Formalization of Laplace Transform using the Multivariable Calculus Theory of HOL-Light

Hira Taqdees and Osman Hasan

System Analysis & Verification (SAVe) Lab, National University of Sciences and Technology (NUST), Islamabad, Pakistan

LPAR-19 Stellenbosch, South Africa December 15, 2013

Outline

Introduction

Motivation

Formalization Details

Case Study
 Linear Transfer Converter (LTC) circuit

Conclusions

Laplace Transform

□ Integral transform method □ Pierre Simon Laplace 1749-1827

Mathematically represented by the following improper integral

$$F(s) = \int_0^\infty f(t)e^{-st}dt, \ s \in \mathbb{C}$$

A linear operator

□ Input: Time varying function, i.e., a function f(t) with a real argument $t(t \ge 0)$

Output: *F*(*s*) with complex argument *s*

Laplace Transform -Key Benefits and Utilizations

Solve linear Ordinary Differential Equations (ODEs) using simple algebraic techniques

 Obtain concise and useful input/output relationships (Transfer Functions) for systems
 Widely used in Control System and Analog Circuit Design

Laplace Transform - Example

$$\frac{d^2y(t)}{dt^2} + 4y(t) = x(t)$$

$$\mathcal{L}\left(\frac{d^2y}{dt^2} + 4y(t)\right)s = \mathcal{L}x(t)s \quad \text{Taking Laplace Transform on Both sides}$$

$$s^2(\mathcal{L}y(t)s) + 4(\mathcal{L}y(t)s) = (\mathcal{L}x(t)s) \quad \begin{array}{l} \text{Using the Laplace of a} \\ \text{differential and the Linearity of} \\ \text{Laplace Properties} \end{array}$$

$$\frac{(\mathcal{L}y(t)s)}{(\mathcal{L}x(t)s)} = \frac{1}{s^2 + 4} \quad \begin{array}{l} \text{Transfer Function} \\ \text{Integration} \\ \text{Integration} \\ \text{Integration} \\ \text{Transfer Function} \\ \text{Integration} \\ \mathcal{L}y(t)s = \frac{2}{(s^2 + 4)^2} \quad \begin{array}{l} \text{Integration} \\ \text{Integration} \\ \text{Transfer Laplace} \\ y(t) = \frac{1}{8}sin(2t) - \frac{t}{4}cos(2t) \\ \text{Solution in time domain} \\ \end{array}$$

Real-World Applications for Laplace Transforms

Integral part of analyzing many physical systems

Aerodynamic systems
Circuit Analysis
Control systems
Mechanical networks
Analogue filters

Laplace Transform based Analysis

Criteria	Paper- and- Pencil Proof	Simulation/ Symbolic Methods	Automated Formal Methods (MC, ATP)	Computer Algebra Systems	Higher-order- logic Proof Assistants
Expressiveness			×		
Accuracy		X		×	
Automation	×				

 $\mathbf{Y} \rightarrow \mathbf{V}$

Proposed Approach for Verifying Transfer Functions

Formal Definition of Laplace Transform

Mathematical definition

$$F(s) = \int_0^\infty f(t)e^{-st}dt, \ s \in \mathbb{C} \implies F(s) = \lim_{b \to \infty} \int_0^b f(t)e^{-st}dt$$

Given f is piecewise smooth and is of exponential order i.e. there exist constants $\alpha \in \mathbb{R}$ and 0 < M such that $|f(t)| \leq Me^{\alpha t}$ for all $t \geq 0$

Definition : Laplace Transform

⊢ ∀ s f. laplace f s =
lim at_posinfinity (λb. integral (interval [lift(&0),lift(b)])
(λt. cexp (-(s * Cx(drop t))) * f t))

Definition : Conditions for Laplace Existence

 \vdash \forall s f. laplace_exists f s \Leftrightarrow

(∀ b. f piecewise_differentiable_on interval [lift (&0),lift b])

 \wedge (\exists M a. Re s > drop a \wedge exp_order f M a)

Formalized Laplace Transform Properties

Property	Mathematical Form
Limit Existence	$\exists l. \int_0^\infty f(t) e^{-st} dt = l$
Linearity	$\mathcal{L}\left(lpha f(t) + eta g(t) ight)s = lpha(\mathcal{L}f(t)s) + eta(\mathcal{L}g(t)s)$
Frequency Shifting	$\mathcal{L}\left(e^{bt}f(t) ight)s = \mathcal{L}\left(f(t)(s-b) ight)$

Property	Formalized Form		
Limit Existence	$\begin{array}{l} \vdash \forall \ \texttt{f s. laplace_exists f s \Rightarrow} \\ (\exists \texttt{l. } ((\lambda\texttt{b. integral (interval [lift (\&0), \texttt{lift b]})} \\ (\lambda\texttt{t. cexp (-(s * Cx (drop t))) * f t)) \rightarrow \texttt{l}) \ \texttt{at_posinfinity}) \end{array}$		
Linearity	$\vdash \forall f g s a b. laplace_exists f s \land laplace_exists g s \Rightarrow$ laplace (λx . a * f x + b * g x) s = a * laplace f s + b * laplace g s		
Frequency Shifting	$\vdash \forall f s b. laplace_exists f s \Rightarrow$ laplace (λ t. cexp (b * Cx (drop t)) * f t) s = laplace f (s - b)		

Formalized Laplace Transform Properties

Property	Mathematical Form	
Integration	$\mathcal{L}ig(\int_0^t f(au) d auig) s \ = \ rac{1}{s} (\mathcal{L} f(t) s)$	
n-order Differentiation	$\mathcal{L}(\frac{d^n f(t)}{dx^n})s = s^n(\mathcal{L}f(t)s) - \sum_{k=1}^n s^{k-1}$	$\frac{d^{n-k}f(0)}{dx^{n-k}}$

Property	Formalized Form		
Integration	<pre>⊢ ∀ f s. (&0 < Re s) ∧ laplace_exists f s ∧ laplace_exists (λx. integral (interval [lift (&0),x]) f) s ∧ (∀x. f continuous_on interval [lift (&0),x]) ⇒ laplace (λx. integral (interval [lift (&0),x]) f) s = inv(s) * laplace f s</pre>		
Higher Order Differentiation	<pre>⊢ ∀ f s n. laplace_exists_higher_derivative n f s ∧ (∀x. higher_derivative_differentiable n f x) ⇒ laplace (λx. higher_order_derivative n f x) s = s pow n * laplace f s - vsum (1n) (λx. s pow (x-1) * higher_order_derivative (n-x) f (lift (&0)))</pre>		

5000 lines of HOL-Light code and approximately 800 man-hours

Case Study: Linear Transfer Converter (LTC) circuit

Converts the voltage and current levels in power electronics systems

Functional correctness of power systems depends on design and stability of LTC

Linear Transfer Converter (LTC) circuit

Differential Equation:

$$\frac{d^2y}{dt^2} - \frac{2}{RC}\frac{dy}{dt} + \frac{1}{LC}y = \frac{d^2u}{dt^2} - \frac{1}{LC}u$$

Definition : Differential Equation of LTC

 $\vdash \forall y u x L C R. diff_eq_LTC y u x L C R \Leftrightarrow$ diff_eq 2 [Cx (&1 / L * C); --Cx (&2 / R * C); Cx (&1)] y x = diff_eq 2 [--Cx (&1 / L * C); Cx (&0); Cx (&1)] u x

Definition : Differential Equation

 $\vdash \forall n \ L f \ x. \ diff_eq n \ L f \ x \Leftrightarrow$ vsum (0..n) (λ t. EL t L x * higher_order_derivative t f x)

Linear Transfer Converter (LTC)

650 lines of HOL-Light code and the proof process took just a couple of hours

Formalization of Laplace transform theory using higher-order logic Multivariable Calculus Theory of HOL-Light

Advantages

- □Accurate Results
- Reduction in user-effort while formally analyzing Physical Systems that involve Differential Equations

Case Study: Transfer function verification of LTC circuit

Future Directions

Application of Laplace transform theory in Analog and Mixed Signal circuits and controls engineering

□ Formalization of Inverse Laplace transform

□ Formalization of Fourier transform

Thanks!

□ For More Information

- □Visit our website
 - http://save.seecs.nust.edu.pk
- Contact
 - osman.hasan@seecs.nust.edu.pk

Additional slides

Formalized Laplace Transform

Definition 3: Exponential Order Function

 \vdash \forall f M a. exp_order f M a \Leftrightarrow &O < M \land

(\forall t. &O \leq t \Rightarrow norm (f (lift t)) \leq M * exp (drop a * t))

Laplace Transform

Provides compact representation of the overall behavior of the given time varying function

s-plane representation depicts frequency and phase of sinusoidal signal

HOL-Light

Multivariable calculus theories

- Integral theory
- Differential theory
- □ Transcendental theory
- □Topological theory
- Complex analysis theory

Real number theory

Natural number theory

21

O. Hasan

Formalization of Laplace Transform using HOL-Light