations for invalidating (evicting) outdated
entries either by a tag called address space identifier (ASID), or by address in the current ASID,
or by address globally for all ASIDs. Together with Kolanski’s ARM page table model, this
will then form the basis for specifying the semantics of the memory reads and writes that we
eventually want to reason about.

Kolanski’s model di↵erentiates between virtual and physical address by type, and we con-
tinue in that tradition. He defines addresses addr_t as:

datatype (’a, ’p) addr_t = Addr ’a

where ’a is the address size (e.g. 32 word) and ’p is a tag which can be physical or virtual.
For modelling the addresses of an ARMv7-style machine, we specialise addr_t as:

vaddr = (32 word,virtual) addr_t paddr = (32 word,physical) addr_t

We use addr_val (Addr a) = a to extract the address.

4.1 Formal Model of the TLB

We now present the operational model of the TLB itself and its maintenance operations. The
next section will then develop this into a full MMU model and integrate it with memory reads
and writes in the Cambridge ARM semantics.

Figure 1: An Abstraction of TLB

The state of a TLB is straightforward: it is merely
a set of TLB entries, where a TLB entry consists of an
ASID tag, a virtual base address, a physical base address,
and potentially a set of flags for access control and other
page attributes. Figure 1 gives a visual representation.
Corresponding to the four page sizes of the architecture,
there are four di↵erent sizes of TLB entries. To keep
the presentation small, we show only two of these in the
paper, one with 20 bit base addresses for small pages and one with 12 bit for sections. Formally:

type synonym tlb = tlb_entry set

datatype tlb_entry = EntrySmall asid (20 word) (20 word option) flags
| EntrySection asid (12 word) (12 word option) flags

Reasoning about Translation Lookaside Bu↵ers Syeda Hira Taqdees and Gerwin Klein

where the type asid is an abbreviation for 8 word.
To accommodate our later refinements of this model in Sect. 5, we generalised the physical

base address in this definition from 20 or 12 word to 20 or 12 word option. In the TLB base
model, these will always be entries with Some.

With the TLB state formalised, we can now describe the basic TLB operations. For any
given 32-bit virtual address and ASID, a TLB lookup finds the corresponding TLB entry. A
lookup can have three kinds of results:

datatype lookup_type = Miss | Incon | Hit tlb_entry

These results are: either there is no corresponding entry and the TLB needs to be refilled (Miss),
or there is more than one matching entry and the TLB is inconsistent (Incon), or there is exactly
one correct result (Hit).

We say a TLB entry matches a pair of ASID a and virtual address va when the entry
has the same ASID a and the top bits of va equal the virtual base address of the entry. Let
entry_range e be the set of addresses matched by TLB entry e, and asid_of e the ASID of e,
then we can define the lookup operation as

entry_set :: tlb) asid) 32 word) tlb_entry set

entry_set t a va = {e 2 t | va 2 entry_range e ^ a = asid_of e}

lookup :: tlb_entry set) 8 word) 32 word) lookup_type
lookup t a va ⌘

let S = entry_set t a va
in if S = ; then Miss

else if 9 x. S = {x} then Hit (the_elem S) else Incon

where the_elem {x} = x.
Any result Hit e for a given vaddr va can be translated directly into a paddr pa by replacing

the high bits of va with the 12-bit or 20-bit physical base address stored in e.
The TLB reload operation simply adds entries to the set, i.e. there is nothing specific to

formalise. The TLB maintenance operations remove entries from the set:

selective_invalidation :: tlb) asid) 32 word) tlb

selective_invalidation t a va = t - entry_set t a va

asid_invalidation :: tlb) asid) tlb

asid_invalidation t a ⌘ t - {e 2 t | asid_of e = a}

va_invalidation :: tlb) 32 word) tlb

va_invalidation t va ⌘ t - {e 2 t | va 2 entry_range e}

The operation selective_invalidation selectively removes the entry or entries covering the
given virtual address and ASID. This may do nothing if there is no such entry, may remove
exactly one entry, or all (inconsistent) entries that match. Similarly, asid_invalidation and
va_invalidation remove all entries that match a particular ASID (ignoring the address) or all
entries that match a particular virtual address (ignoring ASIDs), respectively.

These operational definitions have the expected declarative properties. For instance:

Lemma 1. All invalidation operations produce subsets of the original TLB.

selective_invalidation t a va ✓ t

asid_invalidation t a ✓ t

va_invalidation t va ✓ t

Proof. By unfolding definitions.

5

Reasoning about Translation Lookaside Bu↵ers Syeda Hira Taqdees and Gerwin Klein

where the type asid is an abbreviation for 8 word.
To accommodate our later refinements of this model in Sect. 5, we generalised the physical

base address in this definition from 20 or 12 word to 20 or 12 word option. In the TLB base
model, these will always be entries with Some.

With the TLB state formalised, we can now describe the basic TLB operations. For any
given 32-bit virtual address and ASID, a TLB lookup finds the corresponding TLB entry. A
lookup can have three kinds of results:

datatype lookup_type = Miss | Incon | Hit tlb_entry

These results are: either there is no corresponding entry and the TLB needs to be refilled (Miss),
or there is more than one matching entry and the TLB is inconsistent (Incon), or there is exactly
one correct result (Hit).

We say a TLB entry matches a pair of ASID a and virtual address va when the entry
has the same ASID a and the top bits of va equal the virtual base address of the entry. Let
entry_range e be the set of addresses matched by TLB entry e, and asid_of e the ASID of e,
then we can define the lookup operation as

entry_set :: tlb) asid) 32 word) tlb_entry set

entry_set t a va = {e 2 t | va 2 entry_range e ^ a = asid_of e}

lookup :: tlb_entry set) 8 word) 32 word) lookup_type
lookup t a va ⌘

let S = entry_set t a va
in if S = ; then Miss

else if 9 x. S = {x} then Hit (the_elem S) else Incon

where the_elem {x} = x.
Any result Hit e for a given vaddr va can be translated directly into a paddr pa by replacing

the high bits of va with the 12-bit or 20-bit physical base address stored in e.
The TLB reload operation simply adds entries to the set, i.e. there is nothing specific to

formalise. The TLB maintenance operations remove entries from the set:

selective_invalidation :: tlb) asid) 32 word) tlb

selective_invalidation t a va = t - entry_set t a va

asid_invalidation :: tlb) asid) tlb

asid_invalidation t a ⌘ t - {e 2 t | asid_of e = a}

va_invalidation :: tlb) 32 word) tlb

va_invalidation t va ⌘ t - {e 2 t | va 2 entry_range e}

The operation selective_invalidation selectively removes the entry or entries covering the
given virtual address and ASID. This may do nothing if there is no such entry, may remove
exactly one entry, or all (inconsistent) entries that match. Similarly, asid_invalidation and
va_invalidation remove all entries that match a particular ASID (ignoring the address) or all
entries that match a particular virtual address (ignoring ASIDs), respectively.

These operational definitions have the expected declarative properties. For instance:

Lemma 1. All invalidation operations produce subsets of the original TLB.

selective_invalidation t a va ✓ t

asid_invalidation t a ✓ t

va_invalidation t va ✓ t

Proof. By unfolding definitions.

5

Reasoning about Translation Lookaside Bu↵ers Syeda Hira Taqdees and Gerwin Klein

4 A Formal MMU Model for ARM-style architectures

In this section, we present an operational model of ARMv7-style address translation including
the TLB in Isabelle/HOL. We will later extend this model with an ARMv7-A-style intermediate
translation cache in Sect. 6. The ARM architecture provides multiple address translation modes
that di↵er in the number of levels and number of bits being translated. Without loss of generality
for the treatment of TLBs we focus on one of these modes here — the others are analogous.
This mode provides four sizes of pages (small, large, section, and super section; c.f. [2, Chapter
B3]) and a two-level page table structure. The location of the root of the page table structure in
main memory is determined by a hardware register, the translation table root register TTBR0.

The hardware memory management unit (MMU) of ARMv7 consists of a TLB that caches
entries and the machinery required for resolving address translations using the page table from
main memory when needed. For page table operations, we reuse Kolanski’s existing ARM page
table model [11], and integrate it with the TLB formalisation that we build up in this section
to form a model of the MMU.

The ARM architecture manual [2] describes the TLB as a black box, i.e. by its external
interface only. It does not specify the replacement strategy or its exact internal state. We use
the same approach and base our abstraction directly on the architecture manual: we specify TLB
lookup, TLB reloading, as well as maintenance operations for invalidating (evicting) outdated
entries either by a tag called address space identifier (ASID), or by address in the current ASID,
or by address globally for all ASIDs. Together with Kolanski’s ARM page table model, this
will then form the basis for specifying the semantics of the memory reads and writes that we
eventually want to reason about.

Kolanski’s model di↵erentiates between virtual and physical address by type, and we con-
tinue in that tradition. He defines addresses addr_t as:

datatype (’a, ’p) addr_t = Addr ’a

where ’a is the address size (e.g. 32 word) and ’p is a tag which can be physical or virtual.
For modelling the addresses of an ARMv7-style machine, we specialise addr_t as:

vaddr = (32 word,virtual) addr_t paddr = (32 word,physical) addr_t

We use addr_val (Addr a) = a to extract the address.

4.1 Formal Model of the TLB

We now present the operational model of the TLB itself and its maintenance operations. The
next section will then develop this into a full MMU model and integrate it with memory reads
and writes in the Cambridge ARM semantics.

Figure 1: An Abstraction of TLB

The state of a TLB is straightforward: it is merely
a set of TLB entries, where a TLB entry consists of an
ASID tag, a virtual base address, a physical base address,
and potentially a set of flags for access control and other
page attributes. Figure 1 gives a visual representation.
Corresponding to the four page sizes of the architecture,
there are four di↵erent sizes of TLB entries. To keep
the presentation small, we show only two of these in the
paper, one with 20 bit base addresses for small pages and one with 12 bit for sections. Formally:

type synonym tlb = tlb_entry set

datatype tlb_entry = EntrySmall asid (20 word) (20 word option) flags

| EntrySection asid (12 word) (12 word option) flags

4

Reasoning about Translation Lookaside Bu↵ers Syeda Hira Taqdees and Gerwin Klein

where the type asid is an abbreviation for 8 word.
To accommodate our later refinements of this model in Sect. 5, we generalised the physical

base address in this definition from 20 or 12 word to 20 or 12 word option. In the TLB base
model, these will always be entries with Some.

With the TLB state formalised, we can now describe the basic TLB operations. For any
given 32-bit virtual address and ASID, a TLB lookup finds the corresponding TLB entry. A
lookup can have three kinds of results:

datatype lookup_type = Miss | Incon | Hit tlb_entry

These results are: either there is no corresponding entry and the TLB needs to be refilled (Miss),
or there is more than one matching entry and the TLB is inconsistent (Incon), or there is exactly
one correct result (Hit).

We say a TLB entry matches a pair of ASID a and virtual address va when the entry
has the same ASID a and the top bits of va equal the virtual base address of the entry. Let
entry_range e be the set of addresses matched by TLB entry e, and asid_of e the ASID of e,
then we can define the lookup operation as

entry_set :: tlb) asid) 32 word) tlb_entry set

entry_set t a va = {e 2 t | va 2 entry_range e ^ a = asid_of e}

lookup :: tlb_entry set) 8 word) 32 word) lookup_type
lookup t a va ⌘

let S = entry_set t a va
in if S = ; then Miss

else if 9 x. S = {x} then Hit (the_elem S) else Incon

where the_elem {x} = x.
Any result Hit e for a given vaddr va can be translated directly into a paddr pa by replacing

the high bits of va with the 12-bit or 20-bit physical base address stored in e.
The TLB reload operation simply adds entries to the set, i.e. there is nothing specific to

formalise. The TLB maintenance operations remove entries from the set:

selective_invalidation :: tlb) asid) 32 word) tlb

selective_invalidation t a va = t - entry_set t a va

asid_invalidation :: tlb) asid) tlb

asid_invalidation t a ⌘ t - {e 2 t | asid_of e = a}

va_invalidation :: tlb) 32 word) tlb

va_invalidation t va ⌘ t - {e 2 t | va 2 entry_range e}

The operation selective_invalidation selectively removes the entry or entries covering the
given virtual address and ASID. This may do nothing if there is no such entry, may remove
exactly one entry, or all (inconsistent) entries that match. Similarly, asid_invalidation and
va_invalidation remove all entries that match a particular ASID (ignoring the address) or all
entries that match a particular virtual address (ignoring ASIDs), respectively.

These operational definitions have the expected declarative properties. For instance:

Lemma 1. All invalidation operations produce subsets of the original TLB.

selective_invalidation t a va ✓ t

asid_invalidation t a ✓ t

va_invalidation t va ✓ t

Proof. By unfolding definitions.

5

 Reasoning about Translation Lookaside Buffers Hira T. Syeda

- Formal model of ARMv7-style TLB in Isabelle/HOL
- lookup function

7

Contributions

ARMv7

mmu_translate

abs_mmu_translate

- Extension to MMU model
- mmu_translate, mmu_read, mmu_write
- integration to ARMv7 formalised ISA

- Data refinement for
- abstracting hardware details
- easier reasoning

 Reasoning about Translation Lookaside Buffers Hira T. Syeda8

From TLB to MMU

 Reasoning about Translation Lookaside Buffers Hira T. Syeda8

- ARM Instruction Set Architecture (ISA) semantics
- L3 - specification language for ISAs
- detailed but
- no address translation

From TLB to MMU

 Reasoning about Translation Lookaside Buffers Hira T. Syeda8

- ARM Instruction Set Architecture (ISA) semantics
- L3 - specification language for ISAs
- detailed but
- no address translation

- State extension - tlb

From TLB to MMU

 Reasoning about Translation Lookaside Buffers Hira T. Syeda8

- ARM Instruction Set Architecture (ISA) semantics
- L3 - specification language for ISAs
- detailed but
- no address translation

- State extension - tlb
- mmu_translate function

From TLB to MMU

 Reasoning about Translation Lookaside Buffers Hira T. Syeda8

- ARM Instruction Set Architecture (ISA) semantics
- L3 - specification language for ISAs
- detailed but
- no address translation

- State extension - tlb
- mmu_translate function
- Update mem_write and mem_read functions

From TLB to MMU

 Reasoning about Translation Lookaside Buffers Hira T. Syeda8

- ARM Instruction Set Architecture (ISA) semantics
- L3 - specification language for ISAs
- detailed but
- no address translation

- State extension - tlb
- mmu_translate function
- Update mem_write and mem_read functions
- Virtualize the subsequent memory accesses

From TLB to MMU

 Reasoning about Translation Lookaside Buffers Hira T. Syeda9

MMU and Memory Functions
Reasoning about Translation Lookaside Bu↵ers Syeda Hira Taqdees and Gerwin Klein

class mmu =

fixes mmu_translate :: vaddr) ’a state_scheme) paddr ⇥ ’a state_scheme

where ’a state_scheme are the potential extensions of the existing record type state.
In the bottom-most TLB and MMU models in our later refinement chain, this function has

the following instantiation, which we explain below.

mmu_translate va = do {
update_state (�s. s(|tlb := tlb s - tlb_evict s|));
(mem, asid, ttbr0, tlb) read_state (MEM, ASID, TTBR0, tlb);
case lookup tlb asid (addr_val va) of
Miss)

let entry = pt_walk asid mem ttbr0 va
in if is_fault entry then raise PAGE_FAULT

else do {
update_state (�s. s(|tlb := tlb [{entry}|));
return (va_to_pa va entry)

}
| Incon) raise IMPLEMENTATION_DEFINED
| Hit entry)

if is_fault entry then raise PAGE_FAULT
else return (va_to_pa va entry)

}

The function mmu_translate first evicts an underspecified set of entries from the TLB. This
models the fact that the architecture does not define the replacement strategy and the pro-
grammer must assume that any entry could be evicted at any time.1 Since the rest of the
Cambridge ARM model is deterministic, we use an oracle function tlb_evict here instead of
true non-determinism. The e↵ect for the refinement theorems later is the same.

The next step in mmu_translate after reading out the hardware state is to do a TLB lookup
for the virtual address va to be translated under the current ASID. If the result of that lookup
is Incon, the machine raises an unrecoverable exception and halts, expressing the fact that in
normal operation, this state should never be encountered.

If the result is Hit e, we check whether the entry encodes a page fault (using is_fault). In
the ground-truth, base-level model, this will never trigger because the hardware TLB will only
be reloaded with valid page translations, but later in our refinement chain we will relax that
condition. If we encounter such a page fault, we raise the corresponding page fault exception,
otherwise we translate e to the corresponding physical address pa using the function va_to_pa

and return that address. A full formalisation would at this point additionally check flags and
access rights and generate the appropriate exception information where needed.

If the result is Miss, we perform a page table walk using the function pt_walk starting from
TTBR0. We omit its definition here. It is constructed from Kolanski’s page table model [11]
using his functions get_pde and get_pte to find the respective page table entries and to encode
the result in the corresponding tlb_entry format with the current ASID.

If the result of the page table walk is a page fault, we raise this fault, which will cause the
machine to jump to the appropriate exception handler. If the result of the walk is a particular
mapping entry e, we perform a TLB reload by adding this entry to the TLB, and execute
address translation as in the Hit case.

On top of class mmu, which specifies the translation interface, we can now build read and
write instructions that use virtual instead of physical addresses. We wrap these up in their own

1
ARM also provides locked down entries that will not be evicted automatically. These could be modelled

easily here by excluding them from the eviction set.

7

 Reasoning about Translation Lookaside Buffers Hira T. Syeda9

MMU and Memory Functions
Reasoning about Translation Lookaside Bu↵ers Syeda Hira Taqdees and Gerwin Klein

class mmu =

fixes mmu_translate :: vaddr) ’a state_scheme) paddr ⇥ ’a state_scheme

where ’a state_scheme are the potential extensions of the existing record type state.
In the bottom-most TLB and MMU models in our later refinement chain, this function has

the following instantiation, which we explain below.

mmu_translate va = do {
update_state (�s. s(|tlb := tlb s - tlb_evict s|));
(mem, asid, ttbr0, tlb) read_state (MEM, ASID, TTBR0, tlb);
case lookup tlb asid (addr_val va) of
Miss)

let entry = pt_walk asid mem ttbr0 va
in if is_fault entry then raise PAGE_FAULT

else do {
update_state (�s. s(|tlb := tlb [{entry}|));
return (va_to_pa va entry)

}
| Incon) raise IMPLEMENTATION_DEFINED
| Hit entry)

if is_fault entry then raise PAGE_FAULT
else return (va_to_pa va entry)

}

The function mmu_translate first evicts an underspecified set of entries from the TLB. This
models the fact that the architecture does not define the replacement strategy and the pro-
grammer must assume that any entry could be evicted at any time.1 Since the rest of the
Cambridge ARM model is deterministic, we use an oracle function tlb_evict here instead of
true non-determinism. The e↵ect for the refinement theorems later is the same.

The next step in mmu_translate after reading out the hardware state is to do a TLB lookup
for the virtual address va to be translated under the current ASID. If the result of that lookup
is Incon, the machine raises an unrecoverable exception and halts, expressing the fact that in
normal operation, this state should never be encountered.

If the result is Hit e, we check whether the entry encodes a page fault (using is_fault). In
the ground-truth, base-level model, this will never trigger because the hardware TLB will only
be reloaded with valid page translations, but later in our refinement chain we will relax that
condition. If we encounter such a page fault, we raise the corresponding page fault exception,
otherwise we translate e to the corresponding physical address pa using the function va_to_pa

and return that address. A full formalisation would at this point additionally check flags and
access rights and generate the appropriate exception information where needed.

If the result is Miss, we perform a page table walk using the function pt_walk starting from
TTBR0. We omit its definition here. It is constructed from Kolanski’s page table model [11]
using his functions get_pde and get_pte to find the respective page table entries and to encode
the result in the corresponding tlb_entry format with the current ASID.

If the result of the page table walk is a page fault, we raise this fault, which will cause the
machine to jump to the appropriate exception handler. If the result of the walk is a particular
mapping entry e, we perform a TLB reload by adding this entry to the TLB, and execute
address translation as in the Hit case.

On top of class mmu, which specifies the translation interface, we can now build read and
write instructions that use virtual instead of physical addresses. We wrap these up in their own

1
ARM also provides locked down entries that will not be evicted automatically. These could be modelled

easily here by excluding them from the eviction set.

7

 Reasoning about Translation Lookaside Buffers Hira T. Syeda9

MMU and Memory Functions
Reasoning about Translation Lookaside Bu↵ers Syeda Hira Taqdees and Gerwin Klein

class mmu =

fixes mmu_translate :: vaddr) ’a state_scheme) paddr ⇥ ’a state_scheme

where ’a state_scheme are the potential extensions of the existing record type state.
In the bottom-most TLB and MMU models in our later refinement chain, this function has

the following instantiation, which we explain below.

mmu_translate va = do {
update_state (�s. s(|tlb := tlb s - tlb_evict s|));
(mem, asid, ttbr0, tlb) read_state (MEM, ASID, TTBR0, tlb);
case lookup tlb asid (addr_val va) of
Miss)

let entry = pt_walk asid mem ttbr0 va
in if is_fault entry then raise PAGE_FAULT

else do {
update_state (�s. s(|tlb := tlb [{entry}|));
return (va_to_pa va entry)

}
| Incon) raise IMPLEMENTATION_DEFINED
| Hit entry)

if is_fault entry then raise PAGE_FAULT
else return (va_to_pa va entry)

}

The function mmu_translate first evicts an underspecified set of entries from the TLB. This
models the fact that the architecture does not define the replacement strategy and the pro-
grammer must assume that any entry could be evicted at any time.1 Since the rest of the
Cambridge ARM model is deterministic, we use an oracle function tlb_evict here instead of
true non-determinism. The e↵ect for the refinement theorems later is the same.

The next step in mmu_translate after reading out the hardware state is to do a TLB lookup
for the virtual address va to be translated under the current ASID. If the result of that lookup
is Incon, the machine raises an unrecoverable exception and halts, expressing the fact that in
normal operation, this state should never be encountered.

If the result is Hit e, we check whether the entry encodes a page fault (using is_fault). In
the ground-truth, base-level model, this will never trigger because the hardware TLB will only
be reloaded with valid page translations, but later in our refinement chain we will relax that
condition. If we encounter such a page fault, we raise the corresponding page fault exception,
otherwise we translate e to the corresponding physical address pa using the function va_to_pa

and return that address. A full formalisation would at this point additionally check flags and
access rights and generate the appropriate exception information where needed.

If the result is Miss, we perform a page table walk using the function pt_walk starting from
TTBR0. We omit its definition here. It is constructed from Kolanski’s page table model [11]
using his functions get_pde and get_pte to find the respective page table entries and to encode
the result in the corresponding tlb_entry format with the current ASID.

If the result of the page table walk is a page fault, we raise this fault, which will cause the
machine to jump to the appropriate exception handler. If the result of the walk is a particular
mapping entry e, we perform a TLB reload by adding this entry to the TLB, and execute
address translation as in the Hit case.

On top of class mmu, which specifies the translation interface, we can now build read and
write instructions that use virtual instead of physical addresses. We wrap these up in their own

1
ARM also provides locked down entries that will not be evicted automatically. These could be modelled

easily here by excluding them from the eviction set.

7

 Reasoning about Translation Lookaside Buffers Hira T. Syeda9

MMU and Memory Functions
Reasoning about Translation Lookaside Bu↵ers Syeda Hira Taqdees and Gerwin Klein

class mmu =

fixes mmu_translate :: vaddr) ’a state_scheme) paddr ⇥ ’a state_scheme

where ’a state_scheme are the potential extensions of the existing record type state.
In the bottom-most TLB and MMU models in our later refinement chain, this function has

the following instantiation, which we explain below.

mmu_translate va = do {
update_state (�s. s(|tlb := tlb s - tlb_evict s|));
(mem, asid, ttbr0, tlb) read_state (MEM, ASID, TTBR0, tlb);
case lookup tlb asid (addr_val va) of
Miss)

let entry = pt_walk asid mem ttbr0 va
in if is_fault entry then raise PAGE_FAULT

else do {
update_state (�s. s(|tlb := tlb [{entry}|));
return (va_to_pa va entry)

}
| Incon) raise IMPLEMENTATION_DEFINED
| Hit entry)

if is_fault entry then raise PAGE_FAULT
else return (va_to_pa va entry)

}

The function mmu_translate first evicts an underspecified set of entries from the TLB. This
models the fact that the architecture does not define the replacement strategy and the pro-
grammer must assume that any entry could be evicted at any time.1 Since the rest of the
Cambridge ARM model is deterministic, we use an oracle function tlb_evict here instead of
true non-determinism. The e↵ect for the refinement theorems later is the same.

The next step in mmu_translate after reading out the hardware state is to do a TLB lookup
for the virtual address va to be translated under the current ASID. If the result of that lookup
is Incon, the machine raises an unrecoverable exception and halts, expressing the fact that in
normal operation, this state should never be encountered.

If the result is Hit e, we check whether the entry encodes a page fault (using is_fault). In
the ground-truth, base-level model, this will never trigger because the hardware TLB will only
be reloaded with valid page translations, but later in our refinement chain we will relax that
condition. If we encounter such a page fault, we raise the corresponding page fault exception,
otherwise we translate e to the corresponding physical address pa using the function va_to_pa

and return that address. A full formalisation would at this point additionally check flags and
access rights and generate the appropriate exception information where needed.

If the result is Miss, we perform a page table walk using the function pt_walk starting from
TTBR0. We omit its definition here. It is constructed from Kolanski’s page table model [11]
using his functions get_pde and get_pte to find the respective page table entries and to encode
the result in the corresponding tlb_entry format with the current ASID.

If the result of the page table walk is a page fault, we raise this fault, which will cause the
machine to jump to the appropriate exception handler. If the result of the walk is a particular
mapping entry e, we perform a TLB reload by adding this entry to the TLB, and execute
address translation as in the Hit case.

On top of class mmu, which specifies the translation interface, we can now build read and
write instructions that use virtual instead of physical addresses. We wrap these up in their own

1
ARM also provides locked down entries that will not be evicted automatically. These could be modelled

easily here by excluding them from the eviction set.

7

 Reasoning about Translation Lookaside Buffers Hira T. Syeda9

MMU and Memory Functions
Reasoning about Translation Lookaside Bu↵ers Syeda Hira Taqdees and Gerwin Klein

class mmu =

fixes mmu_translate :: vaddr) ’a state_scheme) paddr ⇥ ’a state_scheme

where ’a state_scheme are the potential extensions of the existing record type state.
In the bottom-most TLB and MMU models in our later refinement chain, this function has

the following instantiation, which we explain below.

mmu_translate va = do {
update_state (�s. s(|tlb := tlb s - tlb_evict s|));
(mem, asid, ttbr0, tlb) read_state (MEM, ASID, TTBR0, tlb);
case lookup tlb asid (addr_val va) of
Miss)

let entry = pt_walk asid mem ttbr0 va
in if is_fault entry then raise PAGE_FAULT

else do {
update_state (�s. s(|tlb := tlb [{entry}|));
return (va_to_pa va entry)

}
| Incon) raise IMPLEMENTATION_DEFINED
| Hit entry)

if is_fault entry then raise PAGE_FAULT
else return (va_to_pa va entry)

}

The function mmu_translate first evicts an underspecified set of entries from the TLB. This
models the fact that the architecture does not define the replacement strategy and the pro-
grammer must assume that any entry could be evicted at any time.1 Since the rest of the
Cambridge ARM model is deterministic, we use an oracle function tlb_evict here instead of
true non-determinism. The e↵ect for the refinement theorems later is the same.

The next step in mmu_translate after reading out the hardware state is to do a TLB lookup
for the virtual address va to be translated under the current ASID. If the result of that lookup
is Incon, the machine raises an unrecoverable exception and halts, expressing the fact that in
normal operation, this state should never be encountered.

If the result is Hit e, we check whether the entry encodes a page fault (using is_fault). In
the ground-truth, base-level model, this will never trigger because the hardware TLB will only
be reloaded with valid page translations, but later in our refinement chain we will relax that
condition. If we encounter such a page fault, we raise the corresponding page fault exception,
otherwise we translate e to the corresponding physical address pa using the function va_to_pa

and return that address. A full formalisation would at this point additionally check flags and
access rights and generate the appropriate exception information where needed.

If the result is Miss, we perform a page table walk using the function pt_walk starting from
TTBR0. We omit its definition here. It is constructed from Kolanski’s page table model [11]
using his functions get_pde and get_pte to find the respective page table entries and to encode
the result in the corresponding tlb_entry format with the current ASID.

If the result of the page table walk is a page fault, we raise this fault, which will cause the
machine to jump to the appropriate exception handler. If the result of the walk is a particular
mapping entry e, we perform a TLB reload by adding this entry to the TLB, and execute
address translation as in the Hit case.

On top of class mmu, which specifies the translation interface, we can now build read and
write instructions that use virtual instead of physical addresses. We wrap these up in their own

1
ARM also provides locked down entries that will not be evicted automatically. These could be modelled

easily here by excluding them from the eviction set.

7

 Reasoning about Translation Lookaside Buffers Hira T. Syeda9

MMU and Memory Functions
Reasoning about Translation Lookaside Bu↵ers Syeda Hira Taqdees and Gerwin Klein

class mmu =

fixes mmu_translate :: vaddr) ’a state_scheme) paddr ⇥ ’a state_scheme

where ’a state_scheme are the potential extensions of the existing record type state.
In the bottom-most TLB and MMU models in our later refinement chain, this function has

the following instantiation, which we explain below.

mmu_translate va = do {
update_state (�s. s(|tlb := tlb s - tlb_evict s|));
(mem, asid, ttbr0, tlb) read_state (MEM, ASID, TTBR0, tlb);
case lookup tlb asid (addr_val va) of
Miss)

let entry = pt_walk asid mem ttbr0 va
in if is_fault entry then raise PAGE_FAULT

else do {
update_state (�s. s(|tlb := tlb [{entry}|));
return (va_to_pa va entry)

}
| Incon) raise IMPLEMENTATION_DEFINED
| Hit entry)

if is_fault entry then raise PAGE_FAULT
else return (va_to_pa va entry)

}

The function mmu_translate first evicts an underspecified set of entries from the TLB. This
models the fact that the architecture does not define the replacement strategy and the pro-
grammer must assume that any entry could be evicted at any time.1 Since the rest of the
Cambridge ARM model is deterministic, we use an oracle function tlb_evict here instead of
true non-determinism. The e↵ect for the refinement theorems later is the same.

The next step in mmu_translate after reading out the hardware state is to do a TLB lookup
for the virtual address va to be translated under the current ASID. If the result of that lookup
is Incon, the machine raises an unrecoverable exception and halts, expressing the fact that in
normal operation, this state should never be encountered.

If the result is Hit e, we check whether the entry encodes a page fault (using is_fault). In
the ground-truth, base-level model, this will never trigger because the hardware TLB will only
be reloaded with valid page translations, but later in our refinement chain we will relax that
condition. If we encounter such a page fault, we raise the corresponding page fault exception,
otherwise we translate e to the corresponding physical address pa using the function va_to_pa

and return that address. A full formalisation would at this point additionally check flags and
access rights and generate the appropriate exception information where needed.

If the result is Miss, we perform a page table walk using the function pt_walk starting from
TTBR0. We omit its definition here. It is constructed from Kolanski’s page table model [11]
using his functions get_pde and get_pte to find the respective page table entries and to encode
the result in the corresponding tlb_entry format with the current ASID.

If the result of the page table walk is a page fault, we raise this fault, which will cause the
machine to jump to the appropriate exception handler. If the result of the walk is a particular
mapping entry e, we perform a TLB reload by adding this entry to the TLB, and execute
address translation as in the Hit case.

On top of class mmu, which specifies the translation interface, we can now build read and
write instructions that use virtual instead of physical addresses. We wrap these up in their own

1
ARM also provides locked down entries that will not be evicted automatically. These could be modelled

easily here by excluding them from the eviction set.

7

 Reasoning about Translation Lookaside Buffers Hira T. Syeda9

MMU and Memory Functions
Reasoning about Translation Lookaside Bu↵ers Syeda Hira Taqdees and Gerwin Klein

class mmu =

fixes mmu_translate :: vaddr) ’a state_scheme) paddr ⇥ ’a state_scheme

where ’a state_scheme are the potential extensions of the existing record type state.
In the bottom-most TLB and MMU models in our later refinement chain, this function has

the following instantiation, which we explain below.

mmu_translate va = do {
update_state (�s. s(|tlb := tlb s - tlb_evict s|));
(mem, asid, ttbr0, tlb) read_state (MEM, ASID, TTBR0, tlb);
case lookup tlb asid (addr_val va) of
Miss)

let entry = pt_walk asid mem ttbr0 va
in if is_fault entry then raise PAGE_FAULT

else do {
update_state (�s. s(|tlb := tlb [{entry}|));
return (va_to_pa va entry)

}
| Incon) raise IMPLEMENTATION_DEFINED
| Hit entry)

if is_fault entry then raise PAGE_FAULT
else return (va_to_pa va entry)

}

The function mmu_translate first evicts an underspecified set of entries from the TLB. This
models the fact that the architecture does not define the replacement strategy and the pro-
grammer must assume that any entry could be evicted at any time.1 Since the rest of the
Cambridge ARM model is deterministic, we use an oracle function tlb_evict here instead of
true non-determinism. The e↵ect for the refinement theorems later is the same.

The next step in mmu_translate after reading out the hardware state is to do a TLB lookup
for the virtual address va to be translated under the current ASID. If the result of that lookup
is Incon, the machine raises an unrecoverable exception and halts, expressing the fact that in
normal operation, this state should never be encountered.

If the result is Hit e, we check whether the entry encodes a page fault (using is_fault). In
the ground-truth, base-level model, this will never trigger because the hardware TLB will only
be reloaded with valid page translations, but later in our refinement chain we will relax that
condition. If we encounter such a page fault, we raise the corresponding page fault exception,
otherwise we translate e to the corresponding physical address pa using the function va_to_pa

and return that address. A full formalisation would at this point additionally check flags and
access rights and generate the appropriate exception information where needed.

If the result is Miss, we perform a page table walk using the function pt_walk starting from
TTBR0. We omit its definition here. It is constructed from Kolanski’s page table model [11]
using his functions get_pde and get_pte to find the respective page table entries and to encode
the result in the corresponding tlb_entry format with the current ASID.

If the result of the page table walk is a page fault, we raise this fault, which will cause the
machine to jump to the appropriate exception handler. If the result of the walk is a particular
mapping entry e, we perform a TLB reload by adding this entry to the TLB, and execute
address translation as in the Hit case.

On top of class mmu, which specifies the translation interface, we can now build read and
write instructions that use virtual instead of physical addresses. We wrap these up in their own

1
ARM also provides locked down entries that will not be evicted automatically. These could be modelled

easily here by excluding them from the eviction set.

7

 Reasoning about Translation Lookaside Buffers Hira T. Syeda9

MMU and Memory Functions
Reasoning about Translation Lookaside Bu↵ers Syeda Hira Taqdees and Gerwin Klein

class mmu =

fixes mmu_translate :: vaddr) ’a state_scheme) paddr ⇥ ’a state_scheme

where ’a state_scheme are the potential extensions of the existing record type state.
In the bottom-most TLB and MMU models in our later refinement chain, this function has

the following instantiation, which we explain below.

mmu_translate va = do {
update_state (�s. s(|tlb := tlb s - tlb_evict s|));
(mem, asid, ttbr0, tlb) read_state (MEM, ASID, TTBR0, tlb);
case lookup tlb asid (addr_val va) of
Miss)

let entry = pt_walk asid mem ttbr0 va
in if is_fault entry then raise PAGE_FAULT

else do {
update_state (�s. s(|tlb := tlb [{entry}|));
return (va_to_pa va entry)

}
| Incon) raise IMPLEMENTATION_DEFINED
| Hit entry)

if is_fault entry then raise PAGE_FAULT
else return (va_to_pa va entry)

}

The function mmu_translate first evicts an underspecified set of entries from the TLB. This
models the fact that the architecture does not define the replacement strategy and the pro-
grammer must assume that any entry could be evicted at any time.1 Since the rest of the
Cambridge ARM model is deterministic, we use an oracle function tlb_evict here instead of
true non-determinism. The e↵ect for the refinement theorems later is the same.

The next step in mmu_translate after reading out the hardware state is to do a TLB lookup
for the virtual address va to be translated under the current ASID. If the result of that lookup
is Incon, the machine raises an unrecoverable exception and halts, expressing the fact that in
normal operation, this state should never be encountered.

If the result is Hit e, we check whether the entry encodes a page fault (using is_fault). In
the ground-truth, base-level model, this will never trigger because the hardware TLB will only
be reloaded with valid page translations, but later in our refinement chain we will relax that
condition. If we encounter such a page fault, we raise the corresponding page fault exception,
otherwise we translate e to the corresponding physical address pa using the function va_to_pa

and return that address. A full formalisation would at this point additionally check flags and
access rights and generate the appropriate exception information where needed.

If the result is Miss, we perform a page table walk using the function pt_walk starting from
TTBR0. We omit its definition here. It is constructed from Kolanski’s page table model [11]
using his functions get_pde and get_pte to find the respective page table entries and to encode
the result in the corresponding tlb_entry format with the current ASID.

If the result of the page table walk is a page fault, we raise this fault, which will cause the
machine to jump to the appropriate exception handler. If the result of the walk is a particular
mapping entry e, we perform a TLB reload by adding this entry to the TLB, and execute
address translation as in the Hit case.

On top of class mmu, which specifies the translation interface, we can now build read and
write instructions that use virtual instead of physical addresses. We wrap these up in their own

1
ARM also provides locked down entries that will not be evicted automatically. These could be modelled

easily here by excluding them from the eviction set.

7

 Reasoning about Translation Lookaside Buffers Hira T. Syeda9

MMU and Memory Functions
Reasoning about Translation Lookaside Bu↵ers Syeda Hira Taqdees and Gerwin Klein

class mmu =

fixes mmu_translate :: vaddr) ’a state_scheme) paddr ⇥ ’a state_scheme

where ’a state_scheme are the potential extensions of the existing record type state.
In the bottom-most TLB and MMU models in our later refinement chain, this function has

the following instantiation, which we explain below.

mmu_translate va = do {
update_state (�s. s(|tlb := tlb s - tlb_evict s|));
(mem, asid, ttbr0, tlb) read_state (MEM, ASID, TTBR0, tlb);
case lookup tlb asid (addr_val va) of
Miss)

let entry = pt_walk asid mem ttbr0 va
in if is_fault entry then raise PAGE_FAULT

else do {
update_state (�s. s(|tlb := tlb [{entry}|));
return (va_to_pa va entry)

}
| Incon) raise IMPLEMENTATION_DEFINED
| Hit entry)

if is_fault entry then raise PAGE_FAULT
else return (va_to_pa va entry)

}

The function mmu_translate first evicts an underspecified set of entries from the TLB. This
models the fact that the architecture does not define the replacement strategy and the pro-
grammer must assume that any entry could be evicted at any time.1 Since the rest of the
Cambridge ARM model is deterministic, we use an oracle function tlb_evict here instead of
true non-determinism. The e↵ect for the refinement theorems later is the same.

The next step in mmu_translate after reading out the hardware state is to do a TLB lookup
for the virtual address va to be translated under the current ASID. If the result of that lookup
is Incon, the machine raises an unrecoverable exception and halts, expressing the fact that in
normal operation, this state should never be encountered.

If the result is Hit e, we check whether the entry encodes a page fault (using is_fault). In
the ground-truth, base-level model, this will never trigger because the hardware TLB will only
be reloaded with valid page translations, but later in our refinement chain we will relax that
condition. If we encounter such a page fault, we raise the corresponding page fault exception,
otherwise we translate e to the corresponding physical address pa using the function va_to_pa

and return that address. A full formalisation would at this point additionally check flags and
access rights and generate the appropriate exception information where needed.

If the result is Miss, we perform a page table walk using the function pt_walk starting from
TTBR0. We omit its definition here. It is constructed from Kolanski’s page table model [11]
using his functions get_pde and get_pte to find the respective page table entries and to encode
the result in the corresponding tlb_entry format with the current ASID.

If the result of the page table walk is a page fault, we raise this fault, which will cause the
machine to jump to the appropriate exception handler. If the result of the walk is a particular
mapping entry e, we perform a TLB reload by adding this entry to the TLB, and execute
address translation as in the Hit case.

On top of class mmu, which specifies the translation interface, we can now build read and
write instructions that use virtual instead of physical addresses. We wrap these up in their own

1
ARM also provides locked down entries that will not be evicted automatically. These could be modelled

easily here by excluding them from the eviction set.

7

 Reasoning about Translation Lookaside Buffers Hira T. Syeda9

MMU and Memory Functions
Reasoning about Translation Lookaside Bu↵ers Syeda Hira Taqdees and Gerwin Klein

class mmu =

fixes mmu_translate :: vaddr) ’a state_scheme) paddr ⇥ ’a state_scheme

where ’a state_scheme are the potential extensions of the existing record type state.
In the bottom-most TLB and MMU models in our later refinement chain, this function has

the following instantiation, which we explain below.

mmu_translate va = do {
update_state (�s. s(|tlb := tlb s - tlb_evict s|));
(mem, asid, ttbr0, tlb) read_state (MEM, ASID, TTBR0, tlb);
case lookup tlb asid (addr_val va) of
Miss)

let entry = pt_walk asid mem ttbr0 va
in if is_fault entry then raise PAGE_FAULT

else do {
update_state (�s. s(|tlb := tlb [{entry}|));
return (va_to_pa va entry)

}
| Incon) raise IMPLEMENTATION_DEFINED
| Hit entry)

if is_fault entry then raise PAGE_FAULT
else return (va_to_pa va entry)

}

The function mmu_translate first evicts an underspecified set of entries from the TLB. This
models the fact that the architecture does not define the replacement strategy and the pro-
grammer must assume that any entry could be evicted at any time.1 Since the rest of the
Cambridge ARM model is deterministic, we use an oracle function tlb_evict here instead of
true non-determinism. The e↵ect for the refinement theorems later is the same.

The next step in mmu_translate after reading out the hardware state is to do a TLB lookup
for the virtual address va to be translated under the current ASID. If the result of that lookup
is Incon, the machine raises an unrecoverable exception and halts, expressing the fact that in
normal operation, this state should never be encountered.

If the result is Hit e, we check whether the entry encodes a page fault (using is_fault). In
the ground-truth, base-level model, this will never trigger because the hardware TLB will only
be reloaded with valid page translations, but later in our refinement chain we will relax that
condition. If we encounter such a page fault, we raise the corresponding page fault exception,
otherwise we translate e to the corresponding physical address pa using the function va_to_pa

and return that address. A full formalisation would at this point additionally check flags and
access rights and generate the appropriate exception information where needed.

If the result is Miss, we perform a page table walk using the function pt_walk starting from
TTBR0. We omit its definition here. It is constructed from Kolanski’s page table model [11]
using his functions get_pde and get_pte to find the respective page table entries and to encode
the result in the corresponding tlb_entry format with the current ASID.

If the result of the page table walk is a page fault, we raise this fault, which will cause the
machine to jump to the appropriate exception handler. If the result of the walk is a particular
mapping entry e, we perform a TLB reload by adding this entry to the TLB, and execute
address translation as in the Hit case.

On top of class mmu, which specifies the translation interface, we can now build read and
write instructions that use virtual instead of physical addresses. We wrap these up in their own

1
ARM also provides locked down entries that will not be evicted automatically. These could be modelled

easily here by excluding them from the eviction set.

7

 Reasoning about Translation Lookaside Buffers Hira T. Syeda9

MMU and Memory Functions
Reasoning about Translation Lookaside Bu↵ers Syeda Hira Taqdees and Gerwin Klein

class mmu =

fixes mmu_translate :: vaddr) ’a state_scheme) paddr ⇥ ’a state_scheme

where ’a state_scheme are the potential extensions of the existing record type state.
In the bottom-most TLB and MMU models in our later refinement chain, this function has

the following instantiation, which we explain below.

mmu_translate va = do {
update_state (�s. s(|tlb := tlb s - tlb_evict s|));
(mem, asid, ttbr0, tlb) read_state (MEM, ASID, TTBR0, tlb);
case lookup tlb asid (addr_val va) of
Miss)

let entry = pt_walk asid mem ttbr0 va
in if is_fault entry then raise PAGE_FAULT

else do {
update_state (�s. s(|tlb := tlb [{entry}|));
return (va_to_pa va entry)

}
| Incon) raise IMPLEMENTATION_DEFINED
| Hit entry)

if is_fault entry then raise PAGE_FAULT
else return (va_to_pa va entry)

}

The function mmu_translate first evicts an underspecified set of entries from the TLB. This
models the fact that the architecture does not define the replacement strategy and the pro-
grammer must assume that any entry could be evicted at any time.1 Since the rest of the
Cambridge ARM model is deterministic, we use an oracle function tlb_evict here instead of
true non-determinism. The e↵ect for the refinement theorems later is the same.

The next step in mmu_translate after reading out the hardware state is to do a TLB lookup
for the virtual address va to be translated under the current ASID. If the result of that lookup
is Incon, the machine raises an unrecoverable exception and halts, expressing the fact that in
normal operation, this state should never be encountered.

If the result is Hit e, we check whether the entry encodes a page fault (using is_fault). In
the ground-truth, base-level model, this will never trigger because the hardware TLB will only
be reloaded with valid page translations, but later in our refinement chain we will relax that
condition. If we encounter such a page fault, we raise the corresponding page fault exception,
otherwise we translate e to the corresponding physical address pa using the function va_to_pa

and return that address. A full formalisation would at this point additionally check flags and
access rights and generate the appropriate exception information where needed.

If the result is Miss, we perform a page table walk using the function pt_walk starting from
TTBR0. We omit its definition here. It is constructed from Kolanski’s page table model [11]
using his functions get_pde and get_pte to find the respective page table entries and to encode
the result in the corresponding tlb_entry format with the current ASID.

If the result of the page table walk is a page fault, we raise this fault, which will cause the
machine to jump to the appropriate exception handler. If the result of the walk is a particular
mapping entry e, we perform a TLB reload by adding this entry to the TLB, and execute
address translation as in the Hit case.

On top of class mmu, which specifies the translation interface, we can now build read and
write instructions that use virtual instead of physical addresses. We wrap these up in their own

1
ARM also provides locked down entries that will not be evicted automatically. These could be modelled

easily here by excluding them from the eviction set.

7

 Reasoning about Translation Lookaside Buffers Hira T. Syeda9

MMU and Memory Functions
Reasoning about Translation Lookaside Bu↵ers Syeda Hira Taqdees and Gerwin Klein

class mmu =

fixes mmu_translate :: vaddr) ’a state_scheme) paddr ⇥ ’a state_scheme

where ’a state_scheme are the potential extensions of the existing record type state.
In the bottom-most TLB and MMU models in our later refinement chain, this function has

the following instantiation, which we explain below.

mmu_translate va = do {
update_state (�s. s(|tlb := tlb s - tlb_evict s|));
(mem, asid, ttbr0, tlb) read_state (MEM, ASID, TTBR0, tlb);
case lookup tlb asid (addr_val va) of
Miss)

let entry = pt_walk asid mem ttbr0 va
in if is_fault entry then raise PAGE_FAULT

else do {
update_state (�s. s(|tlb := tlb [{entry}|));
return (va_to_pa va entry)

}
| Incon) raise IMPLEMENTATION_DEFINED
| Hit entry)

if is_fault entry then raise PAGE_FAULT
else return (va_to_pa va entry)

}

The function mmu_translate first evicts an underspecified set of entries from the TLB. This
models the fact that the architecture does not define the replacement strategy and the pro-
grammer must assume that any entry could be evicted at any time.1 Since the rest of the
Cambridge ARM model is deterministic, we use an oracle function tlb_evict here instead of
true non-determinism. The e↵ect for the refinement theorems later is the same.

The next step in mmu_translate after reading out the hardware state is to do a TLB lookup
for the virtual address va to be translated under the current ASID. If the result of that lookup
is Incon, the machine raises an unrecoverable exception and halts, expressing the fact that in
normal operation, this state should never be encountered.

If the result is Hit e, we check whether the entry encodes a page fault (using is_fault). In
the ground-truth, base-level model, this will never trigger because the hardware TLB will only
be reloaded with valid page translations, but later in our refinement chain we will relax that
condition. If we encounter such a page fault, we raise the corresponding page fault exception,
otherwise we translate e to the corresponding physical address pa using the function va_to_pa

and return that address. A full formalisation would at this point additionally check flags and
access rights and generate the appropriate exception information where needed.

If the result is Miss, we perform a page table walk using the function pt_walk starting from
TTBR0. We omit its definition here. It is constructed from Kolanski’s page table model [11]
using his functions get_pde and get_pte to find the respective page table entries and to encode
the result in the corresponding tlb_entry format with the current ASID.

If the result of the page table walk is a page fault, we raise this fault, which will cause the
machine to jump to the appropriate exception handler. If the result of the walk is a particular
mapping entry e, we perform a TLB reload by adding this entry to the TLB, and execute
address translation as in the Hit case.

On top of class mmu, which specifies the translation interface, we can now build read and
write instructions that use virtual instead of physical addresses. We wrap these up in their own

1
ARM also provides locked down entries that will not be evicted automatically. These could be modelled

easily here by excluding them from the eviction set.

7

Reasoning about Translation Lookaside Bu↵ers Syeda Hira Taqdees and Gerwin Klein

Figure 2: ARM-style Memory Management Unit

type class mmu_op:

class mmu_op = mmu +

fixes mmu_write :: bool list ⇥ vaddr ⇥ nat) ’a state_scheme) unit ⇥ ’a state_scheme

fixes mmu_read :: vaddr ⇥ nat) ’a state_scheme) bool list ⇥ ’a state_scheme

The interface for the values being read and written in the ARM model is via bool list instead
of machine words directly, which we keep here, and the nat paramenter indicates how many
bytes to read/write, e.g. one byte, a word, a double word, etc.

Reusing the original functions mem_write and mem_read for physical memory, the instances
for the base-level TLB and MMU model are then straightforward:

mmu_write (val, va, sz) = do {
pa mmu_translate va;
when_no_exc mem_write (val, pa, sz)

}

when_no_exc f = do {
exception read_state exception;
if exception = NoException then f else return ()

}

mmu_read (va, sz) = do { pa mmu_translate va; mem_read (pa, sz) }

Both, mmu_write and mmu_read, first perform address translation, and then their original purpose,
but using translated addresses instead. In case of an exception in mmu_translate, the write
function does nothing to give the translation exception precedence, while the pure read function
can continue, because it does not change the state.

By redirecting all other memory-related functions in the ARM model to go through this
interface, we arrive at a full operational model that supports address translation and TLB.

The purpose of this paper is not to provide a fully detailed formalisation that is validated
to comprehensively conform with existing hardware, but to present the main ideas on how to
simplify reasoning in the presence of a TLB. Despite this focus, we have validated the model
by executing a number of instructions in the theorem prover, manually checking consistency
with the expected behaviour. A full formalisation would need a more extensive test suite in the
spirit of Fox and Myreen [5].

8

Reasoning about Translation Lookaside Bu↵ers Syeda Hira Taqdees and Gerwin Klein

Figure 2: ARM-style Memory Management Unit

type class mmu_op:

class mmu_op = mmu +

fixes mmu_write :: bool list ⇥ vaddr ⇥ nat) ’a state_scheme) unit ⇥ ’a state_scheme

fixes mmu_read :: vaddr ⇥ nat) ’a state_scheme) bool list ⇥ ’a state_scheme

The interface for the values being read and written in the ARM model is via bool list instead
of machine words directly, which we keep here, and the nat paramenter indicates how many
bytes to read/write, e.g. one byte, a word, a double word, etc.

Reusing the original functions mem_write and mem_read for physical memory, the instances
for the base-level TLB and MMU model are then straightforward:

mmu_write (val, va, sz) = do {
pa mmu_translate va;
when_no_exc mem_write (val, pa, sz)

}

when_no_exc f = do {
exception read_state exception;
if exception = NoException then f else return ()

}

mmu_read (va, sz) = do { pa mmu_translate va; mem_read (pa, sz) }

Both, mmu_write and mmu_read, first perform address translation, and then their original purpose,
but using translated addresses instead. In case of an exception in mmu_translate, the write
function does nothing to give the translation exception precedence, while the pure read function
can continue, because it does not change the state.

By redirecting all other memory-related functions in the ARM model to go through this
interface, we arrive at a full operational model that supports address translation and TLB.

The purpose of this paper is not to provide a fully detailed formalisation that is validated
to comprehensively conform with existing hardware, but to present the main ideas on how to
simplify reasoning in the presence of a TLB. Despite this focus, we have validated the model
by executing a number of instructions in the theorem prover, manually checking consistency
with the expected behaviour. A full formalisation would need a more extensive test suite in the
spirit of Fox and Myreen [5].

8

Reasoning about Translation Lookaside Bu↵ers Syeda Hira Taqdees and Gerwin Klein

Figure 2: ARM-style Memory Management Unit

type class mmu_op:

class mmu_op = mmu +

fixes mmu_write :: bool list ⇥ vaddr ⇥ nat) ’a state_scheme) unit ⇥ ’a state_scheme

fixes mmu_read :: vaddr ⇥ nat) ’a state_scheme) bool list ⇥ ’a state_scheme

The interface for the values being read and written in the ARM model is via bool list instead
of machine words directly, which we keep here, and the nat paramenter indicates how many
bytes to read/write, e.g. one byte, a word, a double word, etc.

Reusing the original functions mem_write and mem_read for physical memory, the instances
for the base-level TLB and MMU model are then straightforward:

mmu_write (val, va, sz) = do {
pa mmu_translate va;
when_no_exc mem_write (val, pa, sz)

}

when_no_exc f = do {
exception read_state exception;
if exception = NoException then f else return ()

}

mmu_read (va, sz) = do { pa mmu_translate va; mem_read (pa, sz) }

Both, mmu_write and mmu_read, first perform address translation, and then their original purpose,
but using translated addresses instead. In case of an exception in mmu_translate, the write
function does nothing to give the translation exception precedence, while the pure read function
can continue, because it does not change the state.

By redirecting all other memory-related functions in the ARM model to go through this
interface, we arrive at a full operational model that supports address translation and TLB.

The purpose of this paper is not to provide a fully detailed formalisation that is validated
to comprehensively conform with existing hardware, but to present the main ideas on how to
simplify reasoning in the presence of a TLB. Despite this focus, we have validated the model
by executing a number of instructions in the theorem prover, manually checking consistency
with the expected behaviour. A full formalisation would need a more extensive test suite in the
spirit of Fox and Myreen [5].

8

Reasoning about Translation Lookaside Bu↵ers Syeda Hira Taqdees and Gerwin Klein

Figure 2: ARM-style Memory Management Unit

type class mmu_op:

class mmu_op = mmu +

fixes mmu_write :: bool list ⇥ vaddr ⇥ nat) ’a state_scheme) unit ⇥ ’a state_scheme

fixes mmu_read :: vaddr ⇥ nat) ’a state_scheme) bool list ⇥ ’a state_scheme

The interface for the values being read and written in the ARM model is via bool list instead
of machine words directly, which we keep here, and the nat paramenter indicates how many
bytes to read/write, e.g. one byte, a word, a double word, etc.

Reusing the original functions mem_write and mem_read for physical memory, the instances
for the base-level TLB and MMU model are then straightforward:

mmu_write (val, va, sz) = do {
pa mmu_translate va;
when_no_exc mem_write (val, pa, sz)

}

when_no_exc f = do {
exception read_state exception;
if exception = NoException then f else return ()

}

mmu_read (va, sz) = do { pa mmu_translate va; mem_read (pa, sz) }

Both, mmu_write and mmu_read, first perform address translation, and then their original purpose,
but using translated addresses instead. In case of an exception in mmu_translate, the write
function does nothing to give the translation exception precedence, while the pure read function
can continue, because it does not change the state.

By redirecting all other memory-related functions in the ARM model to go through this
interface, we arrive at a full operational model that supports address translation and TLB.

The purpose of this paper is not to provide a fully detailed formalisation that is validated
to comprehensively conform with existing hardware, but to present the main ideas on how to
simplify reasoning in the presence of a TLB. Despite this focus, we have validated the model
by executing a number of instructions in the theorem prover, manually checking consistency
with the expected behaviour. A full formalisation would need a more extensive test suite in the
spirit of Fox and Myreen [5].

8

Reasoning about Translation Lookaside Bu↵ers Syeda Hira Taqdees and Gerwin Klein

Figure 2: ARM-style Memory Management Unit

type class mmu_op:

class mmu_op = mmu +

fixes mmu_write :: bool list ⇥ vaddr ⇥ nat) ’a state_scheme) unit ⇥ ’a state_scheme

fixes mmu_read :: vaddr ⇥ nat) ’a state_scheme) bool list ⇥ ’a state_scheme

The interface for the values being read and written in the ARM model is via bool list instead
of machine words directly, which we keep here, and the nat paramenter indicates how many
bytes to read/write, e.g. one byte, a word, a double word, etc.

Reusing the original functions mem_write and mem_read for physical memory, the instances
for the base-level TLB and MMU model are then straightforward:

mmu_write (val, va, sz) = do {
pa mmu_translate va;
when_no_exc mem_write (val, pa, sz)

}

when_no_exc f = do {
exception read_state exception;
if exception = NoException then f else return ()

}

mmu_read (va, sz) = do { pa mmu_translate va; mem_read (pa, sz) }

Both, mmu_write and mmu_read, first perform address translation, and then their original purpose,
but using translated addresses instead. In case of an exception in mmu_translate, the write
function does nothing to give the translation exception precedence, while the pure read function
can continue, because it does not change the state.

By redirecting all other memory-related functions in the ARM model to go through this
interface, we arrive at a full operational model that supports address translation and TLB.

The purpose of this paper is not to provide a fully detailed formalisation that is validated
to comprehensively conform with existing hardware, but to present the main ideas on how to
simplify reasoning in the presence of a TLB. Despite this focus, we have validated the model
by executing a number of instructions in the theorem prover, manually checking consistency
with the expected behaviour. A full formalisation would need a more extensive test suite in the
spirit of Fox and Myreen [5].

8

Reasoning about Translation Lookaside Bu↵ers Syeda Hira Taqdees and Gerwin Klein

Figure 2: ARM-style Memory Management Unit

type class mmu_op:

class mmu_op = mmu +

fixes mmu_write :: bool list ⇥ vaddr ⇥ nat) ’a state_scheme) unit ⇥ ’a state_scheme

fixes mmu_read :: vaddr ⇥ nat) ’a state_scheme) bool list ⇥ ’a state_scheme

The interface for the values being read and written in the ARM model is via bool list instead
of machine words directly, which we keep here, and the nat paramenter indicates how many
bytes to read/write, e.g. one byte, a word, a double word, etc.

Reusing the original functions mem_write and mem_read for physical memory, the instances
for the base-level TLB and MMU model are then straightforward:

mmu_write (val, va, sz) = do {
pa mmu_translate va;
when_no_exc mem_write (val, pa, sz)

}

when_no_exc f = do {
exception read_state exception;
if exception = NoException then f else return ()

}

mmu_read (va, sz) = do { pa mmu_translate va; mem_read (pa, sz) }

Both, mmu_write and mmu_read, first perform address translation, and then their original purpose,
but using translated addresses instead. In case of an exception in mmu_translate, the write
function does nothing to give the translation exception precedence, while the pure read function
can continue, because it does not change the state.

By redirecting all other memory-related functions in the ARM model to go through this
interface, we arrive at a full operational model that supports address translation and TLB.

The purpose of this paper is not to provide a fully detailed formalisation that is validated
to comprehensively conform with existing hardware, but to present the main ideas on how to
simplify reasoning in the presence of a TLB. Despite this focus, we have validated the model
by executing a number of instructions in the theorem prover, manually checking consistency
with the expected behaviour. A full formalisation would need a more extensive test suite in the
spirit of Fox and Myreen [5].

8

Reasoning about Translation Lookaside Bu↵ers Syeda Hira Taqdees and Gerwin Klein

Figure 2: ARM-style Memory Management Unit

type class mmu_op:

class mmu_op = mmu +

fixes mmu_write :: bool list ⇥ vaddr ⇥ nat) ’a state_scheme) unit ⇥ ’a state_scheme

fixes mmu_read :: vaddr ⇥ nat) ’a state_scheme) bool list ⇥ ’a state_scheme

The interface for the values being read and written in the ARM model is via bool list instead
of machine words directly, which we keep here, and the nat paramenter indicates how many
bytes to read/write, e.g. one byte, a word, a double word, etc.

Reusing the original functions mem_write and mem_read for physical memory, the instances
for the base-level TLB and MMU model are then straightforward:

mmu_write (val, va, sz) = do {
pa mmu_translate va;
when_no_exc mem_write (val, pa, sz)

}

when_no_exc f = do {
exception read_state exception;
if exception = NoException then f else return ()

}

mmu_read (va, sz) = do { pa mmu_translate va; mem_read (pa, sz) }

Both, mmu_write and mmu_read, first perform address translation, and then their original purpose,
but using translated addresses instead. In case of an exception in mmu_translate, the write
function does nothing to give the translation exception precedence, while the pure read function
can continue, because it does not change the state.

By redirecting all other memory-related functions in the ARM model to go through this
interface, we arrive at a full operational model that supports address translation and TLB.

The purpose of this paper is not to provide a fully detailed formalisation that is validated
to comprehensively conform with existing hardware, but to present the main ideas on how to
simplify reasoning in the presence of a TLB. Despite this focus, we have validated the model
by executing a number of instructions in the theorem prover, manually checking consistency
with the expected behaviour. A full formalisation would need a more extensive test suite in the
spirit of Fox and Myreen [5].

8

 Reasoning about Translation Lookaside Buffers Hira T. Syeda10

For Program Reasoning

 Reasoning about Translation Lookaside Buffers Hira T. Syeda10

- Concrete MMU introduces

For Program Reasoning

 Reasoning about Translation Lookaside Buffers Hira T. Syeda10

- Concrete MMU introduces
- unspecified entry replacement
- can result in TLB miss and reloading

For Program Reasoning

 Reasoning about Translation Lookaside Buffers Hira T. Syeda10

- Concrete MMU introduces
- unspecified entry replacement
- can result in TLB miss and reloading

- state change during
- memory read
- memory write outside the page table

For Program Reasoning

 Reasoning about Translation Lookaside Buffers Hira T. Syeda10

- Concrete MMU introduces
- unspecified entry replacement
- can result in TLB miss and reloading

- state change during
- memory read
- memory write outside the page table

- potential inconsistencies

For Program Reasoning

 Reasoning about Translation Lookaside Buffers Hira T. Syeda10

- Concrete MMU introduces
- unspecified entry replacement
- can result in TLB miss and reloading

- state change during
- memory read
- memory write outside the page table

- potential inconsistencies

- Programs

For Program Reasoning

 Reasoning about Translation Lookaside Buffers Hira T. Syeda10

- Concrete MMU introduces
- unspecified entry replacement
- can result in TLB miss and reloading

- state change during
- memory read
- memory write outside the page table

- potential inconsistencies

- Programs
- must avoid inconsistencies

For Program Reasoning

 Reasoning about Translation Lookaside Buffers Hira T. Syeda10

- Concrete MMU introduces
- unspecified entry replacement
- can result in TLB miss and reloading

- state change during
- memory read
- memory write outside the page table

- potential inconsistencies

- Programs
- must avoid inconsistencies
- should not require reasoning about eviction and state change

For Program Reasoning

 Reasoning about Translation Lookaside Buffers Hira T. Syeda

- Formal model of ARMv7-style TLB in Isabelle/HOL
- lookup function

11

Contributions

ARMv7

mmu_translate

abs_mmu_translate

- Extension to MMU model
- mmu_translate, mmu_read, mmu_write
- integration to ARMv7 formalised ISA

- Data refinement for
- abstracting hardware details
- easier reasoning

 Reasoning about Translation Lookaside Buffers Hira T. Syeda

- Stepwise data refinement for
- abstracting eviction
- state invariance in case of
- memory read
- memory write outside of page tables

- complete abstraction for TLB

12

MMU Abstraction

mmu_translate

abs_mmu_translate

noevict_mmu_translate

fc_mmu_translate

 Reasoning about Translation Lookaside Buffers Hira T. Syeda

- Stepwise data refinement for
- abstracting eviction
- state invariance in case of
- memory read
- memory write outside of page tables

- complete abstraction for TLB

12

MMU Abstraction

mmu_translate

abs_mmu_translate

noevict_mmu_translate

fc_mmu_translate

📝
Any program that is safe with abstracted MMU
will be safe with concrete MMU

 Reasoning about Translation Lookaside Buffers Hira T. Syeda13

Abstracting Eviction

 Reasoning about Translation Lookaside Buffers Hira T. Syeda

- TLB with fewer entries is always more consistent than one
with more entries

13

Abstracting Eviction

Reasoning about Translation Lookaside Bu↵ers Syeda Hira Taqdees and Gerwin Klein

In summary, we have so far extended the Cambridge ARM model by: a change of memory
model to admit the notion of unmapped memory, the introduction of an MMU including TLB
and page table lookup mechanisms, and an adjustment of the subsequent memory operations
to include the address translation layer.

5 TLB Abstraction

The MMU model of Sect. 4 gives us the ground truth of how hardware operates, and thereby
the foundation for a logic for programs under TLB, but the model is hard to reason about
directly. From Sect. 4, we see that a TLB introduces:

1. non-determinism through unspecified entry replacement strategy,

2. potential state change caused by any memory access, including reads,

3. potential (internally) inconsistent TLB state from multiple conflicting entries, and

4. potential (external) inconsistency between page table and TLB.

The latter two are states the program must avoid. The first two introduce unnecessary
complexity: a program that is otherwise deterministic should not require reasoning about non-
determinism, and a correctly operated TLB should not complicate reasoning about memory
reads nor memory writes that are unrelated to page tables.

In this section, we show how we can construct a model that avoids the additional complexity
and produces su�cient conditions for safe execution. In particular, we build a series of formal
abstractions of the concrete MMU model of Sect. 4 that are increasingly easier to reason about,
but preserve functionality and the optimisation opportunities OS developers must be able to
exploit. We verify these step-wise abstractions by refinement theorems.

The main burden on the proof engineer that we cannot hope to eliminate completely in
general will be to show that the TLB is currently in a consistent state for the address to be
accessed. We formalise consistency for a virtual address as:

consistent mem asid ttbr0 tlb va ⌘
lookup tlb asid (addr_val va) = Hit (pt_walk asid mem ttbr0 va) _
lookup tlb asid (addr_val va) = Miss

This condition combines internal consistency (no Incon results permitted), with external
consistency, i.e. synchronicity with the current state of the page table for this particular address.

5.1 Determinism

With this in mind, we observe as the first step in our abstraction chain that a TLB with fewer
entries is always more consistent, and in this sense safer, than one with more entries. Formally,
lookup results naturally form an order with Miss being the bottom element, and Incon the top:
l l’ ⌘ l = Miss _ l’ = l _ l’ = Incon, and we can prove monotonicity

Lemma 4. t ✓ t’ =) lookup t a v lookup t’ a v

Proof. By case distinction and unfolding the definitions.

We can use this in the abstraction chain by making the abstraction less safe, i.e. more
inconsistent, with the standard refinement idea that if we manage to prove safe behaviour
of the abstraction, we will also have proved safe behaviour of all possible actual executions.

9

Miss < Hit < Incon

 Reasoning about Translation Lookaside Buffers Hira T. Syeda

- TLB with fewer entries is always more consistent than one
with more entries

- noevict_mmu_translate
- identical to mmu_translate except it doesn’t evict entries

13

Abstracting Eviction

Reasoning about Translation Lookaside Bu↵ers Syeda Hira Taqdees and Gerwin Klein

In summary, we have so far extended the Cambridge ARM model by: a change of memory
model to admit the notion of unmapped memory, the introduction of an MMU including TLB
and page table lookup mechanisms, and an adjustment of the subsequent memory operations
to include the address translation layer.

5 TLB Abstraction

The MMU model of Sect. 4 gives us the ground truth of how hardware operates, and thereby
the foundation for a logic for programs under TLB, but the model is hard to reason about
directly. From Sect. 4, we see that a TLB introduces:

1. non-determinism through unspecified entry replacement strategy,

2. potential state change caused by any memory access, including reads,

3. potential (internally) inconsistent TLB state from multiple conflicting entries, and

4. potential (external) inconsistency between page table and TLB.

The latter two are states the program must avoid. The first two introduce unnecessary
complexity: a program that is otherwise deterministic should not require reasoning about non-
determinism, and a correctly operated TLB should not complicate reasoning about memory
reads nor memory writes that are unrelated to page tables.

In this section, we show how we can construct a model that avoids the additional complexity
and produces su�cient conditions for safe execution. In particular, we build a series of formal
abstractions of the concrete MMU model of Sect. 4 that are increasingly easier to reason about,
but preserve functionality and the optimisation opportunities OS developers must be able to
exploit. We verify these step-wise abstractions by refinement theorems.

The main burden on the proof engineer that we cannot hope to eliminate completely in
general will be to show that the TLB is currently in a consistent state for the address to be
accessed. We formalise consistency for a virtual address as:

consistent mem asid ttbr0 tlb va ⌘
lookup tlb asid (addr_val va) = Hit (pt_walk asid mem ttbr0 va) _
lookup tlb asid (addr_val va) = Miss

This condition combines internal consistency (no Incon results permitted), with external
consistency, i.e. synchronicity with the current state of the page table for this particular address.

5.1 Determinism

With this in mind, we observe as the first step in our abstraction chain that a TLB with fewer
entries is always more consistent, and in this sense safer, than one with more entries. Formally,
lookup results naturally form an order with Miss being the bottom element, and Incon the top:
l l’ ⌘ l = Miss _ l’ = l _ l’ = Incon, and we can prove monotonicity

Lemma 4. t ✓ t’ =) lookup t a v lookup t’ a v

Proof. By case distinction and unfolding the definitions.

We can use this in the abstraction chain by making the abstraction less safe, i.e. more
inconsistent, with the standard refinement idea that if we manage to prove safe behaviour
of the abstraction, we will also have proved safe behaviour of all possible actual executions.

9

Miss < Hit < Incon

 Reasoning about Translation Lookaside Buffers Hira T. Syeda

- TLB with fewer entries is always more consistent than one
with more entries

- noevict_mmu_translate
- identical to mmu_translate except it doesn’t evict entries

13

Abstracting Eviction

Reasoning about Translation Lookaside Bu↵ers Syeda Hira Taqdees and Gerwin Klein

In summary, we have so far extended the Cambridge ARM model by: a change of memory
model to admit the notion of unmapped memory, the introduction of an MMU including TLB
and page table lookup mechanisms, and an adjustment of the subsequent memory operations
to include the address translation layer.

5 TLB Abstraction

The MMU model of Sect. 4 gives us the ground truth of how hardware operates, and thereby
the foundation for a logic for programs under TLB, but the model is hard to reason about
directly. From Sect. 4, we see that a TLB introduces:

1. non-determinism through unspecified entry replacement strategy,

2. potential state change caused by any memory access, including reads,

3. potential (internally) inconsistent TLB state from multiple conflicting entries, and

4. potential (external) inconsistency between page table and TLB.

The latter two are states the program must avoid. The first two introduce unnecessary
complexity: a program that is otherwise deterministic should not require reasoning about non-
determinism, and a correctly operated TLB should not complicate reasoning about memory
reads nor memory writes that are unrelated to page tables.

In this section, we show how we can construct a model that avoids the additional complexity
and produces su�cient conditions for safe execution. In particular, we build a series of formal
abstractions of the concrete MMU model of Sect. 4 that are increasingly easier to reason about,
but preserve functionality and the optimisation opportunities OS developers must be able to
exploit. We verify these step-wise abstractions by refinement theorems.

The main burden on the proof engineer that we cannot hope to eliminate completely in
general will be to show that the TLB is currently in a consistent state for the address to be
accessed. We formalise consistency for a virtual address as:

consistent mem asid ttbr0 tlb va ⌘
lookup tlb asid (addr_val va) = Hit (pt_walk asid mem ttbr0 va) _
lookup tlb asid (addr_val va) = Miss

This condition combines internal consistency (no Incon results permitted), with external
consistency, i.e. synchronicity with the current state of the page table for this particular address.

5.1 Determinism

With this in mind, we observe as the first step in our abstraction chain that a TLB with fewer
entries is always more consistent, and in this sense safer, than one with more entries. Formally,
lookup results naturally form an order with Miss being the bottom element, and Incon the top:
l l’ ⌘ l = Miss _ l’ = l _ l’ = Incon, and we can prove monotonicity

Lemma 4. t ✓ t’ =) lookup t a v lookup t’ a v

Proof. By case distinction and unfolding the definitions.

We can use this in the abstraction chain by making the abstraction less safe, i.e. more
inconsistent, with the standard refinement idea that if we manage to prove safe behaviour
of the abstraction, we will also have proved safe behaviour of all possible actual executions.

9

Miss < Hit < Incon

mmu_translate

noevict_mmu_translate

s

t t’

s’

TLB s ⊆ TLB t

va

TLB s’ ⊆ TLB t’

va

invariant: consistent w.r.t va

 Reasoning about Translation Lookaside Buffers Hira T. Syeda

- Stepwise data refinement for
- abstracting eviction
- state invariance in case of
- memory read
- memory write outside of page tables

- complete abstraction for TLB

14

MMU Abstraction

mmu_translate

abs_mmu_translate

noevict_mmu_translate

fc_mmu_translate

📝
Any program that is safe with abstracted TLB
will be safe with concrete TLB

 Reasoning about Translation Lookaside Buffers Hira T. Syeda15

- fc_mmu_translate
- fc stands for fully-cached
- caching page table entirely in TLB (no TLB miss)

State Invariance

 Reasoning about Translation Lookaside Buffers Hira T. Syeda15

- fc_mmu_translate
- fc stands for fully-cached
- caching page table entirely in TLB (no TLB miss)

State Invariance

noevict_mmu_translate

fc_mmu_translate

s

t t’

s’

TLB s ⊆ TLB t

va

TLB s’ ⊆ TLB t’

va

fully_cached_pt t
invariant: consistent w.r.t va

 Reasoning about Translation Lookaside Buffers Hira T. Syeda16

State Invariance -
Memory Access

 Reasoning about Translation Lookaside Buffers Hira T. Syeda16

State Invariance -
Memory Access

fc_mmu_read
s t

va
fully_cached_pt s TLB t = TLB s

- Memory read

 Reasoning about Translation Lookaside Buffers Hira T. Syeda16

State Invariance -
Memory Access

- Memory write outside of the page table

fc_mmu_read
s t

va
fully_cached_pt s TLB t = TLB s

fc_mmu_write
s t

va
pt_walk va s = pt_walk va t TLB t = TLB s

- Memory read

 Reasoning about Translation Lookaside Buffers Hira T. Syeda16

State Invariance -
Memory Access

- Memory write outside of the page table

fc_mmu_read
s t

va
fully_cached_pt s TLB t = TLB s

fc_mmu_write
s t

va
pt_walk va s = pt_walk va t TLB t = TLB s

- Memory read

- user-level programs
- seL4 static address mappings

 Reasoning about Translation Lookaside Buffers Hira T. Syeda

- Stepwise data refinement for
- abstracting eviction
- state invariance in case of
- memory read
- memory write outside of page tables

- complete abstraction for TLB

17

MMU Abstraction

mmu_translate

abs_mmu_translate

noevict_mmu_translate

fc_mmu_translate

📝
Any program that is safe with abstracted TLB
will be safe with concrete TLB

 Reasoning about Translation Lookaside Buffers Hira T. Syeda18

- No TLB lookup is required
- extend state with (ASID x 32 bit) instead of tlb

Completely Abstracted TLB

 Reasoning about Translation Lookaside Buffers Hira T. Syeda18

- No TLB lookup is required
- extend state with (ASID x 32 bit) instead of tlb

Completely Abstracted TLB

Reasoning about Translation Lookaside Bu↵ers Syeda Hira Taqdees and Gerwin Klein

Theorem 4. In saturated states, memory reads do not change the TLB.

mmu_read_sat (va, sz) s = (val, t) saturated s

tlb t = tlb s

Proof. By observing that memory reads do not change the state and that a saturated TLB
already contains all current page table entries.

A simple optimisation to this model would be to not update the TLB for every memory
write, but only for writes to the current page table structure or the page table root register. This
immediately produces a reduction result: if the current page table structure is not writeable,
and if the execution mode is unprivileged, i.e. the page table root register cannot be changed,
then we know that no memory transaction will change the saturated TLB state, and we can
therefore reason about a much simpler model without TLB and with fixed address translation.
This is what user-level execution expects: users should not need to worry about the presence
or absence of a TLB. The following theorem encapsulates the conditions for this reduction.

Theorem 5. Memory writes that do not change the page table content leave the saturated TLB
constant, preserving consistency and saturation.

mmu_write_sat (val, va, sz) s = ((), s’)
8 va. pt_walk (ASID s) (MEM s) (TTBR0 s) va = pt_walk (ASID s’) (MEM s’) (TTBR0 s’) va

consistent s v saturated s

tlb s’ = tlb s ^ consistent s’ v ^ saturated s’

Proof. The condition that all pt_walk outcomes remain the same after the memory write directly
implies that the range (pt_walk asid mem ttbr0) term in tlb_refill remains the same, and
since the TLB is already saturated, the TLB refill has no e↵ect.

In summary, reasoning about the TLB has become much more tractable in this model.
Inconsistency is reduced to internal inconsistency only, and non-determinism as well as unnec-
essary state change are removed. For a program logic on top of this model it would su�ce to
guarantee the absence of inconsistencies, and to treat page faults the same way a program logic
for standard address translation would, e.g. as in Kolanski’s work [10].

5.3 Essence

This leads us to the last refinement step, where we abstract the saturated TLBs to the extent
that no actual TLB lookup is required: the functionality of the TLB can be captured completely
by only keeping record of those virtual address/ASID pairs that are inconsistent in the TLB
with the current page table. It is then enough to perform address translation using the page
table only.

For this last abstraction, we extend the record type state not with tlb, but with incon_set

of type (asid ⇥ 32 word) set and instantiate mmu_translate of type class mmu to:

mmu_translate_set va = do {
(mem, asid, ttbr0, incon_set) read_state (MEM, ASID, TTBR0, incon_set);
if (asid, addr_val va) 2 incon_set then raise IMPLEMENTATION_DEFINED
else let entry = pt_walk asid mem ttbr0 va

in if is_fault entry then raise PAGE_FAULT else return (va_to_pa va entry)
}

Note that this address translation contains no state change at all any more, apart from poten-
tially raising exceptions.

With this definition, we get the following theorem.

13

 Reasoning about Translation Lookaside Buffers Hira T. Syeda18

- No TLB lookup is required
- extend state with (ASID x 32 bit) instead of tlb

Completely Abstracted TLB

Reasoning about Translation Lookaside Bu↵ers Syeda Hira Taqdees and Gerwin Klein

Theorem 4. In saturated states, memory reads do not change the TLB.

mmu_read_sat (va, sz) s = (val, t) saturated s

tlb t = tlb s

Proof. By observing that memory reads do not change the state and that a saturated TLB
already contains all current page table entries.

A simple optimisation to this model would be to not update the TLB for every memory
write, but only for writes to the current page table structure or the page table root register. This
immediately produces a reduction result: if the current page table structure is not writeable,
and if the execution mode is unprivileged, i.e. the page table root register cannot be changed,
then we know that no memory transaction will change the saturated TLB state, and we can
therefore reason about a much simpler model without TLB and with fixed address translation.
This is what user-level execution expects: users should not need to worry about the presence
or absence of a TLB. The following theorem encapsulates the conditions for this reduction.

Theorem 5. Memory writes that do not change the page table content leave the saturated TLB
constant, preserving consistency and saturation.

mmu_write_sat (val, va, sz) s = ((), s’)
8 va. pt_walk (ASID s) (MEM s) (TTBR0 s) va = pt_walk (ASID s’) (MEM s’) (TTBR0 s’) va

consistent s v saturated s

tlb s’ = tlb s ^ consistent s’ v ^ saturated s’

Proof. The condition that all pt_walk outcomes remain the same after the memory write directly
implies that the range (pt_walk asid mem ttbr0) term in tlb_refill remains the same, and
since the TLB is already saturated, the TLB refill has no e↵ect.

In summary, reasoning about the TLB has become much more tractable in this model.
Inconsistency is reduced to internal inconsistency only, and non-determinism as well as unnec-
essary state change are removed. For a program logic on top of this model it would su�ce to
guarantee the absence of inconsistencies, and to treat page faults the same way a program logic
for standard address translation would, e.g. as in Kolanski’s work [10].

5.3 Essence

This leads us to the last refinement step, where we abstract the saturated TLBs to the extent
that no actual TLB lookup is required: the functionality of the TLB can be captured completely
by only keeping record of those virtual address/ASID pairs that are inconsistent in the TLB
with the current page table. It is then enough to perform address translation using the page
table only.

For this last abstraction, we extend the record type state not with tlb, but with incon_set

of type (asid ⇥ 32 word) set and instantiate mmu_translate of type class mmu to:

mmu_translate_set va = do {
(mem, asid, ttbr0, incon_set) read_state (MEM, ASID, TTBR0, incon_set);
if (asid, addr_val va) 2 incon_set then raise IMPLEMENTATION_DEFINED
else let entry = pt_walk asid mem ttbr0 va

in if is_fault entry then raise PAGE_FAULT else return (va_to_pa va entry)
}

Note that this address translation contains no state change at all any more, apart from poten-
tially raising exceptions.

With this definition, we get the following theorem.

13

 Reasoning about Translation Lookaside Buffers Hira T. Syeda18

- No TLB lookup is required
- extend state with (ASID x 32 bit) instead of tlb

Completely Abstracted TLB

Reasoning about Translation Lookaside Bu↵ers Syeda Hira Taqdees and Gerwin Klein

Theorem 4. In saturated states, memory reads do not change the TLB.

mmu_read_sat (va, sz) s = (val, t) saturated s

tlb t = tlb s

Proof. By observing that memory reads do not change the state and that a saturated TLB
already contains all current page table entries.

A simple optimisation to this model would be to not update the TLB for every memory
write, but only for writes to the current page table structure or the page table root register. This
immediately produces a reduction result: if the current page table structure is not writeable,
and if the execution mode is unprivileged, i.e. the page table root register cannot be changed,
then we know that no memory transaction will change the saturated TLB state, and we can
therefore reason about a much simpler model without TLB and with fixed address translation.
This is what user-level execution expects: users should not need to worry about the presence
or absence of a TLB. The following theorem encapsulates the conditions for this reduction.

Theorem 5. Memory writes that do not change the page table content leave the saturated TLB
constant, preserving consistency and saturation.

mmu_write_sat (val, va, sz) s = ((), s’)
8 va. pt_walk (ASID s) (MEM s) (TTBR0 s) va = pt_walk (ASID s’) (MEM s’) (TTBR0 s’) va

consistent s v saturated s

tlb s’ = tlb s ^ consistent s’ v ^ saturated s’

Proof. The condition that all pt_walk outcomes remain the same after the memory write directly
implies that the range (pt_walk asid mem ttbr0) term in tlb_refill remains the same, and
since the TLB is already saturated, the TLB refill has no e↵ect.

In summary, reasoning about the TLB has become much more tractable in this model.
Inconsistency is reduced to internal inconsistency only, and non-determinism as well as unnec-
essary state change are removed. For a program logic on top of this model it would su�ce to
guarantee the absence of inconsistencies, and to treat page faults the same way a program logic
for standard address translation would, e.g. as in Kolanski’s work [10].

5.3 Essence

This leads us to the last refinement step, where we abstract the saturated TLBs to the extent
that no actual TLB lookup is required: the functionality of the TLB can be captured completely
by only keeping record of those virtual address/ASID pairs that are inconsistent in the TLB
with the current page table. It is then enough to perform address translation using the page
table only.

For this last abstraction, we extend the record type state not with tlb, but with incon_set

of type (asid ⇥ 32 word) set and instantiate mmu_translate of type class mmu to:

mmu_translate_set va = do {
(mem, asid, ttbr0, incon_set) read_state (MEM, ASID, TTBR0, incon_set);
if (asid, addr_val va) 2 incon_set then raise IMPLEMENTATION_DEFINED
else let entry = pt_walk asid mem ttbr0 va

in if is_fault entry then raise PAGE_FAULT else return (va_to_pa va entry)
}

Note that this address translation contains no state change at all any more, apart from poten-
tially raising exceptions.

With this definition, we get the following theorem.

13

 Reasoning about Translation Lookaside Buffers Hira T. Syeda18

- No TLB lookup is required
- extend state with (ASID x 32 bit) instead of tlb

Completely Abstracted TLB

Reasoning about Translation Lookaside Bu↵ers Syeda Hira Taqdees and Gerwin Klein

Theorem 4. In saturated states, memory reads do not change the TLB.

mmu_read_sat (va, sz) s = (val, t) saturated s

tlb t = tlb s

Proof. By observing that memory reads do not change the state and that a saturated TLB
already contains all current page table entries.

A simple optimisation to this model would be to not update the TLB for every memory
write, but only for writes to the current page table structure or the page table root register. This
immediately produces a reduction result: if the current page table structure is not writeable,
and if the execution mode is unprivileged, i.e. the page table root register cannot be changed,
then we know that no memory transaction will change the saturated TLB state, and we can
therefore reason about a much simpler model without TLB and with fixed address translation.
This is what user-level execution expects: users should not need to worry about the presence
or absence of a TLB. The following theorem encapsulates the conditions for this reduction.

Theorem 5. Memory writes that do not change the page table content leave the saturated TLB
constant, preserving consistency and saturation.

mmu_write_sat (val, va, sz) s = ((), s’)
8 va. pt_walk (ASID s) (MEM s) (TTBR0 s) va = pt_walk (ASID s’) (MEM s’) (TTBR0 s’) va

consistent s v saturated s

tlb s’ = tlb s ^ consistent s’ v ^ saturated s’

Proof. The condition that all pt_walk outcomes remain the same after the memory write directly
implies that the range (pt_walk asid mem ttbr0) term in tlb_refill remains the same, and
since the TLB is already saturated, the TLB refill has no e↵ect.

In summary, reasoning about the TLB has become much more tractable in this model.
Inconsistency is reduced to internal inconsistency only, and non-determinism as well as unnec-
essary state change are removed. For a program logic on top of this model it would su�ce to
guarantee the absence of inconsistencies, and to treat page faults the same way a program logic
for standard address translation would, e.g. as in Kolanski’s work [10].

5.3 Essence

This leads us to the last refinement step, where we abstract the saturated TLBs to the extent
that no actual TLB lookup is required: the functionality of the TLB can be captured completely
by only keeping record of those virtual address/ASID pairs that are inconsistent in the TLB
with the current page table. It is then enough to perform address translation using the page
table only.

For this last abstraction, we extend the record type state not with tlb, but with incon_set

of type (asid ⇥ 32 word) set and instantiate mmu_translate of type class mmu to:

mmu_translate_set va = do {
(mem, asid, ttbr0, incon_set) read_state (MEM, ASID, TTBR0, incon_set);
if (asid, addr_val va) 2 incon_set then raise IMPLEMENTATION_DEFINED
else let entry = pt_walk asid mem ttbr0 va

in if is_fault entry then raise PAGE_FAULT else return (va_to_pa va entry)
}

Note that this address translation contains no state change at all any more, apart from poten-
tially raising exceptions.

With this definition, we get the following theorem.

13

 Reasoning about Translation Lookaside Buffers Hira T. Syeda18

- No TLB lookup is required
- extend state with (ASID x 32 bit) instead of tlb

Completely Abstracted TLB

Reasoning about Translation Lookaside Bu↵ers Syeda Hira Taqdees and Gerwin Klein

Theorem 4. In saturated states, memory reads do not change the TLB.

mmu_read_sat (va, sz) s = (val, t) saturated s

tlb t = tlb s

Proof. By observing that memory reads do not change the state and that a saturated TLB
already contains all current page table entries.

A simple optimisation to this model would be to not update the TLB for every memory
write, but only for writes to the current page table structure or the page table root register. This
immediately produces a reduction result: if the current page table structure is not writeable,
and if the execution mode is unprivileged, i.e. the page table root register cannot be changed,
then we know that no memory transaction will change the saturated TLB state, and we can
therefore reason about a much simpler model without TLB and with fixed address translation.
This is what user-level execution expects: users should not need to worry about the presence
or absence of a TLB. The following theorem encapsulates the conditions for this reduction.

Theorem 5. Memory writes that do not change the page table content leave the saturated TLB
constant, preserving consistency and saturation.

mmu_write_sat (val, va, sz) s = ((), s’)
8 va. pt_walk (ASID s) (MEM s) (TTBR0 s) va = pt_walk (ASID s’) (MEM s’) (TTBR0 s’) va

consistent s v saturated s

tlb s’ = tlb s ^ consistent s’ v ^ saturated s’

Proof. The condition that all pt_walk outcomes remain the same after the memory write directly
implies that the range (pt_walk asid mem ttbr0) term in tlb_refill remains the same, and
since the TLB is already saturated, the TLB refill has no e↵ect.

In summary, reasoning about the TLB has become much more tractable in this model.
Inconsistency is reduced to internal inconsistency only, and non-determinism as well as unnec-
essary state change are removed. For a program logic on top of this model it would su�ce to
guarantee the absence of inconsistencies, and to treat page faults the same way a program logic
for standard address translation would, e.g. as in Kolanski’s work [10].

5.3 Essence

This leads us to the last refinement step, where we abstract the saturated TLBs to the extent
that no actual TLB lookup is required: the functionality of the TLB can be captured completely
by only keeping record of those virtual address/ASID pairs that are inconsistent in the TLB
with the current page table. It is then enough to perform address translation using the page
table only.

For this last abstraction, we extend the record type state not with tlb, but with incon_set

of type (asid ⇥ 32 word) set and instantiate mmu_translate of type class mmu to:

mmu_translate_set va = do {
(mem, asid, ttbr0, incon_set) read_state (MEM, ASID, TTBR0, incon_set);
if (asid, addr_val va) 2 incon_set then raise IMPLEMENTATION_DEFINED
else let entry = pt_walk asid mem ttbr0 va

in if is_fault entry then raise PAGE_FAULT else return (va_to_pa va entry)
}

Note that this address translation contains no state change at all any more, apart from poten-
tially raising exceptions.

With this definition, we get the following theorem.

13

 Reasoning about Translation Lookaside Buffers Hira T. Syeda18

- No TLB lookup is required
- extend state with (ASID x 32 bit) instead of tlb

Completely Abstracted TLB

Reasoning about Translation Lookaside Bu↵ers Syeda Hira Taqdees and Gerwin Klein

Theorem 4. In saturated states, memory reads do not change the TLB.

mmu_read_sat (va, sz) s = (val, t) saturated s

tlb t = tlb s

Proof. By observing that memory reads do not change the state and that a saturated TLB
already contains all current page table entries.

A simple optimisation to this model would be to not update the TLB for every memory
write, but only for writes to the current page table structure or the page table root register. This
immediately produces a reduction result: if the current page table structure is not writeable,
and if the execution mode is unprivileged, i.e. the page table root register cannot be changed,
then we know that no memory transaction will change the saturated TLB state, and we can
therefore reason about a much simpler model without TLB and with fixed address translation.
This is what user-level execution expects: users should not need to worry about the presence
or absence of a TLB. The following theorem encapsulates the conditions for this reduction.

Theorem 5. Memory writes that do not change the page table content leave the saturated TLB
constant, preserving consistency and saturation.

mmu_write_sat (val, va, sz) s = ((), s’)
8 va. pt_walk (ASID s) (MEM s) (TTBR0 s) va = pt_walk (ASID s’) (MEM s’) (TTBR0 s’) va

consistent s v saturated s

tlb s’ = tlb s ^ consistent s’ v ^ saturated s’

Proof. The condition that all pt_walk outcomes remain the same after the memory write directly
implies that the range (pt_walk asid mem ttbr0) term in tlb_refill remains the same, and
since the TLB is already saturated, the TLB refill has no e↵ect.

In summary, reasoning about the TLB has become much more tractable in this model.
Inconsistency is reduced to internal inconsistency only, and non-determinism as well as unnec-
essary state change are removed. For a program logic on top of this model it would su�ce to
guarantee the absence of inconsistencies, and to treat page faults the same way a program logic
for standard address translation would, e.g. as in Kolanski’s work [10].

5.3 Essence

This leads us to the last refinement step, where we abstract the saturated TLBs to the extent
that no actual TLB lookup is required: the functionality of the TLB can be captured completely
by only keeping record of those virtual address/ASID pairs that are inconsistent in the TLB
with the current page table. It is then enough to perform address translation using the page
table only.

For this last abstraction, we extend the record type state not with tlb, but with incon_set

of type (asid ⇥ 32 word) set and instantiate mmu_translate of type class mmu to:

mmu_translate_set va = do {
(mem, asid, ttbr0, incon_set) read_state (MEM, ASID, TTBR0, incon_set);
if (asid, addr_val va) 2 incon_set then raise IMPLEMENTATION_DEFINED
else let entry = pt_walk asid mem ttbr0 va

in if is_fault entry then raise PAGE_FAULT else return (va_to_pa va entry)
}

Note that this address translation contains no state change at all any more, apart from poten-
tially raising exceptions.

With this definition, we get the following theorem.

13

fc_mmu_translate

abs_mmu_translate

s

t t’

s’

incon_set s ⊆
incon_set t

va

va pa

pa

invariant: va ∉ incon_set t

incon_set s’ ⊆
incon_set t’

 Reasoning about Translation Lookaside Buffers Hira T. Syeda18

- No TLB lookup is required
- extend state with (ASID x 32 bit) instead of tlb

Completely Abstracted TLB

Reasoning about Translation Lookaside Bu↵ers Syeda Hira Taqdees and Gerwin Klein

Theorem 4. In saturated states, memory reads do not change the TLB.

mmu_read_sat (va, sz) s = (val, t) saturated s

tlb t = tlb s

Proof. By observing that memory reads do not change the state and that a saturated TLB
already contains all current page table entries.

A simple optimisation to this model would be to not update the TLB for every memory
write, but only for writes to the current page table structure or the page table root register. This
immediately produces a reduction result: if the current page table structure is not writeable,
and if the execution mode is unprivileged, i.e. the page table root register cannot be changed,
then we know that no memory transaction will change the saturated TLB state, and we can
therefore reason about a much simpler model without TLB and with fixed address translation.
This is what user-level execution expects: users should not need to worry about the presence
or absence of a TLB. The following theorem encapsulates the conditions for this reduction.

Theorem 5. Memory writes that do not change the page table content leave the saturated TLB
constant, preserving consistency and saturation.

mmu_write_sat (val, va, sz) s = ((), s’)
8 va. pt_walk (ASID s) (MEM s) (TTBR0 s) va = pt_walk (ASID s’) (MEM s’) (TTBR0 s’) va

consistent s v saturated s

tlb s’ = tlb s ^ consistent s’ v ^ saturated s’

Proof. The condition that all pt_walk outcomes remain the same after the memory write directly
implies that the range (pt_walk asid mem ttbr0) term in tlb_refill remains the same, and
since the TLB is already saturated, the TLB refill has no e↵ect.

In summary, reasoning about the TLB has become much more tractable in this model.
Inconsistency is reduced to internal inconsistency only, and non-determinism as well as unnec-
essary state change are removed. For a program logic on top of this model it would su�ce to
guarantee the absence of inconsistencies, and to treat page faults the same way a program logic
for standard address translation would, e.g. as in Kolanski’s work [10].

5.3 Essence

This leads us to the last refinement step, where we abstract the saturated TLBs to the extent
that no actual TLB lookup is required: the functionality of the TLB can be captured completely
by only keeping record of those virtual address/ASID pairs that are inconsistent in the TLB
with the current page table. It is then enough to perform address translation using the page
table only.

For this last abstraction, we extend the record type state not with tlb, but with incon_set

of type (asid ⇥ 32 word) set and instantiate mmu_translate of type class mmu to:

mmu_translate_set va = do {
(mem, asid, ttbr0, incon_set) read_state (MEM, ASID, TTBR0, incon_set);
if (asid, addr_val va) 2 incon_set then raise IMPLEMENTATION_DEFINED
else let entry = pt_walk asid mem ttbr0 va

in if is_fault entry then raise PAGE_FAULT else return (va_to_pa va entry)
}

Note that this address translation contains no state change at all any more, apart from poten-
tially raising exceptions.

With this definition, we get the following theorem.

13

📝
No state change at all, apart from
potentially raising exceptions

fc_mmu_translate

abs_mmu_translate

s

t t’

s’

incon_set s ⊆
incon_set t

va

va pa

pa

invariant: va ∉ incon_set t

incon_set s’ ⊆
incon_set t’

 Reasoning about Translation Lookaside Buffers Hira T. Syeda19

- TLB should be transparent to programs if maintained correctly

- Refinement chain

- Cached page table walks in ARMv7-A

- Abstraction
- hides low-level hardware TLB details
- easy to reason about
- reduction theorems

Taken Together

mmu_translate

abs_mmu_translate

noevict_mmu_translate

fc_mmu_translate

 Reasoning about Translation Lookaside Buffers Hira T. Syeda20

Future Direction

ARMv7

mmu_translate

abs_mmu_translate

Program Logic

 Reasoning about Translation Lookaside Buffers Hira T. Syeda21

Thank You

 Reasoning about Translation Lookaside Buffers Hira T. Syeda22

Caching Partial Walks

Reasoning about Translation Lookaside Bu↵ers Syeda Hira Taqdees and Gerwin Klein

Figure 5: Intermediate Translation Table Cache in ARM-style MMU

type synonym pdc = pde set

datatype pde = EntryPDE asid (12 word) (32 word option) flags

An EntryPDE provides the 32 bit physical address of the page directory entry for an ASID and a
virtual address. Analogously to the TLB lookup function lookup, we can define a PDC lookup
lookup_pdc (details omitted), with the return type:

datatype lookup_pdc_type = Miss_pde | Incon_pde | Hit_pde pde

For the base-level address translation function, we then instantiate mmu_translate as follows.

mmu_translate_part va = do {
update_state (�s. s(|tlb_pdc := tlb_pdc s - tlb_evict s|));
(asid, tlb, pdc) read_state (ASID, tlb_pdc);
case lookup tlb asid (addr_val va) of Miss) pdc_lookup_reload va
| Incon) raise IMPLEMENTATION_DEFINED
| Hit entry)

if is_fault entry then raise PAGE_FAULT
else return (va_to_pa va entry)

}

pdc_lookup_reload va = do {
(asid, tlb, pdc) read_state (ASID, tlb_pdc);
case lookup_pde pdc asid (addr_val va) of
Miss_pde) tlb_pdc_reload_trans va
| Incon_pde) raise IMPLEMENTATION_DEFINED
| Hit_pde pde) tlb_reload_trans pde va

}

After evicting an underspecified set of entries from the PDC and the TLB, the function
mmu_translate_part performs the TLB lookup. If the result is Hit or Incon, we proceed as
in the old model. If the result is Miss, we perform a PDC lookup and potential reload instead:
if lookup_pdc results in Hit_pde e, we use the function tlb_reload_trans to complete the partial
translation for address va from pde and store the result in the TLB. If the result is Miss_pde,
we use tlb_pdc_reload_trans to perform the full address translation, and reload both, PDC
and TLB. If the result was Incon_pde, the machine raises an unrecoverable exception and halts.
We omit the formal definitions of tlb_reload_trans and tlb_pdc_reload_trans here for space
reasons; they are analogous to the simpler model with just one TLB.

16

 Reasoning about Translation Lookaside Buffers Hira T. Syeda22

- Hardware caching of partial page table walks
- ARMv7-A

Caching Partial Walks

Reasoning about Translation Lookaside Bu↵ers Syeda Hira Taqdees and Gerwin Klein

Figure 5: Intermediate Translation Table Cache in ARM-style MMU

type synonym pdc = pde set

datatype pde = EntryPDE asid (12 word) (32 word option) flags

An EntryPDE provides the 32 bit physical address of the page directory entry for an ASID and a
virtual address. Analogously to the TLB lookup function lookup, we can define a PDC lookup
lookup_pdc (details omitted), with the return type:

datatype lookup_pdc_type = Miss_pde | Incon_pde | Hit_pde pde

For the base-level address translation function, we then instantiate mmu_translate as follows.

mmu_translate_part va = do {
update_state (�s. s(|tlb_pdc := tlb_pdc s - tlb_evict s|));
(asid, tlb, pdc) read_state (ASID, tlb_pdc);
case lookup tlb asid (addr_val va) of Miss) pdc_lookup_reload va
| Incon) raise IMPLEMENTATION_DEFINED
| Hit entry)

if is_fault entry then raise PAGE_FAULT
else return (va_to_pa va entry)

}

pdc_lookup_reload va = do {
(asid, tlb, pdc) read_state (ASID, tlb_pdc);
case lookup_pde pdc asid (addr_val va) of
Miss_pde) tlb_pdc_reload_trans va
| Incon_pde) raise IMPLEMENTATION_DEFINED
| Hit_pde pde) tlb_reload_trans pde va

}

After evicting an underspecified set of entries from the PDC and the TLB, the function
mmu_translate_part performs the TLB lookup. If the result is Hit or Incon, we proceed as
in the old model. If the result is Miss, we perform a PDC lookup and potential reload instead:
if lookup_pdc results in Hit_pde e, we use the function tlb_reload_trans to complete the partial
translation for address va from pde and store the result in the TLB. If the result is Miss_pde,
we use tlb_pdc_reload_trans to perform the full address translation, and reload both, PDC
and TLB. If the result was Incon_pde, the machine raises an unrecoverable exception and halts.
We omit the formal definitions of tlb_reload_trans and tlb_pdc_reload_trans here for space
reasons; they are analogous to the simpler model with just one TLB.

16

 Reasoning about Translation Lookaside Buffers Hira T. Syeda22

- Hardware caching of partial page table walks
- ARMv7-A

Caching Partial Walks

Reasoning about Translation Lookaside Bu↵ers Syeda Hira Taqdees and Gerwin Klein

Figure 5: Intermediate Translation Table Cache in ARM-style MMU

type synonym pdc = pde set

datatype pde = EntryPDE asid (12 word) (32 word option) flags

An EntryPDE provides the 32 bit physical address of the page directory entry for an ASID and a
virtual address. Analogously to the TLB lookup function lookup, we can define a PDC lookup
lookup_pdc (details omitted), with the return type:

datatype lookup_pdc_type = Miss_pde | Incon_pde | Hit_pde pde

For the base-level address translation function, we then instantiate mmu_translate as follows.

mmu_translate_part va = do {
update_state (�s. s(|tlb_pdc := tlb_pdc s - tlb_evict s|));
(asid, tlb, pdc) read_state (ASID, tlb_pdc);
case lookup tlb asid (addr_val va) of Miss) pdc_lookup_reload va
| Incon) raise IMPLEMENTATION_DEFINED
| Hit entry)

if is_fault entry then raise PAGE_FAULT
else return (va_to_pa va entry)

}

pdc_lookup_reload va = do {
(asid, tlb, pdc) read_state (ASID, tlb_pdc);
case lookup_pde pdc asid (addr_val va) of
Miss_pde) tlb_pdc_reload_trans va
| Incon_pde) raise IMPLEMENTATION_DEFINED
| Hit_pde pde) tlb_reload_trans pde va

}

After evicting an underspecified set of entries from the PDC and the TLB, the function
mmu_translate_part performs the TLB lookup. If the result is Hit or Incon, we proceed as
in the old model. If the result is Miss, we perform a PDC lookup and potential reload instead:
if lookup_pdc results in Hit_pde e, we use the function tlb_reload_trans to complete the partial
translation for address va from pde and store the result in the TLB. If the result is Miss_pde,
we use tlb_pdc_reload_trans to perform the full address translation, and reload both, PDC
and TLB. If the result was Incon_pde, the machine raises an unrecoverable exception and halts.
We omit the formal definitions of tlb_reload_trans and tlb_pdc_reload_trans here for space
reasons; they are analogous to the simpler model with just one TLB.

16

 Reasoning about Translation Lookaside Buffers Hira T. Syeda22

- Hardware caching of partial page table walks
- ARMv7-A

- State extension
- TLB and PDC

Caching Partial Walks

Reasoning about Translation Lookaside Bu↵ers Syeda Hira Taqdees and Gerwin Klein

Figure 5: Intermediate Translation Table Cache in ARM-style MMU

type synonym pdc = pde set

datatype pde = EntryPDE asid (12 word) (32 word option) flags

An EntryPDE provides the 32 bit physical address of the page directory entry for an ASID and a
virtual address. Analogously to the TLB lookup function lookup, we can define a PDC lookup
lookup_pdc (details omitted), with the return type:

datatype lookup_pdc_type = Miss_pde | Incon_pde | Hit_pde pde

For the base-level address translation function, we then instantiate mmu_translate as follows.

mmu_translate_part va = do {
update_state (�s. s(|tlb_pdc := tlb_pdc s - tlb_evict s|));
(asid, tlb, pdc) read_state (ASID, tlb_pdc);
case lookup tlb asid (addr_val va) of Miss) pdc_lookup_reload va
| Incon) raise IMPLEMENTATION_DEFINED
| Hit entry)

if is_fault entry then raise PAGE_FAULT
else return (va_to_pa va entry)

}

pdc_lookup_reload va = do {
(asid, tlb, pdc) read_state (ASID, tlb_pdc);
case lookup_pde pdc asid (addr_val va) of
Miss_pde) tlb_pdc_reload_trans va
| Incon_pde) raise IMPLEMENTATION_DEFINED
| Hit_pde pde) tlb_reload_trans pde va

}

After evicting an underspecified set of entries from the PDC and the TLB, the function
mmu_translate_part performs the TLB lookup. If the result is Hit or Incon, we proceed as
in the old model. If the result is Miss, we perform a PDC lookup and potential reload instead:
if lookup_pdc results in Hit_pde e, we use the function tlb_reload_trans to complete the partial
translation for address va from pde and store the result in the TLB. If the result is Miss_pde,
we use tlb_pdc_reload_trans to perform the full address translation, and reload both, PDC
and TLB. If the result was Incon_pde, the machine raises an unrecoverable exception and halts.
We omit the formal definitions of tlb_reload_trans and tlb_pdc_reload_trans here for space
reasons; they are analogous to the simpler model with just one TLB.

16

 Reasoning about Translation Lookaside Buffers Hira T. Syeda22

- Hardware caching of partial page table walks
- ARMv7-A

- State extension
- TLB and PDC

Caching Partial Walks

Reasoning about Translation Lookaside Bu↵ers Syeda Hira Taqdees and Gerwin Klein

Figure 5: Intermediate Translation Table Cache in ARM-style MMU

type synonym pdc = pde set

datatype pde = EntryPDE asid (12 word) (32 word option) flags

An EntryPDE provides the 32 bit physical address of the page directory entry for an ASID and a
virtual address. Analogously to the TLB lookup function lookup, we can define a PDC lookup
lookup_pdc (details omitted), with the return type:

datatype lookup_pdc_type = Miss_pde | Incon_pde | Hit_pde pde

For the base-level address translation function, we then instantiate mmu_translate as follows.

mmu_translate_part va = do {
update_state (�s. s(|tlb_pdc := tlb_pdc s - tlb_evict s|));
(asid, tlb, pdc) read_state (ASID, tlb_pdc);
case lookup tlb asid (addr_val va) of Miss) pdc_lookup_reload va
| Incon) raise IMPLEMENTATION_DEFINED
| Hit entry)

if is_fault entry then raise PAGE_FAULT
else return (va_to_pa va entry)

}

pdc_lookup_reload va = do {
(asid, tlb, pdc) read_state (ASID, tlb_pdc);
case lookup_pde pdc asid (addr_val va) of
Miss_pde) tlb_pdc_reload_trans va
| Incon_pde) raise IMPLEMENTATION_DEFINED
| Hit_pde pde) tlb_reload_trans pde va

}

After evicting an underspecified set of entries from the PDC and the TLB, the function
mmu_translate_part performs the TLB lookup. If the result is Hit or Incon, we proceed as
in the old model. If the result is Miss, we perform a PDC lookup and potential reload instead:
if lookup_pdc results in Hit_pde e, we use the function tlb_reload_trans to complete the partial
translation for address va from pde and store the result in the TLB. If the result is Miss_pde,
we use tlb_pdc_reload_trans to perform the full address translation, and reload both, PDC
and TLB. If the result was Incon_pde, the machine raises an unrecoverable exception and halts.
We omit the formal definitions of tlb_reload_trans and tlb_pdc_reload_trans here for space
reasons; they are analogous to the simpler model with just one TLB.

16

 Reasoning about Translation Lookaside Buffers Hira T. Syeda22

- Hardware caching of partial page table walks
- ARMv7-A

- State extension
- TLB and PDC

- MMU functions
- concrete, saturated

Caching Partial Walks

Reasoning about Translation Lookaside Bu↵ers Syeda Hira Taqdees and Gerwin Klein

Figure 5: Intermediate Translation Table Cache in ARM-style MMU

type synonym pdc = pde set

datatype pde = EntryPDE asid (12 word) (32 word option) flags

An EntryPDE provides the 32 bit physical address of the page directory entry for an ASID and a
virtual address. Analogously to the TLB lookup function lookup, we can define a PDC lookup
lookup_pdc (details omitted), with the return type:

datatype lookup_pdc_type = Miss_pde | Incon_pde | Hit_pde pde

For the base-level address translation function, we then instantiate mmu_translate as follows.

mmu_translate_part va = do {
update_state (�s. s(|tlb_pdc := tlb_pdc s - tlb_evict s|));
(asid, tlb, pdc) read_state (ASID, tlb_pdc);
case lookup tlb asid (addr_val va) of Miss) pdc_lookup_reload va
| Incon) raise IMPLEMENTATION_DEFINED
| Hit entry)

if is_fault entry then raise PAGE_FAULT
else return (va_to_pa va entry)

}

pdc_lookup_reload va = do {
(asid, tlb, pdc) read_state (ASID, tlb_pdc);
case lookup_pde pdc asid (addr_val va) of
Miss_pde) tlb_pdc_reload_trans va
| Incon_pde) raise IMPLEMENTATION_DEFINED
| Hit_pde pde) tlb_reload_trans pde va

}

After evicting an underspecified set of entries from the PDC and the TLB, the function
mmu_translate_part performs the TLB lookup. If the result is Hit or Incon, we proceed as
in the old model. If the result is Miss, we perform a PDC lookup and potential reload instead:
if lookup_pdc results in Hit_pde e, we use the function tlb_reload_trans to complete the partial
translation for address va from pde and store the result in the TLB. If the result is Miss_pde,
we use tlb_pdc_reload_trans to perform the full address translation, and reload both, PDC
and TLB. If the result was Incon_pde, the machine raises an unrecoverable exception and halts.
We omit the formal definitions of tlb_reload_trans and tlb_pdc_reload_trans here for space
reasons; they are analogous to the simpler model with just one TLB.

16

 Reasoning about Translation Lookaside Buffers Hira T. Syeda22

- Hardware caching of partial page table walks
- ARMv7-A

- State extension
- TLB and PDC

- MMU functions
- concrete, saturated

Caching Partial Walks

Reasoning about Translation Lookaside Bu↵ers Syeda Hira Taqdees and Gerwin Klein

Figure 5: Intermediate Translation Table Cache in ARM-style MMU

type synonym pdc = pde set

datatype pde = EntryPDE asid (12 word) (32 word option) flags

An EntryPDE provides the 32 bit physical address of the page directory entry for an ASID and a
virtual address. Analogously to the TLB lookup function lookup, we can define a PDC lookup
lookup_pdc (details omitted), with the return type:

datatype lookup_pdc_type = Miss_pde | Incon_pde | Hit_pde pde

For the base-level address translation function, we then instantiate mmu_translate as follows.

mmu_translate_part va = do {
update_state (�s. s(|tlb_pdc := tlb_pdc s - tlb_evict s|));
(asid, tlb, pdc) read_state (ASID, tlb_pdc);
case lookup tlb asid (addr_val va) of Miss) pdc_lookup_reload va
| Incon) raise IMPLEMENTATION_DEFINED
| Hit entry)

if is_fault entry then raise PAGE_FAULT
else return (va_to_pa va entry)

}

pdc_lookup_reload va = do {
(asid, tlb, pdc) read_state (ASID, tlb_pdc);
case lookup_pde pdc asid (addr_val va) of
Miss_pde) tlb_pdc_reload_trans va
| Incon_pde) raise IMPLEMENTATION_DEFINED
| Hit_pde pde) tlb_reload_trans pde va

}

After evicting an underspecified set of entries from the PDC and the TLB, the function
mmu_translate_part performs the TLB lookup. If the result is Hit or Incon, we proceed as
in the old model. If the result is Miss, we perform a PDC lookup and potential reload instead:
if lookup_pdc results in Hit_pde e, we use the function tlb_reload_trans to complete the partial
translation for address va from pde and store the result in the TLB. If the result is Miss_pde,
we use tlb_pdc_reload_trans to perform the full address translation, and reload both, PDC
and TLB. If the result was Incon_pde, the machine raises an unrecoverable exception and halts.
We omit the formal definitions of tlb_reload_trans and tlb_pdc_reload_trans here for space
reasons; they are analogous to the simpler model with just one TLB.

16

 Reasoning about Translation Lookaside Buffers Hira T. Syeda22

- Hardware caching of partial page table walks
- ARMv7-A

- State extension
- TLB and PDC

- MMU functions
- concrete, saturated

- Saturation
- Cache hierarchy
- Step-wise refinement to fully abstract PDC and TLB

Caching Partial Walks

Reasoning about Translation Lookaside Bu↵ers Syeda Hira Taqdees and Gerwin Klein

Figure 5: Intermediate Translation Table Cache in ARM-style MMU

type synonym pdc = pde set

datatype pde = EntryPDE asid (12 word) (32 word option) flags

An EntryPDE provides the 32 bit physical address of the page directory entry for an ASID and a
virtual address. Analogously to the TLB lookup function lookup, we can define a PDC lookup
lookup_pdc (details omitted), with the return type:

datatype lookup_pdc_type = Miss_pde | Incon_pde | Hit_pde pde

For the base-level address translation function, we then instantiate mmu_translate as follows.

mmu_translate_part va = do {
update_state (�s. s(|tlb_pdc := tlb_pdc s - tlb_evict s|));
(asid, tlb, pdc) read_state (ASID, tlb_pdc);
case lookup tlb asid (addr_val va) of Miss) pdc_lookup_reload va
| Incon) raise IMPLEMENTATION_DEFINED
| Hit entry)

if is_fault entry then raise PAGE_FAULT
else return (va_to_pa va entry)

}

pdc_lookup_reload va = do {
(asid, tlb, pdc) read_state (ASID, tlb_pdc);
case lookup_pde pdc asid (addr_val va) of
Miss_pde) tlb_pdc_reload_trans va
| Incon_pde) raise IMPLEMENTATION_DEFINED
| Hit_pde pde) tlb_reload_trans pde va

}

After evicting an underspecified set of entries from the PDC and the TLB, the function
mmu_translate_part performs the TLB lookup. If the result is Hit or Incon, we proceed as
in the old model. If the result is Miss, we perform a PDC lookup and potential reload instead:
if lookup_pdc results in Hit_pde e, we use the function tlb_reload_trans to complete the partial
translation for address va from pde and store the result in the TLB. If the result is Miss_pde,
we use tlb_pdc_reload_trans to perform the full address translation, and reload both, PDC
and TLB. If the result was Incon_pde, the machine raises an unrecoverable exception and halts.
We omit the formal definitions of tlb_reload_trans and tlb_pdc_reload_trans here for space
reasons; they are analogous to the simpler model with just one TLB.

16

