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Abstract. Algebraic techniques based on Laplace transform are widely
used for solving differential equations and evaluating transfer of sig-
nals while analyzing physical aspects of many safety-critical systems.
To facilitate formal analysis of these systems, we present the formal-
ization of Laplace transform using the multivariable calculus theories
of HOL-Light. In particular, we use integral, differential, transcenden-
tal and topological theories of multivariable calculus to formally define
Laplace transform in higher-order logic and reason about the correctness
of Laplace transform properties, such as existence, linearity, frequency
shifting and differentiation and integration in time domain. In order to
demonstrate the practical effectiveness of this formalization, we use it to
formally verify the transfer function of Linear Transfer Converter (LTC)
circuit, which is a commonly used electrical circuit.

1 Introduction

Laplace transform [12] is an integral transform method that is used to con-
vert the time varying functions to their corresponding s-domain representations,
where s represents the angular frequency [1]. This transformation provides a
very compact representation of the overall behavior of the given time varying
function and is frequently used for analyzing systems that exhibit a determin-
istic relationship between continuously changing quantities and their rates of
change. Laplace transform theory allows us to solve linear Ordinary Differential
Equations (ODEs) [19] using simple algebraic techniques since the transforma-
tion allows us to convert the integration and differentiation functions from the
time-domain to multiplication and division functions in the s-domain. Moreover,
the s-domain representations of ODEs are also used for transfer function analysis
of the corresponding systems. Due to these unique features, Laplace transform
theory has been an integral part of engineering and physical system analysis
and is widely used in the design and analysis of electrical networks, control sys-
tems, communication systems, optical systems, analogue filters and mechanical
networks.



Mathematically, Laplace transform is a complex function defined for a func-
tion f , which can be either real or complex-valued, as follows

F (s) =

∫ ∞
0

f(t)e−stdt, s ∈ C (1)

The first step in analyzing differential equations using Laplace transform is to
take the Laplace transform of the given equation on both sides. Next, the cor-
responding s-domain equation is simplified using various properties of Laplace
transform, such as existence, linearity, Laplace of a differential and Laplace of an
integral. The objective is to either solve the differential equation to obtain values
for the variable s or obtain the transfer function of the system corresponding to
the given differential equation.

Traditionally, the above mentioned Laplace transform based analysis is per-
formed using computer based numerical techniques or symbolic methods. How-
ever, both of these techniques cannot guarantee accurate analysis. Numerical
methods cannot ascertain an accurate value of the improper integral of Equa-
tion (1) as there is always a limited number of iterations allowed depending on
the available memory and computation resources. The round-off errors due to the
usage of computer arithmetics also introduce some inaccuracies in the results.
Symbolic methods, provided by Symbolic Math Toolbox of Matlab and other
computer algebra systems like Maple and Mathematica, are based on algorithms
that consider the improper integral of Equation (1) as the continuous analog of
the power series, i.e., the integral is discretized to summation and the complex
exponentials are sampled. Moreover, the presence of huge symbolic manipulation
algorithms, which are usually unverified, in the core of computer algebra systems
also makes the accuracy of their analysis results questionable. For-instance, in the
fields of control systems and electrical engineering, techniques involving Laplace
transform analysis are being proposed and tested by using the Matlab and Maple
Laplace transform libraries [3, 16], that make them prone to inaccuracy approxi-
mation errors. Therefore, these traditional techniques should not be relied upon
for the analysis of systems using the Laplace transform method, especially when
they are used in safety-critical areas, such as medicine and transportation, where
inaccuracies in the analysis could result in system design bugs that in turn may
even lead to the loss of human lives in worst cases.

To overcome the above mentioned inaccuracy limitations, we propose to per-
form the Laplace transform based analysis using a higher-order-logic theorem
prover. The main idea is to leverage upon the high expressiveness of higher-
order logic to formalize Equation (1) and use it to verify the classical properties
of Laplace transform within a theorem prover. These foundations can be built
upon to reason about the exact solution of a differential equation or its transfer
function within the sound core of a theorem prover. In particular, the paper
presents the formal verification of existence, linearity and scaling properties of
Laplace transform. It also presents the formal verification of the Laplace trans-
forms of an arbitrary order differential and integral functions. The main advan-
tage of these results is that they greatly minimize the user intervention for formal
reasoning about the correctness of many properties of physical systems. In order



to illustrate the practical effectiveness and utilization of this formalization, we
use it to verify the transfer function of a Linear Transfer Converter (LTC) circuit,
which is commonly used analog circuit. Formal verification of analog circuits is
of utmost importance [8]. However, to the best of our knowledge, all the existing
formal verification approaches work with abstracted discretized models of ana-
log circuits (e.g., [4],[2]). This is mainly because of the inability to model and
analyze the properties of differential equations in their true continuous form by
the existing formal methods. The formalization of Laplace transform, presented
in this paper, overcomes this limitation and we have been able to formally verify
the transfer function of the LTC circuit using its differential equation.

The work described in this paper is done using the HOL-Light theorem prover
[6], which supports formal reasoning about higher-order logic. The main moti-
vation behind this choice is the availability of reasoning support about multi-
variable integral, differential, transcendental and topological theories [7], which
are the foremost foundations required for the formalization of Laplace transform
theory.

The rest of the paper is organized as follows: We provide a brief introduc-
tion about the multivariable calculus theories of HOL-Light in Section 2. The
formalization of the Laplace transform function is provided in Section 3. We
utilize this formalization to formally verify the classical properties of Laplace
transform in Section 4. The formal verification of the LTC circuit is given in
Section 5. Finally, Section 6 concludes the paper.

2 Multivariable Calculus Theories in HOL-Light

HOL-Light is a higher-order-logic theorem prover that belongs to the HOL fam-
ily of theorem provers. Its unique features include an efficient set of inference
rules and the usage of Objective CAML (OCaml) language [6], which is a variant
of the strongly-typed functional programming language ML [11], for its develop-
ment and interaction. HOL-Light provides formal reasoning support for many
mathematical theories, including sets, natural numbers, real analysis, complex
analysis and vector calculus, and has been particularly successful in verifying
many challenging mathematical theorems. The main motivation behind choos-
ing HOL-Light for the formalization of Laplace transform theory in this paper
is the availability of a rich set of formalized multivariable calculus theories on
the Euclidean space [7].

In HOL-Light, a n-dimensional vector is represented as a Rn column ma-
trix with individual elements as real numbers. All of the vector operations are
then handled as matrix manipulations. This way, complex numbers can be repre-
sented by the data-type R2, i.e, a column matrix having two elements. Similarly,
pure real numbers can be represented by two different data-types, i.e., by a 1-
dimensional vector R1 or a number on the real line R. All the vector algebraic
theorems have been formally verified using HOL-Light for arbitrary functions
with a flexible data-type Rn → Rm. For the formalization of Laplace trans-



form, we have utilized several vector algebraic theorems for complex functions
(R2 → R2) and complex-valued functions (R1 → R2).

In order to facilitate the understanding of the rest of the paper, some of the
frequently used functions of the HOL-Light Multivariable calculus libraries [7]
are described below:

Definition 1: Cx

` ∀ a. Cx a = complex(a,&0)

The function Cx accepts a real number and return its corresponding complex
number with the imaginary part as zero. It uses the function complex, which
accepts a pair of real numbers and returns the corresponding complex number
such that the real part of the complex number is equal to the first element of the
given pair and the imaginary part of the complex number is the second element
of the given pair. The operator & maps a natural number to its corresponding
real number.

Definition 2: Re and Im

` ∀ z. Re z = z$1

` ∀ z. Im z = z$2

The functions Re and Im accept a complex number and return its real and
imaginary parts, respectively. The notation z$n represents the nth component
of a vector z.

Definition 3: drop and lift

` ∀ x. drop x = x$1

` ∀ x. lift x = (lambda i. x)

The function drop accepts a 1-dimensional vector and returns its single compo-
nent as a real number. The function lift maps a real number to a 1-dimensional
vector with its single component equal to the given real number.

Definition 4: Exponential Functions

` ∀ x. exp x = Re(cexp (Cx x))

The functions exp and cexp represent the real and complex exponential functions
in HOL-Light with data-types R→ R and R2 → R2, respectively.

Definition 5: Limit of a function

` ∀ f net. lim net f = (@l. (f→l) net)

The function lim is defined using the Hilbert choice operator @ in the functional
form. It accepts a net with elements of arbitrary data-type A and a function f ,
of data-type A → Rm, and returns l : Rm, i.e., the value to which f converges
at the given net. To formalize the improper integral of Equation (1), we will use
the at posinfinity, which models positive infinity, as our net,



Definition 6: Integral

` ∀ f i. integral i f = (@y.(f has integral y) i)

` ∀ f i. real integral i f = (@y.(f has real integral y) i)

The function integral accepts an integrand function f : Rn → Rm and a
vector-space i : Rn → B, which defines the region of integration. Here, B repre-
sents boolean data-type. It returns a vector of data-type Rm, which represents
the integral of f over i. The function has integral defines the same relationship
in the relational form. In a similar way, the function real integral represents
the integral of a function f : R → R, over a set of real numbers i : R → B.
The regions of integration, for both of the above integrals, can be defined to
be bounded by a vector interval [a, b] or real interval [a, b] using the HOL-Light
functions interval [a,b] and real interval [a,b], respectively.

Definition 7: Derivative

` ∀ f net. vector derivative f net =

(@f’.(f has vector derivative f’) net)

The function vector derivative accepts a function f : R1 → Rm, which needs
to be differentiated, and a net of data-type R1 → B, that defines the point at
which f has to be differentiated. It returns a vector of data-type Rm, which
represents the differential of f at net. The function has vector derivative

defines the same relationship in the relational form.
We will build upon the above mentioned foundational definitions to formalize

the Laplace transform function in the next section.

3 Formalization of Laplace Transform

Based on the theory of improper integrals [18], Equation (1) can be alternatively
expressed as follows:

F (s) = lim
b→∞

∫ b

0

f(t)e−stdt (2)

This definition holds under the conditions that the integral

f(b) =

∫ b

0

f(t)e−stdt (3)

exists for every b > 0 and the limit also exists as b approaches positive infinity.
Now, the Laplace transform function can be formalized in HOL-Light as

follows:

Definition 8: Laplace Transform

` ∀ s f. laplace f s =

lim at posinfinity (λb. integral (interval [lift(&0),lift(b)])

(λt. cexp (-(s * Cx(drop t))) * f t))



The function laplace accepts a complex number s and a complex-valued func-
tion f : R1 → R2. It returns a complex number that represents the laplace
transform of f according to Equation (2). The complex exponential function
cexp: R2 → R2 is used in this definition because the data-type for f(t) is R2.
Similarly, in order to multiply variable t : R1 with the complex number s, it is
first converted to R by using the function drop and then converted to data-type
R2 by using Cx. Then, we use the vector integration function integral to inte-
grate the expression f(t)e−st over the interval [0, b] since the return type of this
expression is R2. The limit of the upper interval b of this integral is then taken
at positive infinity using the lim function with the at posinfinity net. Based
on the definition of at posinfinity, the variable b must have a data-type R.
However, the region of integration of the vector integral function must be a vec-
tor space. Therefore, for data-type consistency, we lift the value 0 and variable
b in the interval of the integral to the data-type R1 using the function lift.

The Laplace transform of a function f exists, i.e., the integral of Equation (3)
is integrable and the limit of Equation (2) is convergent, if f is piecewise smooth
and of exponential order on the positive real axis [1]. A function is said to be
piecewise smooth on an interval if it is piecewise differentiable on that interval.
Similarly, a causal function f : R → C is of exponential order if there exist
constants α ∈ R and M>0 such that |f(t)| ≤ Meαt for all t ≥ 0. We formalize
the Laplace transform existence conditions in HOL-Light as follows:

Definition 9: Laplace Exists

` ∀ s f. laplace exists f s ⇔
(∀ b. f piecewise differentiable on interval [lift (&0),lift b] )

∧ (∃ M a. Re s > drop a ∧ exp order f M a)

The first conjunct in the above predicate ensures that f is piecewise differentiable
on the positive real axis. The second conjunct expresses the exponential order
condition of f for α < Re s using the following predicate:

Definition 10: Exponential Order Function

` ∀ f M a. exp order f M a ⇔ &0 < M ∧
(∀ t. &0 ≤ t ⇒ norm (f (lift t)) ≤ M * exp (drop a * t))

The function exp order accepts a function f : R1 → R2, a real number M
and a complex number s and returns a True if M is positive and f is bounded
by Meat for all 0 < t.

4 Formal Verification of Laplace Transform Properties

In this section, we use Definition 8 to verify some of the classical properties
of Laplace transform in HOL-Light. The formal verification of these properties
not only ensures the correctness of our definition but also plays a vital role in
minimizing the user intervention in reasoning about Laplace transform based
analysis of systems, as will be depicted in Section 5 of this paper.



4.1 Limit Existence of the Improper Integral

According to the limit existence of the improper integral of Laplace transform
property, if the given function f : R→ C fulfills the conditions for the existence
of its Laplace transform, i.e., it is of exponential order and piecewise smooth,
then there will certainly exists a complex number l, to which the complex-valued
integral of Equation (3) converges at positive infinity [1]. This property can be
formalized based on Definitions 8 and 9 as follows:

Theorem 1: Limit Existence of Integral of Laplace Transform

` ∀ f s. laplace exists f s ⇒
(∃l. ((λb. integral (interval [lift (&0),lift b])

(λt. cexp (-(s * Cx (drop t))) * f t)) → l) at posinfinity)

We proceed with the verification of the above theorem by first splitting the
complex-valued integrand, i.e., f(t)e−st, into its corresponding real and imagi-
nary parts. Now using the linearity property of integral, the conclusion of the
theorem can be expressed in terms of two integrals as follows:

∃l.( (λb. integral (interval [lift (&0),lift b])

(λt. Cx (Re (cexp (-(s * Cx (drop t))) * f t))) +

ii * integral (interval [lift (&0),lift b])

(λt. Cx (Im (cexp (-(s * Cx (drop t))) * f t)))) → l)

at posinfinity

where, ii represents the constant value
√
−1 that is multiplied with the imag-

inary part of a complex number. Next, we verified the following two lemmas
that allow us to break the above subgoal into two subgoals involving the limit
existence of two real-valued integrals.

Lemma 1: Relationship between the Real and Complex Integral

` ∀ f s t l. (f has real integral l) (real interval [&0,t]) ⇒
((λt. Cx (f (drop t))) has integral Cx l)

(interval [lift (&0),lift t])

Lemma 2: Limit of a Complex-Valued Function

` ∀ f L1 L2.

((λt. Re (f t)) ⇒ L1) at posinfinity ∧
((λt. Im (f t)) ⇒ L2) at posinfinity ⇒
(f → complex (L1,L2)) at posinfinity

The subgoal for the limit existence of the first real-valued integral is as follows:

laplace exists f s ⇒
∃k. ((λb. real integral (real interval [&0,b])

(λx. abs (Re (cexp (-s * Cx (x)) * f(lift x))))) → k)

at posinfinity



The proof of the above subgoal is primarily based on the Comparison Test for
Improper Integrals [18], which has been formally verified as part of our develop-
ment as follows:

Lemma 3: Comparison Test for Improper Integrals

` ∀ f g a. (&0 ≤ a) ∧ (∀x. a ≤ x ⇒ &0 ≤ f x ∧ f x ≤ g x) ∧
(∀ b. g real integrable on real interval [a,b]) ∧
(∀ b. f real integrable on real interval [a,b]) ∧
(∃ k.((λb. real integral (real interval [a,b]) g)⇒ k)

at posinfinity) ⇒
(∃ k.((λb. real integral (real interval [a,b]) f) ⇒ k)

at posinfinity)

The laplace exists f s assumption of Theorem 1 ensures that the integrand
fe−st, of our subgoal, is upper bounded by Me−(Re(s)−α)t, which in turn can also
be verified to be integrable and having a convergent integral for Re s > α as the
upper limit of integration approaches positive infinity. Moreover, the piecewise
differentiability condition in the predicate laplace exists f s ensures the in-
tegrability of f . These results allow us to fulfill the assumptions of Lemma 3 and
thus conclude the limit existence subgoal for the real-valued integral of the real
part. The proof of the subgoal for the limit existence of the real-valued integral
corresponding to the imaginary part is very similar and its verification concludes
the proof of Theorem 1.

4.2 Linearity

The linearity of Laplace transform can be expressed mathematically for two
functions f and g and two complex numbers α and β as follows [1]:(

L αf(x) + βg(x)
)

(s) = α(Lf)(s) + β(Lg)(s) (4)

We verified this property as the following theorem:

Theorem 2: Linearity of Laplace Transform

` ∀ f g s a b. laplace exists f s ∧ laplace exists g s ⇒
laplace (λx. a * f x + b * g x) s =

a * laplace f s + b * laplace g s

The proof is based on Theorem 1 and the linearity properties of integration and
limit.

4.3 Frequency Shifting

The Frequency shifting property of Laplace transform deals with the case when
the Laplace transform of the composition of a function f with the exponential
function is required [1]. (

L ebtf(t)
)

(s) = (Lf)(s− b) (5)



These type of functions, called the damping functions, frequently occur in the
analysis of many natural systems like harmonic oscillators. Frequency shifting
property is used to analyze and measure the damping effects on the systems
in the corresponding s-domain [17]. We verified the property as the following
theorem:

Theorem 3: Frequency Shifting

` ∀ f s b. laplace exists f s ⇒
laplace (λt. cexp (b * Cx (drop t)) * f t) s = laplace f (s - b)

4.4 Integration in Time Domain

The Laplace transform of an integral of a continuous function can be evaluated
using the integration in time domain property(

L
∫ t

0

f(τ)dτ
)

(s) =
1

s
(Lf)(s) (6)

where Re s > 0 [1]. Such type of functions extensively occur in control and
electrical systems and their s-domain analysis is greatly simplified by using the
above relation [10]. This property has been verified in HOL-Light as follows:

Theorem 4: Integration in Time Domain

` ∀ f s. (&0 < Re s) ∧ laplace exists f s ∧
laplace exists (λx. integral (interval [lift (&0),x]) f) s ∧
(∀x. f continuous on interval [lift (&0),x]) ⇒
laplace (λx. integral (interval [lift (&0),x]) f) s =

inv(s) * laplace f s

where the function inv represents the reciprocal of a given vector. The proof
of the above theorem is primarily based on the Integration-by-parts property,
which was verified as part of the reported development as follows:

Lemma 4: Integration by Parts

` ∀ f g f’ g’ a b. (drop a ≤ drop b) ∧
(∀ x. (f has vector derivative f’ x)

(at x within interval [a,b])) ∧
(∀ x. (g has vector derivative g’ x)

(at x within interval [a,b])) ∧
(λx. f’ x * g x) integrable on interval [a,b] ∧
(λx. f x * g’ x) integrable on interval [a,b] ⇒
integral (interval [a,b]) (λx. f x * g’ x) =

f b * g b - f a * g a - integral (interval [a,b])

(λx. f’ x * g x)

where the function integrable on formally represents the integrability of a vec-
tor function on a vector space. The integrand of Theorem 4, which is the product
of a complex exponential and the function

∫ t
0
f(τ) dτ , can be simplified using

Lemma 4 to obtain the following subgoal:



(&0 < Re s) ⇒
lim at posinfinity (λb. integral (interval [lift &0,lift b]) f *

-inv s * cexp (-(s * Cx (drop (lift b))))) -

lim at posinfinity (λb. integral (interval [lift &0,lift b])

(λx. f x * -inv s * cexp (-(s * Cx (drop x))))) =

inv s * lim at posinfinity (λb. integral

(interval[lift &0,lift b])(λt. cexp (-(s * Cx(drop t))) * f t))

The first term on the left-hand-side of the above subgoal can be verified to ap-
proach zero at positive infinity since, based on the existence of Laplace transform
condition, f(t) grows more slowly than an exponential. The remaining two terms
can then verified to be equivalent based on simple arithmetic reasoning.

4.5 First Order Differentiation in Time Domain

The Laplace of a differential of a continuous function f is given as follows [1]:(
L df
dx

)
(s) = s(Lf)(s)− f(0) (7)

We verified it as the following theorem:

Theorem 5: First Order Differentiation in Time Domain

` ∀ f s. laplace exists f s ∧
laplace exists (λx. vector derivative f (at x)) s ∧
(∀ x. f differentiable at x) ⇒
laplace (λx. vector derivative f (at x)) s =

s * laplace f s - f (lift (&0))

using Theorem 1, Lemma 4 and the fact that f(t)e−st|∞0 = [0− f(0)].

4.6 Higher Order Differentiation in Time Domain

The Laplace of a n-times continuously differentiable function f is given as the
following mathematical relation [1]:(

Ld
nf

dxn

)
(s) = sn(Lf)(s)−

n∑
k=1

sk−1
dn−kf(0)

dxn−k
(8)

This property forms the foremost foundation for analyzing higher-order differ-
ential equations based on Laplace transform and is verified as follows:

Theorem 6: Higher Order Differentiation in Time Domain

` ∀ f s n. laplace exists higher derivative n f s ∧
(∀x. higher derivative differentiable n f x) ⇒
laplace (λx. higher order derivative n f x) s =

s pow n * laplace f s - vsum (1..n) (λx. s pow (x-1) *

higher order derivative (n-x) f (lift (&0)))



The first assumption ensures the Laplace existence of f and its first n higher-
order derivatives. Similarly, the second assumption ensures the differentiabil-
ity of f and its first n higher-order derivatives on x ∈ R. The expressions
higher order derivative n f x and vsum (1..n) f recursively model the
nth order derivative of f with respect to x and the vector summation of the
n terms from 1 to n of function f , respectively. The proof of Theorem 6 is based
on induction on variable n. The proof of the base case is based on simple arith-
metic reasoning and the step case is discharged using Theorem 5 and summation
properties along with some arithmetic reasoning.

The formalization, presented in this section, had to be done in an interactive
way due to the undecidable nature of higher-order logic and took around 5000
lines of HOL-Light code and approximately 800 man-hours. One of the major
challenges faced during this formalization is the non-availability of detailed proof
steps for Laplace transform properties in the literature. The mathematical texts
on Laplace transform properties provide very abstract proof steps and often
ignore the subtle reasoning details. For instance, all the mathematical texts that
we came across (e.g. [1, 14]) provide the exponential order condition as the only
condition for the limit existence of the improper integral of Laplace transform.
However, as described in Section 4.1, the actual formal proof is based on splitting
the complex-valued integrand into the corresponding real and imaginary parts
and using the Integral comparison test and we had to find this reasoning on our
own. Similarly, in verifying the integration in time property (Theorem 4), the

exact reasoning about the convergence of the term e−st
∫ t
0
f(τ) dτ to zero, which

was the main bottleneck in the proof, could not be found in any mathematical
text on Laplace transform.

Other time-consuming factors, associated with our formalization, include the
formal verification many multivariable calculus related theorems, which were re-
quired in our formalization but were not available in the current HOL-Light
distribution. These generic results can be very useful for other similar formaliza-
tions and some of the ones of common interest are given below and others can
be found in our proof script [15].

Lemma 5: Upper Bound of Monotonically Increasing and Convergent f

` ∀ f n k. (&0 ≤ n) ∧ (∀n m. n ≤ m ⇒ f n ≤ f m) ∧
((f → k) at posinfinity) ⇒ f n ≤ k

Lemma 6: Limit at Positive Infinity of f implies Limit of abs(f)

` ∀ f l. (f → l) at posinfinity ⇔
((λi. f (abs i)) → l ) at posinfinity

Lemma 7: Relationship between Real and Vector Derivative

` ∀ f f’ x s. ((f has real derivative f’) (atreal x within s)) ⇒
((Cx o f o drop has vector derivative Cx f’)

(at (lift x) within IMAGE lift s) )

Lemma 8: Chain Rule of Differentiation for Complex-valued Functions

` ∀ f g f’ g’ x s.((f has vector derivative f’) (at x within s)) ∧
((g has complex derivative g’) (at (f x) within IMAGE f s) ) ⇔
((g o f has vector derivative f’ * g’) (at x within s) )



The main advantage of the formal verification of Laplace transform properties
is that our proof script, available for download at [15], can be built upon to
facilitate formal reasoning about the Laplace transform based analysis of safety-
critical systems, as depicted in the next section.

5 Application: Linear Transfer Converter (LTC) circuit

As an illustrative example of our work, we formally verify the transfer function
of a Linear Transfer Converter (LTC) circuit, depicted in Figure (1), which is
widely used for converting the voltage and current levels in power electronics
systems [13]. The functional correctness of power systems mainly depends on
the design and stability of LTCs and thus the accuracy of LTC analysis is of dire
need. Standard design techniques of LTCs are based on the transfer function
analysis, i.e., the differential equation of a LTC circuit is first converted into
its corresponding s-domain equivalent, and then depending upon the required
stability requirements, the values of circuit components, like resistors and in-
ductors are calculated [9]. We perform this analysis using our formalization of
Laplace transform within the sound core of HOL-Light theorem prover in this
paper. The behavior of the LTC circuit, with input complex voltage u(t) across

Fig. 1. Linear Transfer Converter Circuit

the voltage generator, and the output complex voltage y(t), across the resistor
R, can be expressed using the following differential equation [1]:

d2y

dt2
− 2

RC

dy

dt
+

1

LC
y =

d2u

dt2
− 1

LC
u (9)

The corresponding transfer function of this given circuit is as follows [1]:

Y (s)

U(s)
=

s2 − 1
LC

s2 − 2s
RC + 1

LC

(10)

The objective of this section is to verify this transfer function using Equation (9).
In order to be able to formally express Equation (9), we formalized the following
function to model an n-order differential equation in HOL-Light:



Definition 11: Differential Equation

` ∀ n A f x. diff eq n A f x ⇔
vsum (0..n) (λt. EL t L x * higher order derivative t f x)

The function diff eq accepts the order of the differential equation n, a list of
coefficients A, differentiable function f and the differentiation variable x. It uti-
lizes the functions vsum n f and EL m L, which return the vector summation
(
∑n
i=0 fi) and the mth element of a list L, respectively, to generate the differen-

tial equation corresponding to the given parameters. Now, Equation (9) can be
formalized as follows:

Definition 12: Differential Equation of LTC

` ∀ y u x L C R. diff eq LTC y u x L C R ⇔
diff eq 2 [ Cx (&1 / L * C); --Cx (&2 / R * C); Cx (&1)] y x =

diff eq 2 [ --Cx (&1 / L * C ); Cx (&0); Cx (&1)] u x

The function diff eq LTC accepts the output voltage function y : R1 → R2, the
input voltage function u : R1 → R2, the resistance R : R, the inductance L : R
and the capacitance C : R being the capacitance and x : R1 being time. It then
returns Equation (9) in the summation form.

Now, the transfer function of the given LTC circuit, given in Equation (10),
can be verified as the following theorem in HOL-Light.

Theorem 7: Transfer function of LTC

` ∀ y u s R L C. (&0 < R) ∧ (&0 < L) ∧ (&0 < C) ∧
(zero initial conditions 1 u) ∧ ( zero initial conditions 1 y) ∧
(∀x. higher derivative differentiable 2 y x) ∧
(∀x. higher derivative differentiable 2 u x) ∧
(higher derivative laplace exists 2 y s) ∧
(higher derivative laplace exists 2 u s) ∧
∼((Cx(&1/(L*C)) - Cx(&2/(R*C))*s) + s pow 2 = Cx(&0) )∧
∼(laplace u s = Cx(&0)) ∧ (∀t. diff eq LTC y u t L C R) ⇒
(laplace y s / laplace u s =

(s pow 2 - Cx(&1/(L*C))) / ((Cx(&1/(L*C)) -

Cx(&2/(R*C))*s) + s pow 2))

The first three assumptions ensure the positive values for resistor, inductor and
capacitor, respectively. The predicate zero initial conditions is used to de-
fine the initial conditions, i.e., to assign a value 0 to the given function and its
n derivatives at time equal to zero. In our case, we need zero initial conditions
for the functions u and y up to the first-order derivative, which are modeled
using the fourth and fifth assumptions. The next four assumptions ensure that
the functions y and u are differentiable up to the second-order and the Laplace
transform exists up to the second order derivatives of these functions. The last
assumption represents the formalization of Equation (9) and the conclusion of
the theorem represents Equation (10). The reasoning about the correctness of
Theorem 7 is very straightforward and is primarily based on Definition 8 and



Theorem 6 and some simple arithmetic reasoning. The proof script consists of
approximately 650 lines of HOL-Light code [15] and the proof process took just
a couple of hours, which clearly indicates the usefulness of our work in conduct-
ing the formal analysis of real-world applications using the Laplace transform
method.

6 Conclusion

This paper advocates the usage of higher-order-logic theorem proving for con-
ducting Laplace transform based analysis, which is an essential design step for
almost all physical systems. Due to the high expressiveness of the underlying
logic, we can formally model the differential equation depicting the behaviour
of the given physical system in its true form, i.e., without compromising on the
precision of the model. The Laplace transform method can then be used in a
theorem prover to deduce interesting design parameters from this equation. The
inherent soundness of theorem proving guarantees correctness of this analysis
and ensures the availability of all pre-conditions of the analysis as assumptions
of the formally verified theorems. To the best of our knowledge, these features are
not shared by any other existing computerized Laplace transform based analysis
technique and thus the proposed approach can be very useful for the analysis of
physical systems used in safety-critical domains.

The main challenge in the proposed approach is the enormous amount of user
intervention required due to the undecidable nature of the higher-order logic.
We propose to overcome this limitation by formalizing Laplace transform theory
in higher-order logic and thus minimizing the user guidance in the reasoning
process by building upon the already available results. As a first step towards
this direction, this paper presents the formalization of Laplace transform and the
formal verification of some of its classical properties, such as existence, linearity,
frequency shifting and differentiation and integration in time domain, using the
multivariable calculus theories of HOL-Light. Based on this work, we are able to
conduct the formal analysis of a Linear Transfer Converter (LTC) circuit, which
is commonly used electronic circuit in a very straightforward way.

This paper opens the doors towards a novel and promising usage of theorem
proving. The formalization of Laplace transform foundations, presented in this
paper, can be directly used to reason about the transfer functions of many sys-
tems used in the domains of control engineering and analog and mixed signal
(AMS) circuits, where the usage of formal verification is a dire need given their
safety-critical nature. Our formalization can also be built upon to formalize the
inverse Laplace transform function and its associated properties, which can be
very useful in analyzing the behavior of engineering systems in the time-domain
[1]. Our formalization can also be used to formalize other mathematical trans-
forms. For instance, Fourier transform [5], which is a foundational mathematical
theory for analyzing digital signal processing applications, can be easily formal-
ized by restricting the variable s of the Laplace transform definition to acquire
pure imaginary values only.
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4. G. Frehse, C. Le Guernic, A. Donzé, S. Cotton, R. Ray, O. Lebeltel, R. Ripado,
A. Girard, T. Dang, and O. Maler. Spaceex: Scalable Verification of Hybrid Sys-
tems. In Computer Aided Verification, volume 6806 of LNCS, pages 379–395.
Springer, 2011.

5. P. Gaydecki. Foundations of Digital Signal Processing: Theory, Algorithms and
Hardware Design. IET, 2004.

6. J. Harrison. HOL Light: An overview. In Proceedings of the 22nd International
Conference on Theorem Proving in Higher Order Logics, TPHOLs 2009, volume
5674 of LNCS, pages 60–66. Springer-Verlag, 2009.

7. J. Harrison. The HOL Light Theory of Euclidean Space. Automated Reasoning,
50(2):173–190, 2013.

8. M. H.Zaki, S. Tahar, and G. Boisr. Formal Verification of Analog and Mixed
Signal Designs: A survey. In Microelectronics Journal, volume 39, pages 1395–
1404. Elsevier, 2008.

9. A. Ioinovici. Power Electronics and Energy Conversion Systems, Fundamentals
and Hard-switching Converters. John Wiley & Sons, 2013.

10. B. Paul. Industrial Electronics and Control. PHI Learning Pvt. Ltd., 2004.
11. L.C. Paulson. ML for the Working Programmer. Cambridge University Press,

Cambridge, 1996.
12. I. Podlubny. The Laplace Transform Method for Linear Differential Equations of

the Fractional Order. Technical report, Slovak Acad. Sci., Kosice, 1994.
13. M. Rashid. Power Electronics Handbook. Elsevier, 2011.
14. J.L. Schiff. The Laplace Transform: Theory and Applications. Springer, 1999.
15. S.H. Taqdees. Formalization of Laplace Transform using the Multivariable Calcu-

lus Theory of HOL-Light. http://save.seecs.nust.edu.pk/shtaqdees/laplace.html,
2013.

16. A. Ucar, E. Cetin, and I. Kale. A Continuous-Time Delta-Sigma Modulator for
RF Subsampling Receivers. In IEEE Transactions on Circuits And Systems, pages
272 – 276. IEEE, 2012.

17. J.R. Westra, C.J.M. Verhoeven, and A.H.M. van Roermund. Oscillators and Os-
cillator Systems: Classification, Analysis and Synthesis. Springer, 1999.

18. J. Xiao. Integral and Functional Analysis. Nova Publishers, 2008.
19. X. Yang. Mathematical Modeling with Multidisciplinary Applications. John Wiley

& Sons, 2013.


