
www.ts.data61.csiro.au

Program Verification in the Presence
of Cached Address Translation
Hira Taqdees Syeda | Gerwin Klein
July 2018

 Program Verification in the Presence of TLB-Address Translation Hira Syeda2

What is
Cached Address Translation

Programs
va

CPU
MMU

mappings

pa Memory
va

Page
Table

 Program Verification in the Presence of TLB-Address Translation Hira Syeda2

What is
Cached Address Translation

Programs
va

CPU
MMU

mappings

pa

TLB

Memory
va

Page
Table

- Translation Lookaside Buffer (TLB) is
- a dedicated cache for page table walks
- architecture specific
- managed by hardware and operating system together

 Program Verification in the Presence of TLB-Address Translation Hira Syeda3

TLB Effects on Program Execution

 Program Verification in the Presence of TLB-Address Translation Hira Syeda3

- TLB being cache
- has no functional effects
- only makes execution faster, if maintained correctly
- is an assumption in formally verified kernels such as seL4

TLB Effects on Program Execution

 Program Verification in the Presence of TLB-Address Translation Hira Syeda3

- TLB being cache
- has no functional effects
- only makes execution faster, if maintained correctly
- is an assumption in formally verified kernels such as seL4

- Poorly managed TLB leads to
- memory operations on the wrong addresses
- inconsistent translation system crash

TLB Effects on Program Execution

 Program Verification in the Presence of TLB-Address Translation Hira Syeda3

- TLB being cache
- has no functional effects
- only makes execution faster, if maintained correctly
- is an assumption in formally verified kernels such as seL4

- Poorly managed TLB leads to
- memory operations on the wrong addresses
- inconsistent translation system crash

- TLB-aware logic for program reasoning
- abstract model for ARMv7-style MMU

TLB Effects on Program Execution

 Program Verification in the Presence of TLB-Address Translation Hira Syeda4

- TLB-aware program logic in Isabelle/HOL
- sound abstraction of ARMv7-style MMU

- language with TLB management primitives

- TLB-aware Hoare logic rules

Contributions

 Program Verification in the Presence of TLB-Address Translation Hira Syeda4

- TLB-aware program logic in Isabelle/HOL
- sound abstraction of ARMv7-style MMU

- language with TLB management primitives

- TLB-aware Hoare logic rules

Contributions

- Reduction theorems for program verification at
- user- and kernel-level execution

- context switch

 Program Verification in the Presence of TLB-Address Translation Hira Syeda4

- TLB-aware program logic in Isabelle/HOL
- sound abstraction of ARMv7-style MMU

- language with TLB management primitives

- TLB-aware Hoare logic rules

Contributions

- Reduction theorems for program verification at
- user- and kernel-level execution

- context switch

 Program Verification in the Presence of TLB-Address Translation Hira Syeda5

ARMv7-style MMU

TLB

CPU

Memory

2-level page table(s)

r1
.

rest of the memory

 Program Verification in the Presence of TLB-Address Translation Hira Syeda5

ARMv7-style MMU

TLB

CPU va

Memory

2-level page table(s)

r1
.

rest of the memory

 Program Verification in the Presence of TLB-Address Translation Hira Syeda5

ARMv7-style MMU

TLB

CPU va

Hit (pa)

Memory

TLB entry

2-level page table(s)

r1
.

rest of the memory

 Program Verification in the Presence of TLB-Address Translation Hira Syeda5

ARMv7-style MMU

TLB

CPU va

Hit (pa)

Miss

Memory

TLB entry

2-level page table(s)

r1
.

rest of the memory

 Program Verification in the Presence of TLB-Address Translation Hira Syeda5

ARMv7-style MMU

TLB

CPU va

Hit (pa)

Miss

translation
Memory

TLB entry

TLB entry 2-level page table(s)

r1
.

rest of the memory

 Program Verification in the Presence of TLB-Address Translation Hira Syeda

- TLB eviction ()

5

ARMv7-style MMU

TLB

CPU

Memory

2-level page table(s)

r1
.

rest of the memory

 Program Verification in the Presence of TLB-Address Translation Hira Syeda

- TLB eviction ()
- TLB incoherency ()
- stale translation entries w.r.t. page table(s)

5

ARMv7-style MMU

TLB

CPU

Memory

2-level page table(s)

r1
.

rest of the memory

page table
management

operating system

 Program Verification in the Presence of TLB-Address Translation Hira Syeda

- TLB eviction ()
- TLB incoherency ()
- stale translation entries w.r.t. page table(s)

- TLB inconsistency ()
- more than one translation entries

5

ARMv7-style MMU

TLB

CPU

Memory

2-level page table(s)

r1
.

rest of the memory

r2
page table

management

operating system

 Program Verification in the Presence of TLB-Address Translation Hira Syeda

- TLB maintenance operations after updating
- page table(s)
- root register

6

ARMv7-style MMU

TLB

CPU

Memory

2-level page table(s)

r1
.

rest of the memory

r2
page table

management

operating system

 Program Verification in the Presence of TLB-Address Translation Hira Syeda

- TLB maintenance operations after updating
- page table(s)
- root register

- Selective invalidation using Address Space IDentifier - ASID
- ASID register

6

ARMv7-style MMU

TLB

CPU

Memory

2-level page table(s)

r1
.

rest of the memory

r2

a2

a2

a1
a1 a2

page table
management

operating system

 Program Verification in the Presence of TLB-Address Translation Hira Syeda7

Sound Abstraction of
ARMv7-style MMU

 Program Verification in the Presence of TLB-Address Translation Hira Syeda7

- Formalised TLB model
- hardware details
- instructions affecting the TLB state

Sound Abstraction of
ARMv7-style MMU

 Program Verification in the Presence of TLB-Address Translation Hira Syeda7

- Formalised TLB model
- hardware details
- instructions affecting the TLB state

Sound Abstraction of
ARMv7-style MMU

Stepwise data refinement
to achieve functional abstraction

ARMv7 Formal Specs

concrete TLB

abstract TLB

abstracting eviction

abstracting caching

Program Logic

 Program Verification in the Presence of TLB-Address Translation Hira Syeda7

- Formalised TLB model
- hardware details
- instructions affecting the TLB state

Sound Abstraction of
ARMv7-style MMU

Stepwise data refinement
to achieve functional abstraction

Functionality of a TLB
is captured by the record of
inconsistent virtual addresses

ARMv7 Formal Specs

concrete TLB

abstract TLB

abstracting eviction

abstracting caching

Program Logic

 Program Verification in the Presence of TLB-Address Translation Hira Syeda8

Sound Abstraction of
ARMv7-style MMU

page table
encoding

r1

physical
heap

r2

processor mode active rootactive ASID

abstract TLB

 Program Verification in the Presence of TLB-Address Translation Hira Syeda8

Sound Abstraction of
ARMv7-style MMU

page table
encoding

r1

physical
heap

r2

processor mode active rootactive ASID

abstract TLB
incon_set pt_snapshot

set of
inconsistent
vaddrs for
active ASID

page table
state for all
inactive
ASIDs

 Program Verification in the Presence of TLB-Address Translation Hira Syeda8

Sound Abstraction of
ARMv7-style MMU

page table
encoding

r1

physical
heap

r2

processor mode active rootactive ASID

abstract TLB
incon_set pt_snapshot

{ va1
 va5
 van }

a1,va3 => unmap
a5,va7 => incon
an,vam => pa1

 Program Verification in the Presence of TLB-Address Translation Hira Syeda9

- TLB-aware program logic in Isabelle/HOL
- sound abstraction of ARMv7-style MMU

- language with TLB management primitives

- TLB-aware Hoare logic rules

Contributions

- Reduction theorems for program verification at
- user- and kernel-level execution

- context switch

 Program Verification in the Presence of TLB-Address Translation Hira Syeda10

- Heap language with TLB management primitives
- arithmetic expressions aexp
- constant, unary and binary operations
- HeapLookup

Language — Syntax

 Program Verification in the Presence of TLB-Address Translation Hira Syeda10

- Heap language with TLB management primitives
- arithmetic expressions aexp
- constant, unary and binary operations
- HeapLookup

- boolean expressions bexp
- negation, comparison and binary operations

Language — Syntax

 Program Verification in the Presence of TLB-Address Translation Hira Syeda11

- Heap language with TLB management primitives
- commands
- skip and sequence
- if-then-else and while

Language — Syntax

 Program Verification in the Presence of TLB-Address Translation Hira Syeda11

- Heap language with TLB management primitives
- commands
- skip and sequence
- if-then-else and while
- assignment aexp := aexp

Language — Syntax

 Program Verification in the Presence of TLB-Address Translation Hira Syeda11

- Heap language with TLB management primitives
- commands
- skip and sequence
- if-then-else and while
- assignment aexp := aexp
- flush
- flushALL, flushASID, flushVA and flushASIDVA

Language — Syntax

 Program Verification in the Presence of TLB-Address Translation Hira Syeda11

- Heap language with TLB management primitives
- commands
- skip and sequence
- if-then-else and while
- assignment aexp := aexp
- flush
- flushALL, flushASID, flushVA and flushASIDVA

- updateRoot
- updateASID
- updateMode
- kernel or user

Language — Syntax

 Program Verification in the Presence of TLB-Address Translation Hira Syeda

- TLB-aware program logic in Isabelle/HOL
- sound abstraction of ARMv7-style TLB

- language with TLB management primitives

- TLB-aware Hoare logic rules

12

Contributions

- Reduction theorems for program verification at
- user- and kernel-level execution

- context switch

 Program Verification in the Presence of TLB-Address Translation Hira Syeda

- Operational semantics
- aexp — partial function from state to 32-bit value
- bexp — partial function from state to bool
- command — relation between state and state option

13

Program Logic

 Program Verification in the Presence of TLB-Address Translation Hira Syeda

- Operational semantics
- aexp — partial function from state to 32-bit value
- bexp — partial function from state to bool
- command — relation between state and state option

- Hoare triple —
- soundness is derived directly from the operational semantics
- logic rules are in weakest-precondition form

13

Program Logic

{|P |} SKIP {|P |}
{|P |} c {|Q |} P 0 b�!c P Q b�!c Q 0

{|P 0|} c {|Q 0|}

{|P b^c |} c1 {|Q |} {|P b^c ¬|} c2 {|Q |}
{|P b^c ⌧b�|} IF b THEN c1 ELSE c2 {|Q |}

{|P b^c |} c {|P |} P b�!c ⌧b�

{|P |} WHILE b DO c {|P b^c ¬|}
{|P |} c1 {|Q |} {|Q |} c2 {|R|}

{|P |} c1 ; c2 {|R|}

{|P |} c {|Q |} {|R|} c {|S |}
{|P b^c R|} c {|Q b^c S |}

{|P |} c {|Q |} {|R|} c {|S |}
{|P b_c R|} c {|Q b_c S |}

{|(VPtr vp 7! � ^⇤ P) b^c [[l]] = vp b^c [[r]] = v |} l := r {|VPtr vp 7! v ^⇤ P |}

{|P |} c {|Q |}
{|P ^⇤ R|} c {|Q ^⇤ R|}

Fig. 5. The proof rules for Mapped Separation Logic.

separate from the heap in which the update occurs. Since the physical address of
the write is separate from the page table lookup for this address and from P, the
translation layer for their heaps is not a↵ected by the write. To reason about page
table updates we need a slightly stronger rule that unfolds the virtual-to-value

mapping and lets us talk about the physical address p:

{|(VPtr vp 7!v p ^⇤ p 7! � ^⇤ P) b^c [[l]] = vp b^c [[r]] = v |}
l := r

{|VPtr vp 7!v p ^⇤ p 7! v ^⇤ P |}

Reasoning with the new mapping predicates is similar to abstract-predicate
style reasoning [13] if we never unfold their definitions in client proofs. As we
will see in the case study, we only need to do this locally if we are reasoning
about changes to the page table and we are interested in the page that is being
modified. This obviously heavily depends on the page table encoding. Application
level reasoning can proceed fully abstractly.

The second interesting proof rule is the frame rule that allows global reasoning
based on local proofs. In many ways it can be seen as the core of Separation
Logic. Calcagno et al. [3] provide an abstract framework for identifying a logic as
Separation Logic and distill out the central property of locality. In their setting,
our separation algebra is the common heap monoid where the binary operation

is heap merge lifted to the heap ⇥ pptr type. Our definition of separating
conjunction then coincides with the one in the framework, and to show that
our logic is a Separation Logic, we only need to show that all actions in the
programming language are local. Locality is equivalent to the combination of
safety monotonicity and the frame property. In our setting, these two are:

10

 Program Verification in the Presence of TLB-Address Translation Hira Syeda

- assignment

- updateRoot

- updateASID

14

Program Logic — Rules

other rules are in standard Hoare logic form

 Program Verification in the Presence of TLB-Address Translation Hira Syeda

- assignment

15

Program Logic — Rules

{|P|} SKIP {|P|}
{|P|} c {|Q|} P’ �! P

{|P’|} c {|Q|}

{|P ^ hbi|} c1 {|Q|} {|P ^ ¬hbi|} c2 {|Q|}
{|P ^ hhbii|} IF b THEN c1 ELSE c2 {|Q|}

{|P ^ hbi|} c {|P|} P �! hhbii
{|P|} WHILE b DO c {|P ^ ¬hbi|}

{|P|} c1 {|Q|} {|Q|} c2 {|R|}
{|P|} c1;; c2 {|R|}

Fig. 3. Hoare Logic rules for standard commands.

{|�s. [[l]] s = bvpc ^ [[r]] s = bvc ^ vp /2 IC s ^ Addr vp ,!s pp ^
P (heap_iset_updates (pp 7! v))|}

l ::= r {|P|}

{|�s. kernel s ^ [[rte]] s = brtc ^ P (root_iset_updates Addr rt)|}
UpdateTTBR0 rte {|P|}

{|�s. mode s = Kernel ^ P (asid_pt_snpshot_updates a)|} UpdateASID a {|P|}

{|�s. mode s = Kernel ^ P (iset_pt_snpshot_updates f)|} Flush f {|P|}

{|�s. mode s = Kernel ^ P (s(|mode := flg|))|} SetMode flg {|P|}

Fig. 4. Hoare Logic rules for commands with TLB e↵ects.

completely standard, as intended. We write hhbii s to denote that [[b]]b s 6= None:
the precondition in the IF and WHILE rules must be strong enough for failure free
evaluation of b. The rules in Fig. 4 are in weakest-precondition form. They have
a generic postcondition P and the weakest precondition that will establish P. We
will now explain them.

The assignment rule requires that the expressions l and r evaluate without
failure. The assignment succeeds if the virtual address vp is consistent in the
current state (vp /2 IC s) and vp is mapped (Addr vp ,!s pp), where

vp ,!s pp = (phy_ad (iset s) (heap s) (root s) (mode s) vp = bppc)

The e↵ect of the assignment is the heap and iset update heap_iset_update we
described in Sect. 4.2.

The rule for the command UpdateTTBR0, only available in kernel mode, up-
dates the current page table root to the value of the expression rte. The e↵ect
is modelled by root_iset_update defined in Sect. 4.2.

The UpdateASID command, also only available in kernel mode, sets the new
ASID a, increases the iset using snp_incon, and records a page table snapshot
for the old ASID using new_snp.

Finally, Flush is the instruction that the makes the iset smaller, and removes
mappings in the snapshots of inactive ASIDs, using iset_asid_map_update from
Sect. 4.2.

8

{|P|} SKIP {|P|}
{|P|} c {|Q|} P’ �! P

{|P’|} c {|Q|}

{|P ^ hbi|} c1 {|Q|} {|P ^ ¬hbi|} c2 {|Q|}
{|P ^ hhbii|} IF b THEN c1 ELSE c2 {|Q|}

{|P ^ hbi|} c {|P|} P �! hhbii
{|P|} WHILE b DO c {|P ^ ¬hbi|}

{|P|} c1 {|Q|} {|Q|} c2 {|R|}
{|P|} c1;; c2 {|R|}

Fig. 3. Hoare Logic rules for standard commands.

{|�s. [[l]] s = bvpc ^ [[r]] s = bvc ^ vp /2 IC s ^ Addr vp ,!s pp ^
P (heap_iset_updates (pp 7! v))|}

l ::= r {|P|}

{|�s. kernel s ^ [[rte]] s = brtc ^ P (root_iset_updates Addr rt)|}
UpdateTTBR0 rte {|P|}

{|�s. mode s = Kernel ^ P (asid_pt_snpshot_updates a)|} UpdateASID a {|P|}

{|�s. mode s = Kernel ^ P (iset_pt_snpshot_updates f)|} Flush f {|P|}

{|�s. mode s = Kernel ^ P (s(|mode := flg|))|} SetMode flg {|P|}

Fig. 4. Hoare Logic rules for commands with TLB e↵ects.

completely standard, as intended. We write hhbii s to denote that [[b]]b s 6= None:
the precondition in the IF and WHILE rules must be strong enough for failure free
evaluation of b. The rules in Fig. 4 are in weakest-precondition form. They have
a generic postcondition P and the weakest precondition that will establish P. We
will now explain them.

The assignment rule requires that the expressions l and r evaluate without
failure. The assignment succeeds if the virtual address vp is consistent in the
current state (vp /2 IC s) and vp is mapped (Addr vp ,!s pp), where

vp ,!s pp = (phy_ad (iset s) (heap s) (root s) (mode s) vp = bppc)

The e↵ect of the assignment is the heap and iset update heap_iset_update we
described in Sect. 4.2.

The rule for the command UpdateTTBR0, only available in kernel mode, up-
dates the current page table root to the value of the expression rte. The e↵ect
is modelled by root_iset_update defined in Sect. 4.2.

The UpdateASID command, also only available in kernel mode, sets the new
ASID a, increases the iset using snp_incon, and records a page table snapshot
for the old ASID using new_snp.

Finally, Flush is the instruction that the makes the iset smaller, and removes
mappings in the snapshots of inactive ASIDs, using iset_asid_map_update from
Sect. 4.2.

8

DR
AF
T

block-invalidation :: tlb) asid) va set) tlb

block-invalidation t a V ⌘ (
S

x2V. selective-invalidation t a x)

asid-invalidation :: tlb) asid) tlb

asid-invalidation t a ⌘ t - asid-entry-set t a

va-invalidation :: tlb) va) tlb

va-invalidation t v ⌘ t - va-set t v

selective-invalidation selectively removes the entry or entries covering the
given virtual address and ASID depending upon the outcome of lookup opera-
tion. Whereas, block-invalidation takes a set of virtual addresses along with
particular ASID and selectively invalidates all of them. asid-invalidation and
va-invalidation removes entries using asid-entry-set and va-entry-set re-
spectively. We have proved the correctness of invalidation functions by validating
many interesting theorems shown in Figure ??.

✏ �s. P (s(x := e s)) x := e P

4 TLB Model inclusion in Cambridge ARM model

5 Conclusions

 Program Verification in the Presence of TLB-Address Translation Hira Syeda

✓successful evaluation of to a
✓consistency of
✓valid address translation of to
✓ reasoning about heap and incon_set update

{|P |} SKIP {|P |}
{|P |} c {|Q |} P 0 b�!c P Q b�!c Q 0

{|P 0|} c {|Q 0|}

{|P b^c |} c1 {|Q |} {|P b^c ¬|} c2 {|Q |}
{|P b^c ⌧b�|} IF b THEN c1 ELSE c2 {|Q |}

{|P b^c |} c {|P |} P b�!c ⌧b�

{|P |} WHILE b DO c {|P b^c ¬|}
{|P |} c1 {|Q |} {|Q |} c2 {|R|}

{|P |} c1 ; c2 {|R|}

{|P |} c {|Q |} {|R|} c {|S |}
{|P b^c R|} c {|Q b^c S |}

{|P |} c {|Q |} {|R|} c {|S |}
{|P b_c R|} c {|Q b_c S |}

{|(VPtr vp 7! � ^⇤ P) b^c [[l]] = vp b^c [[r]] = v |} l := r {|VPtr vp 7! v ^⇤ P |}

{|P |} c {|Q |}
{|P ^⇤ R|} c {|Q ^⇤ R|}

Fig. 5. The proof rules for Mapped Separation Logic.

separate from the heap in which the update occurs. Since the physical address of
the write is separate from the page table lookup for this address and from P, the
translation layer for their heaps is not a↵ected by the write. To reason about page
table updates we need a slightly stronger rule that unfolds the virtual-to-value

mapping and lets us talk about the physical address p:

{|(VPtr vp 7!v p ^⇤ p 7! � ^⇤ P) b^c [[l]] = vp b^c [[r]] = v |}
l := r

{|VPtr vp 7!v p ^⇤ p 7! v ^⇤ P |}

Reasoning with the new mapping predicates is similar to abstract-predicate
style reasoning [13] if we never unfold their definitions in client proofs. As we
will see in the case study, we only need to do this locally if we are reasoning
about changes to the page table and we are interested in the page that is being
modified. This obviously heavily depends on the page table encoding. Application
level reasoning can proceed fully abstractly.

The second interesting proof rule is the frame rule that allows global reasoning
based on local proofs. In many ways it can be seen as the core of Separation
Logic. Calcagno et al. [3] provide an abstract framework for identifying a logic as
Separation Logic and distill out the central property of locality. In their setting,
our separation algebra is the common heap monoid where the binary operation

is heap merge lifted to the heap ⇥ pptr type. Our definition of separating
conjunction then coincides with the one in the framework, and to show that
our logic is a Separation Logic, we only need to show that all actions in the
programming language are local. Locality is equivalent to the combination of
safety monotonicity and the frame property. In our setting, these two are:

10

{|P |} SKIP {|P |}
{|P |} c {|Q |} P 0 b�!c P Q b�!c Q 0

{|P 0|} c {|Q 0|}

{|P b^c |} c1 {|Q |} {|P b^c ¬|} c2 {|Q |}
{|P b^c ⌧b�|} IF b THEN c1 ELSE c2 {|Q |}

{|P b^c |} c {|P |} P b�!c ⌧b�

{|P |} WHILE b DO c {|P b^c ¬|}
{|P |} c1 {|Q |} {|Q |} c2 {|R|}

{|P |} c1 ; c2 {|R|}

{|P |} c {|Q |} {|R|} c {|S |}
{|P b^c R|} c {|Q b^c S |}

{|P |} c {|Q |} {|R|} c {|S |}
{|P b_c R|} c {|Q b_c S |}

{|(VPtr vp 7! � ^⇤ P) b^c [[l]] = vp b^c [[r]] = v |} l := r {|VPtr vp 7! v ^⇤ P |}

{|P |} c {|Q |}
{|P ^⇤ R|} c {|Q ^⇤ R|}

Fig. 5. The proof rules for Mapped Separation Logic.

separate from the heap in which the update occurs. Since the physical address of
the write is separate from the page table lookup for this address and from P, the
translation layer for their heaps is not a↵ected by the write. To reason about page
table updates we need a slightly stronger rule that unfolds the virtual-to-value

mapping and lets us talk about the physical address p:

{|(VPtr vp 7!v p ^⇤ p 7! � ^⇤ P) b^c [[l]] = vp b^c [[r]] = v |}
l := r

{|VPtr vp 7!v p ^⇤ p 7! v ^⇤ P |}

Reasoning with the new mapping predicates is similar to abstract-predicate
style reasoning [13] if we never unfold their definitions in client proofs. As we
will see in the case study, we only need to do this locally if we are reasoning
about changes to the page table and we are interested in the page that is being
modified. This obviously heavily depends on the page table encoding. Application
level reasoning can proceed fully abstractly.

The second interesting proof rule is the frame rule that allows global reasoning
based on local proofs. In many ways it can be seen as the core of Separation
Logic. Calcagno et al. [3] provide an abstract framework for identifying a logic as
Separation Logic and distill out the central property of locality. In their setting,
our separation algebra is the common heap monoid where the binary operation

is heap merge lifted to the heap ⇥ pptr type. Our definition of separating
conjunction then coincides with the one in the framework, and to show that
our logic is a Separation Logic, we only need to show that all actions in the
programming language are local. Locality is equivalent to the combination of
safety monotonicity and the frame property. In our setting, these two are:

10

{|P |} SKIP {|P |}
{|P |} c {|Q |} P 0 b�!c P Q b�!c Q 0

{|P 0|} c {|Q 0|}

{|P b^c |} c1 {|Q |} {|P b^c ¬|} c2 {|Q |}
{|P b^c ⌧b�|} IF b THEN c1 ELSE c2 {|Q |}

{|P b^c |} c {|P |} P b�!c ⌧b�

{|P |} WHILE b DO c {|P b^c ¬|}
{|P |} c1 {|Q |} {|Q |} c2 {|R|}

{|P |} c1 ; c2 {|R|}

{|P |} c {|Q |} {|R|} c {|S |}
{|P b^c R|} c {|Q b^c S |}

{|P |} c {|Q |} {|R|} c {|S |}
{|P b_c R|} c {|Q b_c S |}

{|(VPtr vp 7! � ^⇤ P) b^c [[l]] = vp b^c [[r]] = v |} l := r {|VPtr vp 7! v ^⇤ P |}

{|P |} c {|Q |}
{|P ^⇤ R|} c {|Q ^⇤ R|}

Fig. 5. The proof rules for Mapped Separation Logic.

separate from the heap in which the update occurs. Since the physical address of
the write is separate from the page table lookup for this address and from P, the
translation layer for their heaps is not a↵ected by the write. To reason about page
table updates we need a slightly stronger rule that unfolds the virtual-to-value

mapping and lets us talk about the physical address p:

{|(VPtr vp 7!v p ^⇤ p 7! � ^⇤ P) b^c [[l]] = vp b^c [[r]] = v |}
l := r

{|VPtr vp 7!v p ^⇤ p 7! v ^⇤ P |}

Reasoning with the new mapping predicates is similar to abstract-predicate
style reasoning [13] if we never unfold their definitions in client proofs. As we
will see in the case study, we only need to do this locally if we are reasoning
about changes to the page table and we are interested in the page that is being
modified. This obviously heavily depends on the page table encoding. Application
level reasoning can proceed fully abstractly.

The second interesting proof rule is the frame rule that allows global reasoning
based on local proofs. In many ways it can be seen as the core of Separation
Logic. Calcagno et al. [3] provide an abstract framework for identifying a logic as
Separation Logic and distill out the central property of locality. In their setting,
our separation algebra is the common heap monoid where the binary operation

is heap merge lifted to the heap ⇥ pptr type. Our definition of separating
conjunction then coincides with the one in the framework, and to show that
our logic is a Separation Logic, we only need to show that all actions in the
programming language are local. Locality is equivalent to the combination of
safety monotonicity and the frame property. In our setting, these two are:

10

{|P |} SKIP {|P |}
{|P |} c {|Q |} P 0 b�!c P Q b�!c Q 0

{|P 0|} c {|Q 0|}

{|P b^c |} c1 {|Q |} {|P b^c ¬|} c2 {|Q |}
{|P b^c ⌧b�|} IF b THEN c1 ELSE c2 {|Q |}

{|P b^c |} c {|P |} P b�!c ⌧b�

{|P |} WHILE b DO c {|P b^c ¬|}
{|P |} c1 {|Q |} {|Q |} c2 {|R|}

{|P |} c1 ; c2 {|R|}

{|P |} c {|Q |} {|R|} c {|S |}
{|P b^c R|} c {|Q b^c S |}

{|P |} c {|Q |} {|R|} c {|S |}
{|P b_c R|} c {|Q b_c S |}

{|(VPtr vp 7! � ^⇤ P) b^c [[l]] = vp b^c [[r]] = v |} l := r {|VPtr vp 7! v ^⇤ P |}

{|P |} c {|Q |}
{|P ^⇤ R|} c {|Q ^⇤ R|}

Fig. 5. The proof rules for Mapped Separation Logic.

separate from the heap in which the update occurs. Since the physical address of
the write is separate from the page table lookup for this address and from P, the
translation layer for their heaps is not a↵ected by the write. To reason about page
table updates we need a slightly stronger rule that unfolds the virtual-to-value

mapping and lets us talk about the physical address p:

{|(VPtr vp 7!v p ^⇤ p 7! � ^⇤ P) b^c [[l]] = vp b^c [[r]] = v |}
l := r

{|VPtr vp 7!v p ^⇤ p 7! v ^⇤ P |}

Reasoning with the new mapping predicates is similar to abstract-predicate
style reasoning [13] if we never unfold their definitions in client proofs. As we
will see in the case study, we only need to do this locally if we are reasoning
about changes to the page table and we are interested in the page that is being
modified. This obviously heavily depends on the page table encoding. Application
level reasoning can proceed fully abstractly.

The second interesting proof rule is the frame rule that allows global reasoning
based on local proofs. In many ways it can be seen as the core of Separation
Logic. Calcagno et al. [3] provide an abstract framework for identifying a logic as
Separation Logic and distill out the central property of locality. In their setting,
our separation algebra is the common heap monoid where the binary operation

is heap merge lifted to the heap ⇥ pptr type. Our definition of separating
conjunction then coincides with the one in the framework, and to show that
our logic is a Separation Logic, we only need to show that all actions in the
programming language are local. Locality is equivalent to the combination of
safety monotonicity and the frame property. In our setting, these two are:

10

{|P |} SKIP {|P |}
{|P |} c {|Q |} P 0 b�!c P Q b�!c Q 0

{|P 0|} c {|Q 0|}

{|P b^c |} c1 {|Q |} {|P b^c ¬|} c2 {|Q |}
{|P b^c ⌧b�|} IF b THEN c1 ELSE c2 {|Q |}

{|P b^c |} c {|P |} P b�!c ⌧b�

{|P |} WHILE b DO c {|P b^c ¬|}
{|P |} c1 {|Q |} {|Q |} c2 {|R|}

{|P |} c1 ; c2 {|R|}

{|P |} c {|Q |} {|R|} c {|S |}
{|P b^c R|} c {|Q b^c S |}

{|P |} c {|Q |} {|R|} c {|S |}
{|P b_c R|} c {|Q b_c S |}

{|(VPtr vp 7! � ^⇤ P) b^c [[l]] = vp b^c [[r]] = v |} l := r {|VPtr vp 7! v ^⇤ P |}

{|P |} c {|Q |}
{|P ^⇤ R|} c {|Q ^⇤ R|}

Fig. 5. The proof rules for Mapped Separation Logic.

separate from the heap in which the update occurs. Since the physical address of
the write is separate from the page table lookup for this address and from P, the
translation layer for their heaps is not a↵ected by the write. To reason about page
table updates we need a slightly stronger rule that unfolds the virtual-to-value

mapping and lets us talk about the physical address p:

{|(VPtr vp 7!v p ^⇤ p 7! � ^⇤ P) b^c [[l]] = vp b^c [[r]] = v |}
l := r

{|VPtr vp 7!v p ^⇤ p 7! v ^⇤ P |}

Reasoning with the new mapping predicates is similar to abstract-predicate
style reasoning [13] if we never unfold their definitions in client proofs. As we
will see in the case study, we only need to do this locally if we are reasoning
about changes to the page table and we are interested in the page that is being
modified. This obviously heavily depends on the page table encoding. Application
level reasoning can proceed fully abstractly.

The second interesting proof rule is the frame rule that allows global reasoning
based on local proofs. In many ways it can be seen as the core of Separation
Logic. Calcagno et al. [3] provide an abstract framework for identifying a logic as
Separation Logic and distill out the central property of locality. In their setting,
our separation algebra is the common heap monoid where the binary operation

is heap merge lifted to the heap ⇥ pptr type. Our definition of separating
conjunction then coincides with the one in the framework, and to show that
our logic is a Separation Logic, we only need to show that all actions in the
programming language are local. Locality is equivalent to the combination of
safety monotonicity and the frame property. In our setting, these two are:

10

{|P |} SKIP {|P |}
{|P |} c {|Q |} P 0 b�!c P Q b�!c Q 0

{|P 0|} c {|Q 0|}

{|P b^c |} c1 {|Q |} {|P b^c ¬|} c2 {|Q |}
{|P b^c ⌧b�|} IF b THEN c1 ELSE c2 {|Q |}

{|P b^c |} c {|P |} P b�!c ⌧b�

{|P |} WHILE b DO c {|P b^c ¬|}
{|P |} c1 {|Q |} {|Q |} c2 {|R|}

{|P |} c1 ; c2 {|R|}

{|P |} c {|Q |} {|R|} c {|S |}
{|P b^c R|} c {|Q b^c S |}

{|P |} c {|Q |} {|R|} c {|S |}
{|P b_c R|} c {|Q b_c S |}

{|(VPtr vp 7! � ^⇤ P) b^c [[l]] = vp b^c [[r]] = v |} l := r {|VPtr vp 7! v ^⇤ P |}

{|P |} c {|Q |}
{|P ^⇤ R|} c {|Q ^⇤ R|}

Fig. 5. The proof rules for Mapped Separation Logic.

separate from the heap in which the update occurs. Since the physical address of
the write is separate from the page table lookup for this address and from P, the
translation layer for their heaps is not a↵ected by the write. To reason about page
table updates we need a slightly stronger rule that unfolds the virtual-to-value

mapping and lets us talk about the physical address p:

{|(VPtr vp 7!v p ^⇤ p 7! � ^⇤ P) b^c [[l]] = vp b^c [[r]] = v |}
l := r

{|VPtr vp 7!v p ^⇤ p 7! v ^⇤ P |}

Reasoning with the new mapping predicates is similar to abstract-predicate
style reasoning [13] if we never unfold their definitions in client proofs. As we
will see in the case study, we only need to do this locally if we are reasoning
about changes to the page table and we are interested in the page that is being
modified. This obviously heavily depends on the page table encoding. Application
level reasoning can proceed fully abstractly.

The second interesting proof rule is the frame rule that allows global reasoning
based on local proofs. In many ways it can be seen as the core of Separation
Logic. Calcagno et al. [3] provide an abstract framework for identifying a logic as
Separation Logic and distill out the central property of locality. In their setting,
our separation algebra is the common heap monoid where the binary operation

is heap merge lifted to the heap ⇥ pptr type. Our definition of separating
conjunction then coincides with the one in the framework, and to show that
our logic is a Separation Logic, we only need to show that all actions in the
programming language are local. Locality is equivalent to the combination of
safety monotonicity and the frame property. In our setting, these two are:

10

- assignment

15

Program Logic — Rules

{|P|} SKIP {|P|}
{|P|} c {|Q|} P’ �! P

{|P’|} c {|Q|}

{|P ^ hbi|} c1 {|Q|} {|P ^ ¬hbi|} c2 {|Q|}
{|P ^ hhbii|} IF b THEN c1 ELSE c2 {|Q|}

{|P ^ hbi|} c {|P|} P �! hhbii
{|P|} WHILE b DO c {|P ^ ¬hbi|}

{|P|} c1 {|Q|} {|Q|} c2 {|R|}
{|P|} c1;; c2 {|R|}

Fig. 3. Hoare Logic rules for standard commands.

{|�s. [[l]] s = bvpc ^ [[r]] s = bvc ^ vp /2 IC s ^ Addr vp ,!s pp ^
P (heap_iset_updates (pp 7! v))|}

l ::= r {|P|}

{|�s. kernel s ^ [[rte]] s = brtc ^ P (root_iset_updates Addr rt)|}
UpdateTTBR0 rte {|P|}

{|�s. mode s = Kernel ^ P (asid_pt_snpshot_updates a)|} UpdateASID a {|P|}

{|�s. mode s = Kernel ^ P (iset_pt_snpshot_updates f)|} Flush f {|P|}

{|�s. mode s = Kernel ^ P (s(|mode := flg|))|} SetMode flg {|P|}

Fig. 4. Hoare Logic rules for commands with TLB e↵ects.

completely standard, as intended. We write hhbii s to denote that [[b]]b s 6= None:
the precondition in the IF and WHILE rules must be strong enough for failure free
evaluation of b. The rules in Fig. 4 are in weakest-precondition form. They have
a generic postcondition P and the weakest precondition that will establish P. We
will now explain them.

The assignment rule requires that the expressions l and r evaluate without
failure. The assignment succeeds if the virtual address vp is consistent in the
current state (vp /2 IC s) and vp is mapped (Addr vp ,!s pp), where

vp ,!s pp = (phy_ad (iset s) (heap s) (root s) (mode s) vp = bppc)

The e↵ect of the assignment is the heap and iset update heap_iset_update we
described in Sect. 4.2.

The rule for the command UpdateTTBR0, only available in kernel mode, up-
dates the current page table root to the value of the expression rte. The e↵ect
is modelled by root_iset_update defined in Sect. 4.2.

The UpdateASID command, also only available in kernel mode, sets the new
ASID a, increases the iset using snp_incon, and records a page table snapshot
for the old ASID using new_snp.

Finally, Flush is the instruction that the makes the iset smaller, and removes
mappings in the snapshots of inactive ASIDs, using iset_asid_map_update from
Sect. 4.2.

8

{|P|} SKIP {|P|}
{|P|} c {|Q|} P’ �! P

{|P’|} c {|Q|}

{|P ^ hbi|} c1 {|Q|} {|P ^ ¬hbi|} c2 {|Q|}
{|P ^ hhbii|} IF b THEN c1 ELSE c2 {|Q|}

{|P ^ hbi|} c {|P|} P �! hhbii
{|P|} WHILE b DO c {|P ^ ¬hbi|}

{|P|} c1 {|Q|} {|Q|} c2 {|R|}
{|P|} c1;; c2 {|R|}

Fig. 3. Hoare Logic rules for standard commands.

{|�s. [[l]] s = bvpc ^ [[r]] s = bvc ^ vp /2 IC s ^ Addr vp ,!s pp ^
P (heap_iset_updates (pp 7! v))|}

l ::= r {|P|}

{|�s. kernel s ^ [[rte]] s = brtc ^ P (root_iset_updates Addr rt)|}
UpdateTTBR0 rte {|P|}

{|�s. mode s = Kernel ^ P (asid_pt_snpshot_updates a)|} UpdateASID a {|P|}

{|�s. mode s = Kernel ^ P (iset_pt_snpshot_updates f)|} Flush f {|P|}

{|�s. mode s = Kernel ^ P (s(|mode := flg|))|} SetMode flg {|P|}

Fig. 4. Hoare Logic rules for commands with TLB e↵ects.

completely standard, as intended. We write hhbii s to denote that [[b]]b s 6= None:
the precondition in the IF and WHILE rules must be strong enough for failure free
evaluation of b. The rules in Fig. 4 are in weakest-precondition form. They have
a generic postcondition P and the weakest precondition that will establish P. We
will now explain them.

The assignment rule requires that the expressions l and r evaluate without
failure. The assignment succeeds if the virtual address vp is consistent in the
current state (vp /2 IC s) and vp is mapped (Addr vp ,!s pp), where

vp ,!s pp = (phy_ad (iset s) (heap s) (root s) (mode s) vp = bppc)

The e↵ect of the assignment is the heap and iset update heap_iset_update we
described in Sect. 4.2.

The rule for the command UpdateTTBR0, only available in kernel mode, up-
dates the current page table root to the value of the expression rte. The e↵ect
is modelled by root_iset_update defined in Sect. 4.2.

The UpdateASID command, also only available in kernel mode, sets the new
ASID a, increases the iset using snp_incon, and records a page table snapshot
for the old ASID using new_snp.

Finally, Flush is the instruction that the makes the iset smaller, and removes
mappings in the snapshots of inactive ASIDs, using iset_asid_map_update from
Sect. 4.2.

8

DR
AF
T

block-invalidation :: tlb) asid) va set) tlb

block-invalidation t a V ⌘ (
S

x2V. selective-invalidation t a x)

asid-invalidation :: tlb) asid) tlb

asid-invalidation t a ⌘ t - asid-entry-set t a

va-invalidation :: tlb) va) tlb

va-invalidation t v ⌘ t - va-set t v

selective-invalidation selectively removes the entry or entries covering the
given virtual address and ASID depending upon the outcome of lookup opera-
tion. Whereas, block-invalidation takes a set of virtual addresses along with
particular ASID and selectively invalidates all of them. asid-invalidation and
va-invalidation removes entries using asid-entry-set and va-entry-set re-
spectively. We have proved the correctness of invalidation functions by validating
many interesting theorems shown in Figure ??.

✏ �s. P (s(x := e s)) x := e P

4 TLB Model inclusion in Cambridge ARM model

5 Conclusions

 Program Verification in the Presence of TLB-Address Translation Hira Syeda

✓successful evaluation of to a
✓consistency of
✓valid address translation of to
✓ reasoning about heap and incon_set update

{|P |} SKIP {|P |}
{|P |} c {|Q |} P 0 b�!c P Q b�!c Q 0

{|P 0|} c {|Q 0|}

{|P b^c |} c1 {|Q |} {|P b^c ¬|} c2 {|Q |}
{|P b^c ⌧b�|} IF b THEN c1 ELSE c2 {|Q |}

{|P b^c |} c {|P |} P b�!c ⌧b�

{|P |} WHILE b DO c {|P b^c ¬|}
{|P |} c1 {|Q |} {|Q |} c2 {|R|}

{|P |} c1 ; c2 {|R|}

{|P |} c {|Q |} {|R|} c {|S |}
{|P b^c R|} c {|Q b^c S |}

{|P |} c {|Q |} {|R|} c {|S |}
{|P b_c R|} c {|Q b_c S |}

{|(VPtr vp 7! � ^⇤ P) b^c [[l]] = vp b^c [[r]] = v |} l := r {|VPtr vp 7! v ^⇤ P |}

{|P |} c {|Q |}
{|P ^⇤ R|} c {|Q ^⇤ R|}

Fig. 5. The proof rules for Mapped Separation Logic.

separate from the heap in which the update occurs. Since the physical address of
the write is separate from the page table lookup for this address and from P, the
translation layer for their heaps is not a↵ected by the write. To reason about page
table updates we need a slightly stronger rule that unfolds the virtual-to-value

mapping and lets us talk about the physical address p:

{|(VPtr vp 7!v p ^⇤ p 7! � ^⇤ P) b^c [[l]] = vp b^c [[r]] = v |}
l := r

{|VPtr vp 7!v p ^⇤ p 7! v ^⇤ P |}

Reasoning with the new mapping predicates is similar to abstract-predicate
style reasoning [13] if we never unfold their definitions in client proofs. As we
will see in the case study, we only need to do this locally if we are reasoning
about changes to the page table and we are interested in the page that is being
modified. This obviously heavily depends on the page table encoding. Application
level reasoning can proceed fully abstractly.

The second interesting proof rule is the frame rule that allows global reasoning
based on local proofs. In many ways it can be seen as the core of Separation
Logic. Calcagno et al. [3] provide an abstract framework for identifying a logic as
Separation Logic and distill out the central property of locality. In their setting,
our separation algebra is the common heap monoid where the binary operation

is heap merge lifted to the heap ⇥ pptr type. Our definition of separating
conjunction then coincides with the one in the framework, and to show that
our logic is a Separation Logic, we only need to show that all actions in the
programming language are local. Locality is equivalent to the combination of
safety monotonicity and the frame property. In our setting, these two are:

10

{|P |} SKIP {|P |}
{|P |} c {|Q |} P 0 b�!c P Q b�!c Q 0

{|P 0|} c {|Q 0|}

{|P b^c |} c1 {|Q |} {|P b^c ¬|} c2 {|Q |}
{|P b^c ⌧b�|} IF b THEN c1 ELSE c2 {|Q |}

{|P b^c |} c {|P |} P b�!c ⌧b�

{|P |} WHILE b DO c {|P b^c ¬|}
{|P |} c1 {|Q |} {|Q |} c2 {|R|}

{|P |} c1 ; c2 {|R|}

{|P |} c {|Q |} {|R|} c {|S |}
{|P b^c R|} c {|Q b^c S |}

{|P |} c {|Q |} {|R|} c {|S |}
{|P b_c R|} c {|Q b_c S |}

{|(VPtr vp 7! � ^⇤ P) b^c [[l]] = vp b^c [[r]] = v |} l := r {|VPtr vp 7! v ^⇤ P |}

{|P |} c {|Q |}
{|P ^⇤ R|} c {|Q ^⇤ R|}

Fig. 5. The proof rules for Mapped Separation Logic.

separate from the heap in which the update occurs. Since the physical address of
the write is separate from the page table lookup for this address and from P, the
translation layer for their heaps is not a↵ected by the write. To reason about page
table updates we need a slightly stronger rule that unfolds the virtual-to-value

mapping and lets us talk about the physical address p:

{|(VPtr vp 7!v p ^⇤ p 7! � ^⇤ P) b^c [[l]] = vp b^c [[r]] = v |}
l := r

{|VPtr vp 7!v p ^⇤ p 7! v ^⇤ P |}

Reasoning with the new mapping predicates is similar to abstract-predicate
style reasoning [13] if we never unfold their definitions in client proofs. As we
will see in the case study, we only need to do this locally if we are reasoning
about changes to the page table and we are interested in the page that is being
modified. This obviously heavily depends on the page table encoding. Application
level reasoning can proceed fully abstractly.

The second interesting proof rule is the frame rule that allows global reasoning
based on local proofs. In many ways it can be seen as the core of Separation
Logic. Calcagno et al. [3] provide an abstract framework for identifying a logic as
Separation Logic and distill out the central property of locality. In their setting,
our separation algebra is the common heap monoid where the binary operation

is heap merge lifted to the heap ⇥ pptr type. Our definition of separating
conjunction then coincides with the one in the framework, and to show that
our logic is a Separation Logic, we only need to show that all actions in the
programming language are local. Locality is equivalent to the combination of
safety monotonicity and the frame property. In our setting, these two are:

10

{|P |} SKIP {|P |}
{|P |} c {|Q |} P 0 b�!c P Q b�!c Q 0

{|P 0|} c {|Q 0|}

{|P b^c |} c1 {|Q |} {|P b^c ¬|} c2 {|Q |}
{|P b^c ⌧b�|} IF b THEN c1 ELSE c2 {|Q |}

{|P b^c |} c {|P |} P b�!c ⌧b�

{|P |} WHILE b DO c {|P b^c ¬|}
{|P |} c1 {|Q |} {|Q |} c2 {|R|}

{|P |} c1 ; c2 {|R|}

{|P |} c {|Q |} {|R|} c {|S |}
{|P b^c R|} c {|Q b^c S |}

{|P |} c {|Q |} {|R|} c {|S |}
{|P b_c R|} c {|Q b_c S |}

{|(VPtr vp 7! � ^⇤ P) b^c [[l]] = vp b^c [[r]] = v |} l := r {|VPtr vp 7! v ^⇤ P |}

{|P |} c {|Q |}
{|P ^⇤ R|} c {|Q ^⇤ R|}

Fig. 5. The proof rules for Mapped Separation Logic.

separate from the heap in which the update occurs. Since the physical address of
the write is separate from the page table lookup for this address and from P, the
translation layer for their heaps is not a↵ected by the write. To reason about page
table updates we need a slightly stronger rule that unfolds the virtual-to-value

mapping and lets us talk about the physical address p:

{|(VPtr vp 7!v p ^⇤ p 7! � ^⇤ P) b^c [[l]] = vp b^c [[r]] = v |}
l := r

{|VPtr vp 7!v p ^⇤ p 7! v ^⇤ P |}

Reasoning with the new mapping predicates is similar to abstract-predicate
style reasoning [13] if we never unfold their definitions in client proofs. As we
will see in the case study, we only need to do this locally if we are reasoning
about changes to the page table and we are interested in the page that is being
modified. This obviously heavily depends on the page table encoding. Application
level reasoning can proceed fully abstractly.

The second interesting proof rule is the frame rule that allows global reasoning
based on local proofs. In many ways it can be seen as the core of Separation
Logic. Calcagno et al. [3] provide an abstract framework for identifying a logic as
Separation Logic and distill out the central property of locality. In their setting,
our separation algebra is the common heap monoid where the binary operation

is heap merge lifted to the heap ⇥ pptr type. Our definition of separating
conjunction then coincides with the one in the framework, and to show that
our logic is a Separation Logic, we only need to show that all actions in the
programming language are local. Locality is equivalent to the combination of
safety monotonicity and the frame property. In our setting, these two are:

10

{|P |} SKIP {|P |}
{|P |} c {|Q |} P 0 b�!c P Q b�!c Q 0

{|P 0|} c {|Q 0|}

{|P b^c |} c1 {|Q |} {|P b^c ¬|} c2 {|Q |}
{|P b^c ⌧b�|} IF b THEN c1 ELSE c2 {|Q |}

{|P b^c |} c {|P |} P b�!c ⌧b�

{|P |} WHILE b DO c {|P b^c ¬|}
{|P |} c1 {|Q |} {|Q |} c2 {|R|}

{|P |} c1 ; c2 {|R|}

{|P |} c {|Q |} {|R|} c {|S |}
{|P b^c R|} c {|Q b^c S |}

{|P |} c {|Q |} {|R|} c {|S |}
{|P b_c R|} c {|Q b_c S |}

{|(VPtr vp 7! � ^⇤ P) b^c [[l]] = vp b^c [[r]] = v |} l := r {|VPtr vp 7! v ^⇤ P |}

{|P |} c {|Q |}
{|P ^⇤ R|} c {|Q ^⇤ R|}

Fig. 5. The proof rules for Mapped Separation Logic.

separate from the heap in which the update occurs. Since the physical address of
the write is separate from the page table lookup for this address and from P, the
translation layer for their heaps is not a↵ected by the write. To reason about page
table updates we need a slightly stronger rule that unfolds the virtual-to-value

mapping and lets us talk about the physical address p:

{|(VPtr vp 7!v p ^⇤ p 7! � ^⇤ P) b^c [[l]] = vp b^c [[r]] = v |}
l := r

{|VPtr vp 7!v p ^⇤ p 7! v ^⇤ P |}

Reasoning with the new mapping predicates is similar to abstract-predicate
style reasoning [13] if we never unfold their definitions in client proofs. As we
will see in the case study, we only need to do this locally if we are reasoning
about changes to the page table and we are interested in the page that is being
modified. This obviously heavily depends on the page table encoding. Application
level reasoning can proceed fully abstractly.

The second interesting proof rule is the frame rule that allows global reasoning
based on local proofs. In many ways it can be seen as the core of Separation
Logic. Calcagno et al. [3] provide an abstract framework for identifying a logic as
Separation Logic and distill out the central property of locality. In their setting,
our separation algebra is the common heap monoid where the binary operation

is heap merge lifted to the heap ⇥ pptr type. Our definition of separating
conjunction then coincides with the one in the framework, and to show that
our logic is a Separation Logic, we only need to show that all actions in the
programming language are local. Locality is equivalent to the combination of
safety monotonicity and the frame property. In our setting, these two are:

10

{|P |} SKIP {|P |}
{|P |} c {|Q |} P 0 b�!c P Q b�!c Q 0

{|P 0|} c {|Q 0|}

{|P b^c |} c1 {|Q |} {|P b^c ¬|} c2 {|Q |}
{|P b^c ⌧b�|} IF b THEN c1 ELSE c2 {|Q |}

{|P b^c |} c {|P |} P b�!c ⌧b�

{|P |} WHILE b DO c {|P b^c ¬|}
{|P |} c1 {|Q |} {|Q |} c2 {|R|}

{|P |} c1 ; c2 {|R|}

{|P |} c {|Q |} {|R|} c {|S |}
{|P b^c R|} c {|Q b^c S |}

{|P |} c {|Q |} {|R|} c {|S |}
{|P b_c R|} c {|Q b_c S |}

{|(VPtr vp 7! � ^⇤ P) b^c [[l]] = vp b^c [[r]] = v |} l := r {|VPtr vp 7! v ^⇤ P |}

{|P |} c {|Q |}
{|P ^⇤ R|} c {|Q ^⇤ R|}

Fig. 5. The proof rules for Mapped Separation Logic.

separate from the heap in which the update occurs. Since the physical address of
the write is separate from the page table lookup for this address and from P, the
translation layer for their heaps is not a↵ected by the write. To reason about page
table updates we need a slightly stronger rule that unfolds the virtual-to-value

mapping and lets us talk about the physical address p:

{|(VPtr vp 7!v p ^⇤ p 7! � ^⇤ P) b^c [[l]] = vp b^c [[r]] = v |}
l := r

{|VPtr vp 7!v p ^⇤ p 7! v ^⇤ P |}

Reasoning with the new mapping predicates is similar to abstract-predicate
style reasoning [13] if we never unfold their definitions in client proofs. As we
will see in the case study, we only need to do this locally if we are reasoning
about changes to the page table and we are interested in the page that is being
modified. This obviously heavily depends on the page table encoding. Application
level reasoning can proceed fully abstractly.

The second interesting proof rule is the frame rule that allows global reasoning
based on local proofs. In many ways it can be seen as the core of Separation
Logic. Calcagno et al. [3] provide an abstract framework for identifying a logic as
Separation Logic and distill out the central property of locality. In their setting,
our separation algebra is the common heap monoid where the binary operation

is heap merge lifted to the heap ⇥ pptr type. Our definition of separating
conjunction then coincides with the one in the framework, and to show that
our logic is a Separation Logic, we only need to show that all actions in the
programming language are local. Locality is equivalent to the combination of
safety monotonicity and the frame property. In our setting, these two are:

10

{|P |} SKIP {|P |}
{|P |} c {|Q |} P 0 b�!c P Q b�!c Q 0

{|P 0|} c {|Q 0|}

{|P b^c |} c1 {|Q |} {|P b^c ¬|} c2 {|Q |}
{|P b^c ⌧b�|} IF b THEN c1 ELSE c2 {|Q |}

{|P b^c |} c {|P |} P b�!c ⌧b�

{|P |} WHILE b DO c {|P b^c ¬|}
{|P |} c1 {|Q |} {|Q |} c2 {|R|}

{|P |} c1 ; c2 {|R|}

{|P |} c {|Q |} {|R|} c {|S |}
{|P b^c R|} c {|Q b^c S |}

{|P |} c {|Q |} {|R|} c {|S |}
{|P b_c R|} c {|Q b_c S |}

{|(VPtr vp 7! � ^⇤ P) b^c [[l]] = vp b^c [[r]] = v |} l := r {|VPtr vp 7! v ^⇤ P |}

{|P |} c {|Q |}
{|P ^⇤ R|} c {|Q ^⇤ R|}

Fig. 5. The proof rules for Mapped Separation Logic.

separate from the heap in which the update occurs. Since the physical address of
the write is separate from the page table lookup for this address and from P, the
translation layer for their heaps is not a↵ected by the write. To reason about page
table updates we need a slightly stronger rule that unfolds the virtual-to-value

mapping and lets us talk about the physical address p:

{|(VPtr vp 7!v p ^⇤ p 7! � ^⇤ P) b^c [[l]] = vp b^c [[r]] = v |}
l := r

{|VPtr vp 7!v p ^⇤ p 7! v ^⇤ P |}

Reasoning with the new mapping predicates is similar to abstract-predicate
style reasoning [13] if we never unfold their definitions in client proofs. As we
will see in the case study, we only need to do this locally if we are reasoning
about changes to the page table and we are interested in the page that is being
modified. This obviously heavily depends on the page table encoding. Application
level reasoning can proceed fully abstractly.

The second interesting proof rule is the frame rule that allows global reasoning
based on local proofs. In many ways it can be seen as the core of Separation
Logic. Calcagno et al. [3] provide an abstract framework for identifying a logic as
Separation Logic and distill out the central property of locality. In their setting,
our separation algebra is the common heap monoid where the binary operation

is heap merge lifted to the heap ⇥ pptr type. Our definition of separating
conjunction then coincides with the one in the framework, and to show that
our logic is a Separation Logic, we only need to show that all actions in the
programming language are local. Locality is equivalent to the combination of
safety monotonicity and the frame property. In our setting, these two are:

10

- assignment

15

Program Logic — Rules

{|P|} SKIP {|P|}
{|P|} c {|Q|} P’ �! P

{|P’|} c {|Q|}

{|P ^ hbi|} c1 {|Q|} {|P ^ ¬hbi|} c2 {|Q|}
{|P ^ hhbii|} IF b THEN c1 ELSE c2 {|Q|}

{|P ^ hbi|} c {|P|} P �! hhbii
{|P|} WHILE b DO c {|P ^ ¬hbi|}

{|P|} c1 {|Q|} {|Q|} c2 {|R|}
{|P|} c1;; c2 {|R|}

Fig. 3. Hoare Logic rules for standard commands.

{|�s. [[l]] s = bvpc ^ [[r]] s = bvc ^ vp /2 IC s ^ Addr vp ,!s pp ^
P (heap_iset_updates (pp 7! v))|}

l ::= r {|P|}

{|�s. kernel s ^ [[rte]] s = brtc ^ P (root_iset_updates Addr rt)|}
UpdateTTBR0 rte {|P|}

{|�s. mode s = Kernel ^ P (asid_pt_snpshot_updates a)|} UpdateASID a {|P|}

{|�s. mode s = Kernel ^ P (iset_pt_snpshot_updates f)|} Flush f {|P|}

{|�s. mode s = Kernel ^ P (s(|mode := flg|))|} SetMode flg {|P|}

Fig. 4. Hoare Logic rules for commands with TLB e↵ects.

completely standard, as intended. We write hhbii s to denote that [[b]]b s 6= None:
the precondition in the IF and WHILE rules must be strong enough for failure free
evaluation of b. The rules in Fig. 4 are in weakest-precondition form. They have
a generic postcondition P and the weakest precondition that will establish P. We
will now explain them.

The assignment rule requires that the expressions l and r evaluate without
failure. The assignment succeeds if the virtual address vp is consistent in the
current state (vp /2 IC s) and vp is mapped (Addr vp ,!s pp), where

vp ,!s pp = (phy_ad (iset s) (heap s) (root s) (mode s) vp = bppc)

The e↵ect of the assignment is the heap and iset update heap_iset_update we
described in Sect. 4.2.

The rule for the command UpdateTTBR0, only available in kernel mode, up-
dates the current page table root to the value of the expression rte. The e↵ect
is modelled by root_iset_update defined in Sect. 4.2.

The UpdateASID command, also only available in kernel mode, sets the new
ASID a, increases the iset using snp_incon, and records a page table snapshot
for the old ASID using new_snp.

Finally, Flush is the instruction that the makes the iset smaller, and removes
mappings in the snapshots of inactive ASIDs, using iset_asid_map_update from
Sect. 4.2.

8

{|P|} SKIP {|P|}
{|P|} c {|Q|} P’ �! P

{|P’|} c {|Q|}

{|P ^ hbi|} c1 {|Q|} {|P ^ ¬hbi|} c2 {|Q|}
{|P ^ hhbii|} IF b THEN c1 ELSE c2 {|Q|}

{|P ^ hbi|} c {|P|} P �! hhbii
{|P|} WHILE b DO c {|P ^ ¬hbi|}

{|P|} c1 {|Q|} {|Q|} c2 {|R|}
{|P|} c1;; c2 {|R|}

Fig. 3. Hoare Logic rules for standard commands.

{|�s. [[l]] s = bvpc ^ [[r]] s = bvc ^ vp /2 IC s ^ Addr vp ,!s pp ^
P (heap_iset_updates (pp 7! v))|}

l ::= r {|P|}

{|�s. kernel s ^ [[rte]] s = brtc ^ P (root_iset_updates Addr rt)|}
UpdateTTBR0 rte {|P|}

{|�s. mode s = Kernel ^ P (asid_pt_snpshot_updates a)|} UpdateASID a {|P|}

{|�s. mode s = Kernel ^ P (iset_pt_snpshot_updates f)|} Flush f {|P|}

{|�s. mode s = Kernel ^ P (s(|mode := flg|))|} SetMode flg {|P|}

Fig. 4. Hoare Logic rules for commands with TLB e↵ects.

completely standard, as intended. We write hhbii s to denote that [[b]]b s 6= None:
the precondition in the IF and WHILE rules must be strong enough for failure free
evaluation of b. The rules in Fig. 4 are in weakest-precondition form. They have
a generic postcondition P and the weakest precondition that will establish P. We
will now explain them.

The assignment rule requires that the expressions l and r evaluate without
failure. The assignment succeeds if the virtual address vp is consistent in the
current state (vp /2 IC s) and vp is mapped (Addr vp ,!s pp), where

vp ,!s pp = (phy_ad (iset s) (heap s) (root s) (mode s) vp = bppc)

The e↵ect of the assignment is the heap and iset update heap_iset_update we
described in Sect. 4.2.

The rule for the command UpdateTTBR0, only available in kernel mode, up-
dates the current page table root to the value of the expression rte. The e↵ect
is modelled by root_iset_update defined in Sect. 4.2.

The UpdateASID command, also only available in kernel mode, sets the new
ASID a, increases the iset using snp_incon, and records a page table snapshot
for the old ASID using new_snp.

Finally, Flush is the instruction that the makes the iset smaller, and removes
mappings in the snapshots of inactive ASIDs, using iset_asid_map_update from
Sect. 4.2.

8

DR
AF
T

block-invalidation :: tlb) asid) va set) tlb

block-invalidation t a V ⌘ (
S

x2V. selective-invalidation t a x)

asid-invalidation :: tlb) asid) tlb

asid-invalidation t a ⌘ t - asid-entry-set t a

va-invalidation :: tlb) va) tlb

va-invalidation t v ⌘ t - va-set t v

selective-invalidation selectively removes the entry or entries covering the
given virtual address and ASID depending upon the outcome of lookup opera-
tion. Whereas, block-invalidation takes a set of virtual addresses along with
particular ASID and selectively invalidates all of them. asid-invalidation and
va-invalidation removes entries using asid-entry-set and va-entry-set re-
spectively. We have proved the correctness of invalidation functions by validating
many interesting theorems shown in Figure ??.

✏ �s. P (s(x := e s)) x := e P

4 TLB Model inclusion in Cambridge ARM model

5 Conclusions

 Program Verification in the Presence of TLB-Address Translation Hira Syeda

✓successful evaluation of to a
✓consistency of
✓valid address translation of to
✓ reasoning about heap and incon_set update

{|P |} SKIP {|P |}
{|P |} c {|Q |} P 0 b�!c P Q b�!c Q 0

{|P 0|} c {|Q 0|}

{|P b^c |} c1 {|Q |} {|P b^c ¬|} c2 {|Q |}
{|P b^c ⌧b�|} IF b THEN c1 ELSE c2 {|Q |}

{|P b^c |} c {|P |} P b�!c ⌧b�

{|P |} WHILE b DO c {|P b^c ¬|}
{|P |} c1 {|Q |} {|Q |} c2 {|R|}

{|P |} c1 ; c2 {|R|}

{|P |} c {|Q |} {|R|} c {|S |}
{|P b^c R|} c {|Q b^c S |}

{|P |} c {|Q |} {|R|} c {|S |}
{|P b_c R|} c {|Q b_c S |}

{|(VPtr vp 7! � ^⇤ P) b^c [[l]] = vp b^c [[r]] = v |} l := r {|VPtr vp 7! v ^⇤ P |}

{|P |} c {|Q |}
{|P ^⇤ R|} c {|Q ^⇤ R|}

Fig. 5. The proof rules for Mapped Separation Logic.

separate from the heap in which the update occurs. Since the physical address of
the write is separate from the page table lookup for this address and from P, the
translation layer for their heaps is not a↵ected by the write. To reason about page
table updates we need a slightly stronger rule that unfolds the virtual-to-value

mapping and lets us talk about the physical address p:

{|(VPtr vp 7!v p ^⇤ p 7! � ^⇤ P) b^c [[l]] = vp b^c [[r]] = v |}
l := r

{|VPtr vp 7!v p ^⇤ p 7! v ^⇤ P |}

Reasoning with the new mapping predicates is similar to abstract-predicate
style reasoning [13] if we never unfold their definitions in client proofs. As we
will see in the case study, we only need to do this locally if we are reasoning
about changes to the page table and we are interested in the page that is being
modified. This obviously heavily depends on the page table encoding. Application
level reasoning can proceed fully abstractly.

The second interesting proof rule is the frame rule that allows global reasoning
based on local proofs. In many ways it can be seen as the core of Separation
Logic. Calcagno et al. [3] provide an abstract framework for identifying a logic as
Separation Logic and distill out the central property of locality. In their setting,
our separation algebra is the common heap monoid where the binary operation

is heap merge lifted to the heap ⇥ pptr type. Our definition of separating
conjunction then coincides with the one in the framework, and to show that
our logic is a Separation Logic, we only need to show that all actions in the
programming language are local. Locality is equivalent to the combination of
safety monotonicity and the frame property. In our setting, these two are:

10

{|P |} SKIP {|P |}
{|P |} c {|Q |} P 0 b�!c P Q b�!c Q 0

{|P 0|} c {|Q 0|}

{|P b^c |} c1 {|Q |} {|P b^c ¬|} c2 {|Q |}
{|P b^c ⌧b�|} IF b THEN c1 ELSE c2 {|Q |}

{|P b^c |} c {|P |} P b�!c ⌧b�

{|P |} WHILE b DO c {|P b^c ¬|}
{|P |} c1 {|Q |} {|Q |} c2 {|R|}

{|P |} c1 ; c2 {|R|}

{|P |} c {|Q |} {|R|} c {|S |}
{|P b^c R|} c {|Q b^c S |}

{|P |} c {|Q |} {|R|} c {|S |}
{|P b_c R|} c {|Q b_c S |}

{|(VPtr vp 7! � ^⇤ P) b^c [[l]] = vp b^c [[r]] = v |} l := r {|VPtr vp 7! v ^⇤ P |}

{|P |} c {|Q |}
{|P ^⇤ R|} c {|Q ^⇤ R|}

Fig. 5. The proof rules for Mapped Separation Logic.

separate from the heap in which the update occurs. Since the physical address of
the write is separate from the page table lookup for this address and from P, the
translation layer for their heaps is not a↵ected by the write. To reason about page
table updates we need a slightly stronger rule that unfolds the virtual-to-value

mapping and lets us talk about the physical address p:

{|(VPtr vp 7!v p ^⇤ p 7! � ^⇤ P) b^c [[l]] = vp b^c [[r]] = v |}
l := r

{|VPtr vp 7!v p ^⇤ p 7! v ^⇤ P |}

Reasoning with the new mapping predicates is similar to abstract-predicate
style reasoning [13] if we never unfold their definitions in client proofs. As we
will see in the case study, we only need to do this locally if we are reasoning
about changes to the page table and we are interested in the page that is being
modified. This obviously heavily depends on the page table encoding. Application
level reasoning can proceed fully abstractly.

The second interesting proof rule is the frame rule that allows global reasoning
based on local proofs. In many ways it can be seen as the core of Separation
Logic. Calcagno et al. [3] provide an abstract framework for identifying a logic as
Separation Logic and distill out the central property of locality. In their setting,
our separation algebra is the common heap monoid where the binary operation

is heap merge lifted to the heap ⇥ pptr type. Our definition of separating
conjunction then coincides with the one in the framework, and to show that
our logic is a Separation Logic, we only need to show that all actions in the
programming language are local. Locality is equivalent to the combination of
safety monotonicity and the frame property. In our setting, these two are:

10

{|P |} SKIP {|P |}
{|P |} c {|Q |} P 0 b�!c P Q b�!c Q 0

{|P 0|} c {|Q 0|}

{|P b^c |} c1 {|Q |} {|P b^c ¬|} c2 {|Q |}
{|P b^c ⌧b�|} IF b THEN c1 ELSE c2 {|Q |}

{|P b^c |} c {|P |} P b�!c ⌧b�

{|P |} WHILE b DO c {|P b^c ¬|}
{|P |} c1 {|Q |} {|Q |} c2 {|R|}

{|P |} c1 ; c2 {|R|}

{|P |} c {|Q |} {|R|} c {|S |}
{|P b^c R|} c {|Q b^c S |}

{|P |} c {|Q |} {|R|} c {|S |}
{|P b_c R|} c {|Q b_c S |}

{|(VPtr vp 7! � ^⇤ P) b^c [[l]] = vp b^c [[r]] = v |} l := r {|VPtr vp 7! v ^⇤ P |}

{|P |} c {|Q |}
{|P ^⇤ R|} c {|Q ^⇤ R|}

Fig. 5. The proof rules for Mapped Separation Logic.

separate from the heap in which the update occurs. Since the physical address of
the write is separate from the page table lookup for this address and from P, the
translation layer for their heaps is not a↵ected by the write. To reason about page
table updates we need a slightly stronger rule that unfolds the virtual-to-value

mapping and lets us talk about the physical address p:

{|(VPtr vp 7!v p ^⇤ p 7! � ^⇤ P) b^c [[l]] = vp b^c [[r]] = v |}
l := r

{|VPtr vp 7!v p ^⇤ p 7! v ^⇤ P |}

Reasoning with the new mapping predicates is similar to abstract-predicate
style reasoning [13] if we never unfold their definitions in client proofs. As we
will see in the case study, we only need to do this locally if we are reasoning
about changes to the page table and we are interested in the page that is being
modified. This obviously heavily depends on the page table encoding. Application
level reasoning can proceed fully abstractly.

The second interesting proof rule is the frame rule that allows global reasoning
based on local proofs. In many ways it can be seen as the core of Separation
Logic. Calcagno et al. [3] provide an abstract framework for identifying a logic as
Separation Logic and distill out the central property of locality. In their setting,
our separation algebra is the common heap monoid where the binary operation

is heap merge lifted to the heap ⇥ pptr type. Our definition of separating
conjunction then coincides with the one in the framework, and to show that
our logic is a Separation Logic, we only need to show that all actions in the
programming language are local. Locality is equivalent to the combination of
safety monotonicity and the frame property. In our setting, these two are:

10

{|P |} SKIP {|P |}
{|P |} c {|Q |} P 0 b�!c P Q b�!c Q 0

{|P 0|} c {|Q 0|}

{|P b^c |} c1 {|Q |} {|P b^c ¬|} c2 {|Q |}
{|P b^c ⌧b�|} IF b THEN c1 ELSE c2 {|Q |}

{|P b^c |} c {|P |} P b�!c ⌧b�

{|P |} WHILE b DO c {|P b^c ¬|}
{|P |} c1 {|Q |} {|Q |} c2 {|R|}

{|P |} c1 ; c2 {|R|}

{|P |} c {|Q |} {|R|} c {|S |}
{|P b^c R|} c {|Q b^c S |}

{|P |} c {|Q |} {|R|} c {|S |}
{|P b_c R|} c {|Q b_c S |}

{|(VPtr vp 7! � ^⇤ P) b^c [[l]] = vp b^c [[r]] = v |} l := r {|VPtr vp 7! v ^⇤ P |}

{|P |} c {|Q |}
{|P ^⇤ R|} c {|Q ^⇤ R|}

Fig. 5. The proof rules for Mapped Separation Logic.

separate from the heap in which the update occurs. Since the physical address of
the write is separate from the page table lookup for this address and from P, the
translation layer for their heaps is not a↵ected by the write. To reason about page
table updates we need a slightly stronger rule that unfolds the virtual-to-value

mapping and lets us talk about the physical address p:

{|(VPtr vp 7!v p ^⇤ p 7! � ^⇤ P) b^c [[l]] = vp b^c [[r]] = v |}
l := r

{|VPtr vp 7!v p ^⇤ p 7! v ^⇤ P |}

Reasoning with the new mapping predicates is similar to abstract-predicate
style reasoning [13] if we never unfold their definitions in client proofs. As we
will see in the case study, we only need to do this locally if we are reasoning
about changes to the page table and we are interested in the page that is being
modified. This obviously heavily depends on the page table encoding. Application
level reasoning can proceed fully abstractly.

The second interesting proof rule is the frame rule that allows global reasoning
based on local proofs. In many ways it can be seen as the core of Separation
Logic. Calcagno et al. [3] provide an abstract framework for identifying a logic as
Separation Logic and distill out the central property of locality. In their setting,
our separation algebra is the common heap monoid where the binary operation

is heap merge lifted to the heap ⇥ pptr type. Our definition of separating
conjunction then coincides with the one in the framework, and to show that
our logic is a Separation Logic, we only need to show that all actions in the
programming language are local. Locality is equivalent to the combination of
safety monotonicity and the frame property. In our setting, these two are:

10

{|P |} SKIP {|P |}
{|P |} c {|Q |} P 0 b�!c P Q b�!c Q 0

{|P 0|} c {|Q 0|}

{|P b^c |} c1 {|Q |} {|P b^c ¬|} c2 {|Q |}
{|P b^c ⌧b�|} IF b THEN c1 ELSE c2 {|Q |}

{|P b^c |} c {|P |} P b�!c ⌧b�

{|P |} WHILE b DO c {|P b^c ¬|}
{|P |} c1 {|Q |} {|Q |} c2 {|R|}

{|P |} c1 ; c2 {|R|}

{|P |} c {|Q |} {|R|} c {|S |}
{|P b^c R|} c {|Q b^c S |}

{|P |} c {|Q |} {|R|} c {|S |}
{|P b_c R|} c {|Q b_c S |}

{|(VPtr vp 7! � ^⇤ P) b^c [[l]] = vp b^c [[r]] = v |} l := r {|VPtr vp 7! v ^⇤ P |}

{|P |} c {|Q |}
{|P ^⇤ R|} c {|Q ^⇤ R|}

Fig. 5. The proof rules for Mapped Separation Logic.

separate from the heap in which the update occurs. Since the physical address of
the write is separate from the page table lookup for this address and from P, the
translation layer for their heaps is not a↵ected by the write. To reason about page
table updates we need a slightly stronger rule that unfolds the virtual-to-value

mapping and lets us talk about the physical address p:

{|(VPtr vp 7!v p ^⇤ p 7! � ^⇤ P) b^c [[l]] = vp b^c [[r]] = v |}
l := r

{|VPtr vp 7!v p ^⇤ p 7! v ^⇤ P |}

Reasoning with the new mapping predicates is similar to abstract-predicate
style reasoning [13] if we never unfold their definitions in client proofs. As we
will see in the case study, we only need to do this locally if we are reasoning
about changes to the page table and we are interested in the page that is being
modified. This obviously heavily depends on the page table encoding. Application
level reasoning can proceed fully abstractly.

The second interesting proof rule is the frame rule that allows global reasoning
based on local proofs. In many ways it can be seen as the core of Separation
Logic. Calcagno et al. [3] provide an abstract framework for identifying a logic as
Separation Logic and distill out the central property of locality. In their setting,
our separation algebra is the common heap monoid where the binary operation

is heap merge lifted to the heap ⇥ pptr type. Our definition of separating
conjunction then coincides with the one in the framework, and to show that
our logic is a Separation Logic, we only need to show that all actions in the
programming language are local. Locality is equivalent to the combination of
safety monotonicity and the frame property. In our setting, these two are:

10

{|P |} SKIP {|P |}
{|P |} c {|Q |} P 0 b�!c P Q b�!c Q 0

{|P 0|} c {|Q 0|}

{|P b^c |} c1 {|Q |} {|P b^c ¬|} c2 {|Q |}
{|P b^c ⌧b�|} IF b THEN c1 ELSE c2 {|Q |}

{|P b^c |} c {|P |} P b�!c ⌧b�

{|P |} WHILE b DO c {|P b^c ¬|}
{|P |} c1 {|Q |} {|Q |} c2 {|R|}

{|P |} c1 ; c2 {|R|}

{|P |} c {|Q |} {|R|} c {|S |}
{|P b^c R|} c {|Q b^c S |}

{|P |} c {|Q |} {|R|} c {|S |}
{|P b_c R|} c {|Q b_c S |}

{|(VPtr vp 7! � ^⇤ P) b^c [[l]] = vp b^c [[r]] = v |} l := r {|VPtr vp 7! v ^⇤ P |}

{|P |} c {|Q |}
{|P ^⇤ R|} c {|Q ^⇤ R|}

Fig. 5. The proof rules for Mapped Separation Logic.

separate from the heap in which the update occurs. Since the physical address of
the write is separate from the page table lookup for this address and from P, the
translation layer for their heaps is not a↵ected by the write. To reason about page
table updates we need a slightly stronger rule that unfolds the virtual-to-value

mapping and lets us talk about the physical address p:

{|(VPtr vp 7!v p ^⇤ p 7! � ^⇤ P) b^c [[l]] = vp b^c [[r]] = v |}
l := r

{|VPtr vp 7!v p ^⇤ p 7! v ^⇤ P |}

Reasoning with the new mapping predicates is similar to abstract-predicate
style reasoning [13] if we never unfold their definitions in client proofs. As we
will see in the case study, we only need to do this locally if we are reasoning
about changes to the page table and we are interested in the page that is being
modified. This obviously heavily depends on the page table encoding. Application
level reasoning can proceed fully abstractly.

The second interesting proof rule is the frame rule that allows global reasoning
based on local proofs. In many ways it can be seen as the core of Separation
Logic. Calcagno et al. [3] provide an abstract framework for identifying a logic as
Separation Logic and distill out the central property of locality. In their setting,
our separation algebra is the common heap monoid where the binary operation

is heap merge lifted to the heap ⇥ pptr type. Our definition of separating
conjunction then coincides with the one in the framework, and to show that
our logic is a Separation Logic, we only need to show that all actions in the
programming language are local. Locality is equivalent to the combination of
safety monotonicity and the frame property. In our setting, these two are:

10

- assignment

15

Program Logic — Rules

{|P|} SKIP {|P|}
{|P|} c {|Q|} P’ �! P

{|P’|} c {|Q|}

{|P ^ hbi|} c1 {|Q|} {|P ^ ¬hbi|} c2 {|Q|}
{|P ^ hhbii|} IF b THEN c1 ELSE c2 {|Q|}

{|P ^ hbi|} c {|P|} P �! hhbii
{|P|} WHILE b DO c {|P ^ ¬hbi|}

{|P|} c1 {|Q|} {|Q|} c2 {|R|}
{|P|} c1;; c2 {|R|}

Fig. 3. Hoare Logic rules for standard commands.

{|�s. [[l]] s = bvpc ^ [[r]] s = bvc ^ vp /2 IC s ^ Addr vp ,!s pp ^
P (heap_iset_updates (pp 7! v))|}

l ::= r {|P|}

{|�s. kernel s ^ [[rte]] s = brtc ^ P (root_iset_updates Addr rt)|}
UpdateTTBR0 rte {|P|}

{|�s. mode s = Kernel ^ P (asid_pt_snpshot_updates a)|} UpdateASID a {|P|}

{|�s. mode s = Kernel ^ P (iset_pt_snpshot_updates f)|} Flush f {|P|}

{|�s. mode s = Kernel ^ P (s(|mode := flg|))|} SetMode flg {|P|}

Fig. 4. Hoare Logic rules for commands with TLB e↵ects.

completely standard, as intended. We write hhbii s to denote that [[b]]b s 6= None:
the precondition in the IF and WHILE rules must be strong enough for failure free
evaluation of b. The rules in Fig. 4 are in weakest-precondition form. They have
a generic postcondition P and the weakest precondition that will establish P. We
will now explain them.

The assignment rule requires that the expressions l and r evaluate without
failure. The assignment succeeds if the virtual address vp is consistent in the
current state (vp /2 IC s) and vp is mapped (Addr vp ,!s pp), where

vp ,!s pp = (phy_ad (iset s) (heap s) (root s) (mode s) vp = bppc)

The e↵ect of the assignment is the heap and iset update heap_iset_update we
described in Sect. 4.2.

The rule for the command UpdateTTBR0, only available in kernel mode, up-
dates the current page table root to the value of the expression rte. The e↵ect
is modelled by root_iset_update defined in Sect. 4.2.

The UpdateASID command, also only available in kernel mode, sets the new
ASID a, increases the iset using snp_incon, and records a page table snapshot
for the old ASID using new_snp.

Finally, Flush is the instruction that the makes the iset smaller, and removes
mappings in the snapshots of inactive ASIDs, using iset_asid_map_update from
Sect. 4.2.

8

{|P|} SKIP {|P|}
{|P|} c {|Q|} P’ �! P

{|P’|} c {|Q|}

{|P ^ hbi|} c1 {|Q|} {|P ^ ¬hbi|} c2 {|Q|}
{|P ^ hhbii|} IF b THEN c1 ELSE c2 {|Q|}

{|P ^ hbi|} c {|P|} P �! hhbii
{|P|} WHILE b DO c {|P ^ ¬hbi|}

{|P|} c1 {|Q|} {|Q|} c2 {|R|}
{|P|} c1;; c2 {|R|}

Fig. 3. Hoare Logic rules for standard commands.

{|�s. [[l]] s = bvpc ^ [[r]] s = bvc ^ vp /2 IC s ^ Addr vp ,!s pp ^
P (heap_iset_updates (pp 7! v))|}

l ::= r {|P|}

{|�s. kernel s ^ [[rte]] s = brtc ^ P (root_iset_updates Addr rt)|}
UpdateTTBR0 rte {|P|}

{|�s. mode s = Kernel ^ P (asid_pt_snpshot_updates a)|} UpdateASID a {|P|}

{|�s. mode s = Kernel ^ P (iset_pt_snpshot_updates f)|} Flush f {|P|}

{|�s. mode s = Kernel ^ P (s(|mode := flg|))|} SetMode flg {|P|}

Fig. 4. Hoare Logic rules for commands with TLB e↵ects.

completely standard, as intended. We write hhbii s to denote that [[b]]b s 6= None:
the precondition in the IF and WHILE rules must be strong enough for failure free
evaluation of b. The rules in Fig. 4 are in weakest-precondition form. They have
a generic postcondition P and the weakest precondition that will establish P. We
will now explain them.

The assignment rule requires that the expressions l and r evaluate without
failure. The assignment succeeds if the virtual address vp is consistent in the
current state (vp /2 IC s) and vp is mapped (Addr vp ,!s pp), where

vp ,!s pp = (phy_ad (iset s) (heap s) (root s) (mode s) vp = bppc)

The e↵ect of the assignment is the heap and iset update heap_iset_update we
described in Sect. 4.2.

The rule for the command UpdateTTBR0, only available in kernel mode, up-
dates the current page table root to the value of the expression rte. The e↵ect
is modelled by root_iset_update defined in Sect. 4.2.

The UpdateASID command, also only available in kernel mode, sets the new
ASID a, increases the iset using snp_incon, and records a page table snapshot
for the old ASID using new_snp.

Finally, Flush is the instruction that the makes the iset smaller, and removes
mappings in the snapshots of inactive ASIDs, using iset_asid_map_update from
Sect. 4.2.

8

DR
AF
T

block-invalidation :: tlb) asid) va set) tlb

block-invalidation t a V ⌘ (
S

x2V. selective-invalidation t a x)

asid-invalidation :: tlb) asid) tlb

asid-invalidation t a ⌘ t - asid-entry-set t a

va-invalidation :: tlb) va) tlb

va-invalidation t v ⌘ t - va-set t v

selective-invalidation selectively removes the entry or entries covering the
given virtual address and ASID depending upon the outcome of lookup opera-
tion. Whereas, block-invalidation takes a set of virtual addresses along with
particular ASID and selectively invalidates all of them. asid-invalidation and
va-invalidation removes entries using asid-entry-set and va-entry-set re-
spectively. We have proved the correctness of invalidation functions by validating
many interesting theorems shown in Figure ??.

✏ �s. P (s(x := e s)) x := e P

4 TLB Model inclusion in Cambridge ARM model

5 Conclusions

 Program Verification in the Presence of TLB-Address Translation Hira Syeda

✓successful evaluation of to a
✓consistency of
✓valid address translation of to
✓ reasoning about heap and incon_set update

{|P |} SKIP {|P |}
{|P |} c {|Q |} P 0 b�!c P Q b�!c Q 0

{|P 0|} c {|Q 0|}

{|P b^c |} c1 {|Q |} {|P b^c ¬|} c2 {|Q |}
{|P b^c ⌧b�|} IF b THEN c1 ELSE c2 {|Q |}

{|P b^c |} c {|P |} P b�!c ⌧b�

{|P |} WHILE b DO c {|P b^c ¬|}
{|P |} c1 {|Q |} {|Q |} c2 {|R|}

{|P |} c1 ; c2 {|R|}

{|P |} c {|Q |} {|R|} c {|S |}
{|P b^c R|} c {|Q b^c S |}

{|P |} c {|Q |} {|R|} c {|S |}
{|P b_c R|} c {|Q b_c S |}

{|(VPtr vp 7! � ^⇤ P) b^c [[l]] = vp b^c [[r]] = v |} l := r {|VPtr vp 7! v ^⇤ P |}

{|P |} c {|Q |}
{|P ^⇤ R|} c {|Q ^⇤ R|}

Fig. 5. The proof rules for Mapped Separation Logic.

separate from the heap in which the update occurs. Since the physical address of
the write is separate from the page table lookup for this address and from P, the
translation layer for their heaps is not a↵ected by the write. To reason about page
table updates we need a slightly stronger rule that unfolds the virtual-to-value

mapping and lets us talk about the physical address p:

{|(VPtr vp 7!v p ^⇤ p 7! � ^⇤ P) b^c [[l]] = vp b^c [[r]] = v |}
l := r

{|VPtr vp 7!v p ^⇤ p 7! v ^⇤ P |}

Reasoning with the new mapping predicates is similar to abstract-predicate
style reasoning [13] if we never unfold their definitions in client proofs. As we
will see in the case study, we only need to do this locally if we are reasoning
about changes to the page table and we are interested in the page that is being
modified. This obviously heavily depends on the page table encoding. Application
level reasoning can proceed fully abstractly.

The second interesting proof rule is the frame rule that allows global reasoning
based on local proofs. In many ways it can be seen as the core of Separation
Logic. Calcagno et al. [3] provide an abstract framework for identifying a logic as
Separation Logic and distill out the central property of locality. In their setting,
our separation algebra is the common heap monoid where the binary operation

is heap merge lifted to the heap ⇥ pptr type. Our definition of separating
conjunction then coincides with the one in the framework, and to show that
our logic is a Separation Logic, we only need to show that all actions in the
programming language are local. Locality is equivalent to the combination of
safety monotonicity and the frame property. In our setting, these two are:

10

{|P |} SKIP {|P |}
{|P |} c {|Q |} P 0 b�!c P Q b�!c Q 0

{|P 0|} c {|Q 0|}

{|P b^c |} c1 {|Q |} {|P b^c ¬|} c2 {|Q |}
{|P b^c ⌧b�|} IF b THEN c1 ELSE c2 {|Q |}

{|P b^c |} c {|P |} P b�!c ⌧b�

{|P |} WHILE b DO c {|P b^c ¬|}
{|P |} c1 {|Q |} {|Q |} c2 {|R|}

{|P |} c1 ; c2 {|R|}

{|P |} c {|Q |} {|R|} c {|S |}
{|P b^c R|} c {|Q b^c S |}

{|P |} c {|Q |} {|R|} c {|S |}
{|P b_c R|} c {|Q b_c S |}

{|(VPtr vp 7! � ^⇤ P) b^c [[l]] = vp b^c [[r]] = v |} l := r {|VPtr vp 7! v ^⇤ P |}

{|P |} c {|Q |}
{|P ^⇤ R|} c {|Q ^⇤ R|}

Fig. 5. The proof rules for Mapped Separation Logic.

separate from the heap in which the update occurs. Since the physical address of
the write is separate from the page table lookup for this address and from P, the
translation layer for their heaps is not a↵ected by the write. To reason about page
table updates we need a slightly stronger rule that unfolds the virtual-to-value

mapping and lets us talk about the physical address p:

{|(VPtr vp 7!v p ^⇤ p 7! � ^⇤ P) b^c [[l]] = vp b^c [[r]] = v |}
l := r

{|VPtr vp 7!v p ^⇤ p 7! v ^⇤ P |}

Reasoning with the new mapping predicates is similar to abstract-predicate
style reasoning [13] if we never unfold their definitions in client proofs. As we
will see in the case study, we only need to do this locally if we are reasoning
about changes to the page table and we are interested in the page that is being
modified. This obviously heavily depends on the page table encoding. Application
level reasoning can proceed fully abstractly.

The second interesting proof rule is the frame rule that allows global reasoning
based on local proofs. In many ways it can be seen as the core of Separation
Logic. Calcagno et al. [3] provide an abstract framework for identifying a logic as
Separation Logic and distill out the central property of locality. In their setting,
our separation algebra is the common heap monoid where the binary operation

is heap merge lifted to the heap ⇥ pptr type. Our definition of separating
conjunction then coincides with the one in the framework, and to show that
our logic is a Separation Logic, we only need to show that all actions in the
programming language are local. Locality is equivalent to the combination of
safety monotonicity and the frame property. In our setting, these two are:

10

{|P |} SKIP {|P |}
{|P |} c {|Q |} P 0 b�!c P Q b�!c Q 0

{|P 0|} c {|Q 0|}

{|P b^c |} c1 {|Q |} {|P b^c ¬|} c2 {|Q |}
{|P b^c ⌧b�|} IF b THEN c1 ELSE c2 {|Q |}

{|P b^c |} c {|P |} P b�!c ⌧b�

{|P |} WHILE b DO c {|P b^c ¬|}
{|P |} c1 {|Q |} {|Q |} c2 {|R|}

{|P |} c1 ; c2 {|R|}

{|P |} c {|Q |} {|R|} c {|S |}
{|P b^c R|} c {|Q b^c S |}

{|P |} c {|Q |} {|R|} c {|S |}
{|P b_c R|} c {|Q b_c S |}

{|(VPtr vp 7! � ^⇤ P) b^c [[l]] = vp b^c [[r]] = v |} l := r {|VPtr vp 7! v ^⇤ P |}

{|P |} c {|Q |}
{|P ^⇤ R|} c {|Q ^⇤ R|}

Fig. 5. The proof rules for Mapped Separation Logic.

separate from the heap in which the update occurs. Since the physical address of
the write is separate from the page table lookup for this address and from P, the
translation layer for their heaps is not a↵ected by the write. To reason about page
table updates we need a slightly stronger rule that unfolds the virtual-to-value

mapping and lets us talk about the physical address p:

{|(VPtr vp 7!v p ^⇤ p 7! � ^⇤ P) b^c [[l]] = vp b^c [[r]] = v |}
l := r

{|VPtr vp 7!v p ^⇤ p 7! v ^⇤ P |}

Reasoning with the new mapping predicates is similar to abstract-predicate
style reasoning [13] if we never unfold their definitions in client proofs. As we
will see in the case study, we only need to do this locally if we are reasoning
about changes to the page table and we are interested in the page that is being
modified. This obviously heavily depends on the page table encoding. Application
level reasoning can proceed fully abstractly.

The second interesting proof rule is the frame rule that allows global reasoning
based on local proofs. In many ways it can be seen as the core of Separation
Logic. Calcagno et al. [3] provide an abstract framework for identifying a logic as
Separation Logic and distill out the central property of locality. In their setting,
our separation algebra is the common heap monoid where the binary operation

is heap merge lifted to the heap ⇥ pptr type. Our definition of separating
conjunction then coincides with the one in the framework, and to show that
our logic is a Separation Logic, we only need to show that all actions in the
programming language are local. Locality is equivalent to the combination of
safety monotonicity and the frame property. In our setting, these two are:

10

{|P |} SKIP {|P |}
{|P |} c {|Q |} P 0 b�!c P Q b�!c Q 0

{|P 0|} c {|Q 0|}

{|P b^c |} c1 {|Q |} {|P b^c ¬|} c2 {|Q |}
{|P b^c ⌧b�|} IF b THEN c1 ELSE c2 {|Q |}

{|P b^c |} c {|P |} P b�!c ⌧b�

{|P |} WHILE b DO c {|P b^c ¬|}
{|P |} c1 {|Q |} {|Q |} c2 {|R|}

{|P |} c1 ; c2 {|R|}

{|P |} c {|Q |} {|R|} c {|S |}
{|P b^c R|} c {|Q b^c S |}

{|P |} c {|Q |} {|R|} c {|S |}
{|P b_c R|} c {|Q b_c S |}

{|(VPtr vp 7! � ^⇤ P) b^c [[l]] = vp b^c [[r]] = v |} l := r {|VPtr vp 7! v ^⇤ P |}

{|P |} c {|Q |}
{|P ^⇤ R|} c {|Q ^⇤ R|}

Fig. 5. The proof rules for Mapped Separation Logic.

separate from the heap in which the update occurs. Since the physical address of
the write is separate from the page table lookup for this address and from P, the
translation layer for their heaps is not a↵ected by the write. To reason about page
table updates we need a slightly stronger rule that unfolds the virtual-to-value

mapping and lets us talk about the physical address p:

{|(VPtr vp 7!v p ^⇤ p 7! � ^⇤ P) b^c [[l]] = vp b^c [[r]] = v |}
l := r

{|VPtr vp 7!v p ^⇤ p 7! v ^⇤ P |}

Reasoning with the new mapping predicates is similar to abstract-predicate
style reasoning [13] if we never unfold their definitions in client proofs. As we
will see in the case study, we only need to do this locally if we are reasoning
about changes to the page table and we are interested in the page that is being
modified. This obviously heavily depends on the page table encoding. Application
level reasoning can proceed fully abstractly.

The second interesting proof rule is the frame rule that allows global reasoning
based on local proofs. In many ways it can be seen as the core of Separation
Logic. Calcagno et al. [3] provide an abstract framework for identifying a logic as
Separation Logic and distill out the central property of locality. In their setting,
our separation algebra is the common heap monoid where the binary operation

is heap merge lifted to the heap ⇥ pptr type. Our definition of separating
conjunction then coincides with the one in the framework, and to show that
our logic is a Separation Logic, we only need to show that all actions in the
programming language are local. Locality is equivalent to the combination of
safety monotonicity and the frame property. In our setting, these two are:

10

{|P |} SKIP {|P |}
{|P |} c {|Q |} P 0 b�!c P Q b�!c Q 0

{|P 0|} c {|Q 0|}

{|P b^c |} c1 {|Q |} {|P b^c ¬|} c2 {|Q |}
{|P b^c ⌧b�|} IF b THEN c1 ELSE c2 {|Q |}

{|P b^c |} c {|P |} P b�!c ⌧b�

{|P |} WHILE b DO c {|P b^c ¬|}
{|P |} c1 {|Q |} {|Q |} c2 {|R|}

{|P |} c1 ; c2 {|R|}

{|P |} c {|Q |} {|R|} c {|S |}
{|P b^c R|} c {|Q b^c S |}

{|P |} c {|Q |} {|R|} c {|S |}
{|P b_c R|} c {|Q b_c S |}

{|(VPtr vp 7! � ^⇤ P) b^c [[l]] = vp b^c [[r]] = v |} l := r {|VPtr vp 7! v ^⇤ P |}

{|P |} c {|Q |}
{|P ^⇤ R|} c {|Q ^⇤ R|}

Fig. 5. The proof rules for Mapped Separation Logic.

separate from the heap in which the update occurs. Since the physical address of
the write is separate from the page table lookup for this address and from P, the
translation layer for their heaps is not a↵ected by the write. To reason about page
table updates we need a slightly stronger rule that unfolds the virtual-to-value

mapping and lets us talk about the physical address p:

{|(VPtr vp 7!v p ^⇤ p 7! � ^⇤ P) b^c [[l]] = vp b^c [[r]] = v |}
l := r

{|VPtr vp 7!v p ^⇤ p 7! v ^⇤ P |}

Reasoning with the new mapping predicates is similar to abstract-predicate
style reasoning [13] if we never unfold their definitions in client proofs. As we
will see in the case study, we only need to do this locally if we are reasoning
about changes to the page table and we are interested in the page that is being
modified. This obviously heavily depends on the page table encoding. Application
level reasoning can proceed fully abstractly.

The second interesting proof rule is the frame rule that allows global reasoning
based on local proofs. In many ways it can be seen as the core of Separation
Logic. Calcagno et al. [3] provide an abstract framework for identifying a logic as
Separation Logic and distill out the central property of locality. In their setting,
our separation algebra is the common heap monoid where the binary operation

is heap merge lifted to the heap ⇥ pptr type. Our definition of separating
conjunction then coincides with the one in the framework, and to show that
our logic is a Separation Logic, we only need to show that all actions in the
programming language are local. Locality is equivalent to the combination of
safety monotonicity and the frame property. In our setting, these two are:

10

{|P |} SKIP {|P |}
{|P |} c {|Q |} P 0 b�!c P Q b�!c Q 0

{|P 0|} c {|Q 0|}

{|P b^c |} c1 {|Q |} {|P b^c ¬|} c2 {|Q |}
{|P b^c ⌧b�|} IF b THEN c1 ELSE c2 {|Q |}

{|P b^c |} c {|P |} P b�!c ⌧b�

{|P |} WHILE b DO c {|P b^c ¬|}
{|P |} c1 {|Q |} {|Q |} c2 {|R|}

{|P |} c1 ; c2 {|R|}

{|P |} c {|Q |} {|R|} c {|S |}
{|P b^c R|} c {|Q b^c S |}

{|P |} c {|Q |} {|R|} c {|S |}
{|P b_c R|} c {|Q b_c S |}

{|(VPtr vp 7! � ^⇤ P) b^c [[l]] = vp b^c [[r]] = v |} l := r {|VPtr vp 7! v ^⇤ P |}

{|P |} c {|Q |}
{|P ^⇤ R|} c {|Q ^⇤ R|}

Fig. 5. The proof rules for Mapped Separation Logic.

separate from the heap in which the update occurs. Since the physical address of
the write is separate from the page table lookup for this address and from P, the
translation layer for their heaps is not a↵ected by the write. To reason about page
table updates we need a slightly stronger rule that unfolds the virtual-to-value

mapping and lets us talk about the physical address p:

{|(VPtr vp 7!v p ^⇤ p 7! � ^⇤ P) b^c [[l]] = vp b^c [[r]] = v |}
l := r

{|VPtr vp 7!v p ^⇤ p 7! v ^⇤ P |}

Reasoning with the new mapping predicates is similar to abstract-predicate
style reasoning [13] if we never unfold their definitions in client proofs. As we
will see in the case study, we only need to do this locally if we are reasoning
about changes to the page table and we are interested in the page that is being
modified. This obviously heavily depends on the page table encoding. Application
level reasoning can proceed fully abstractly.

The second interesting proof rule is the frame rule that allows global reasoning
based on local proofs. In many ways it can be seen as the core of Separation
Logic. Calcagno et al. [3] provide an abstract framework for identifying a logic as
Separation Logic and distill out the central property of locality. In their setting,
our separation algebra is the common heap monoid where the binary operation

is heap merge lifted to the heap ⇥ pptr type. Our definition of separating
conjunction then coincides with the one in the framework, and to show that
our logic is a Separation Logic, we only need to show that all actions in the
programming language are local. Locality is equivalent to the combination of
safety monotonicity and the frame property. In our setting, these two are:

10

- assignment

15

Program Logic — Rules

{|P|} SKIP {|P|}
{|P|} c {|Q|} P’ �! P

{|P’|} c {|Q|}

{|P ^ hbi|} c1 {|Q|} {|P ^ ¬hbi|} c2 {|Q|}
{|P ^ hhbii|} IF b THEN c1 ELSE c2 {|Q|}

{|P ^ hbi|} c {|P|} P �! hhbii
{|P|} WHILE b DO c {|P ^ ¬hbi|}

{|P|} c1 {|Q|} {|Q|} c2 {|R|}
{|P|} c1;; c2 {|R|}

Fig. 3. Hoare Logic rules for standard commands.

{|�s. [[l]] s = bvpc ^ [[r]] s = bvc ^ vp /2 IC s ^ Addr vp ,!s pp ^
P (heap_iset_updates (pp 7! v))|}

l ::= r {|P|}

{|�s. kernel s ^ [[rte]] s = brtc ^ P (root_iset_updates Addr rt)|}
UpdateTTBR0 rte {|P|}

{|�s. mode s = Kernel ^ P (asid_pt_snpshot_updates a)|} UpdateASID a {|P|}

{|�s. mode s = Kernel ^ P (iset_pt_snpshot_updates f)|} Flush f {|P|}

{|�s. mode s = Kernel ^ P (s(|mode := flg|))|} SetMode flg {|P|}

Fig. 4. Hoare Logic rules for commands with TLB e↵ects.

completely standard, as intended. We write hhbii s to denote that [[b]]b s 6= None:
the precondition in the IF and WHILE rules must be strong enough for failure free
evaluation of b. The rules in Fig. 4 are in weakest-precondition form. They have
a generic postcondition P and the weakest precondition that will establish P. We
will now explain them.

The assignment rule requires that the expressions l and r evaluate without
failure. The assignment succeeds if the virtual address vp is consistent in the
current state (vp /2 IC s) and vp is mapped (Addr vp ,!s pp), where

vp ,!s pp = (phy_ad (iset s) (heap s) (root s) (mode s) vp = bppc)

The e↵ect of the assignment is the heap and iset update heap_iset_update we
described in Sect. 4.2.

The rule for the command UpdateTTBR0, only available in kernel mode, up-
dates the current page table root to the value of the expression rte. The e↵ect
is modelled by root_iset_update defined in Sect. 4.2.

The UpdateASID command, also only available in kernel mode, sets the new
ASID a, increases the iset using snp_incon, and records a page table snapshot
for the old ASID using new_snp.

Finally, Flush is the instruction that the makes the iset smaller, and removes
mappings in the snapshots of inactive ASIDs, using iset_asid_map_update from
Sect. 4.2.

8

{|P|} SKIP {|P|}
{|P|} c {|Q|} P’ �! P

{|P’|} c {|Q|}

{|P ^ hbi|} c1 {|Q|} {|P ^ ¬hbi|} c2 {|Q|}
{|P ^ hhbii|} IF b THEN c1 ELSE c2 {|Q|}

{|P ^ hbi|} c {|P|} P �! hhbii
{|P|} WHILE b DO c {|P ^ ¬hbi|}

{|P|} c1 {|Q|} {|Q|} c2 {|R|}
{|P|} c1;; c2 {|R|}

Fig. 3. Hoare Logic rules for standard commands.

{|�s. [[l]] s = bvpc ^ [[r]] s = bvc ^ vp /2 IC s ^ Addr vp ,!s pp ^
P (heap_iset_updates (pp 7! v))|}

l ::= r {|P|}

{|�s. kernel s ^ [[rte]] s = brtc ^ P (root_iset_updates Addr rt)|}
UpdateTTBR0 rte {|P|}

{|�s. mode s = Kernel ^ P (asid_pt_snpshot_updates a)|} UpdateASID a {|P|}

{|�s. mode s = Kernel ^ P (iset_pt_snpshot_updates f)|} Flush f {|P|}

{|�s. mode s = Kernel ^ P (s(|mode := flg|))|} SetMode flg {|P|}

Fig. 4. Hoare Logic rules for commands with TLB e↵ects.

completely standard, as intended. We write hhbii s to denote that [[b]]b s 6= None:
the precondition in the IF and WHILE rules must be strong enough for failure free
evaluation of b. The rules in Fig. 4 are in weakest-precondition form. They have
a generic postcondition P and the weakest precondition that will establish P. We
will now explain them.

The assignment rule requires that the expressions l and r evaluate without
failure. The assignment succeeds if the virtual address vp is consistent in the
current state (vp /2 IC s) and vp is mapped (Addr vp ,!s pp), where

vp ,!s pp = (phy_ad (iset s) (heap s) (root s) (mode s) vp = bppc)

The e↵ect of the assignment is the heap and iset update heap_iset_update we
described in Sect. 4.2.

The rule for the command UpdateTTBR0, only available in kernel mode, up-
dates the current page table root to the value of the expression rte. The e↵ect
is modelled by root_iset_update defined in Sect. 4.2.

The UpdateASID command, also only available in kernel mode, sets the new
ASID a, increases the iset using snp_incon, and records a page table snapshot
for the old ASID using new_snp.

Finally, Flush is the instruction that the makes the iset smaller, and removes
mappings in the snapshots of inactive ASIDs, using iset_asid_map_update from
Sect. 4.2.

8

DR
AF
T

block-invalidation :: tlb) asid) va set) tlb

block-invalidation t a V ⌘ (
S

x2V. selective-invalidation t a x)

asid-invalidation :: tlb) asid) tlb

asid-invalidation t a ⌘ t - asid-entry-set t a

va-invalidation :: tlb) va) tlb

va-invalidation t v ⌘ t - va-set t v

selective-invalidation selectively removes the entry or entries covering the
given virtual address and ASID depending upon the outcome of lookup opera-
tion. Whereas, block-invalidation takes a set of virtual addresses along with
particular ASID and selectively invalidates all of them. asid-invalidation and
va-invalidation removes entries using asid-entry-set and va-entry-set re-
spectively. We have proved the correctness of invalidation functions by validating
many interesting theorems shown in Figure ??.

✏ �s. P (s(x := e s)) x := e P

4 TLB Model inclusion in Cambridge ARM model

5 Conclusions

 Program Verification in the Presence of TLB-Address Translation Hira Syeda

✓successful evaluation of to a
✓consistency of
✓valid address translation of to
✓ reasoning about heap and incon_set update

{|P |} SKIP {|P |}
{|P |} c {|Q |} P 0 b�!c P Q b�!c Q 0

{|P 0|} c {|Q 0|}

{|P b^c |} c1 {|Q |} {|P b^c ¬|} c2 {|Q |}
{|P b^c ⌧b�|} IF b THEN c1 ELSE c2 {|Q |}

{|P b^c |} c {|P |} P b�!c ⌧b�

{|P |} WHILE b DO c {|P b^c ¬|}
{|P |} c1 {|Q |} {|Q |} c2 {|R|}

{|P |} c1 ; c2 {|R|}

{|P |} c {|Q |} {|R|} c {|S |}
{|P b^c R|} c {|Q b^c S |}

{|P |} c {|Q |} {|R|} c {|S |}
{|P b_c R|} c {|Q b_c S |}

{|(VPtr vp 7! � ^⇤ P) b^c [[l]] = vp b^c [[r]] = v |} l := r {|VPtr vp 7! v ^⇤ P |}

{|P |} c {|Q |}
{|P ^⇤ R|} c {|Q ^⇤ R|}

Fig. 5. The proof rules for Mapped Separation Logic.

separate from the heap in which the update occurs. Since the physical address of
the write is separate from the page table lookup for this address and from P, the
translation layer for their heaps is not a↵ected by the write. To reason about page
table updates we need a slightly stronger rule that unfolds the virtual-to-value

mapping and lets us talk about the physical address p:

{|(VPtr vp 7!v p ^⇤ p 7! � ^⇤ P) b^c [[l]] = vp b^c [[r]] = v |}
l := r

{|VPtr vp 7!v p ^⇤ p 7! v ^⇤ P |}

Reasoning with the new mapping predicates is similar to abstract-predicate
style reasoning [13] if we never unfold their definitions in client proofs. As we
will see in the case study, we only need to do this locally if we are reasoning
about changes to the page table and we are interested in the page that is being
modified. This obviously heavily depends on the page table encoding. Application
level reasoning can proceed fully abstractly.

The second interesting proof rule is the frame rule that allows global reasoning
based on local proofs. In many ways it can be seen as the core of Separation
Logic. Calcagno et al. [3] provide an abstract framework for identifying a logic as
Separation Logic and distill out the central property of locality. In their setting,
our separation algebra is the common heap monoid where the binary operation

is heap merge lifted to the heap ⇥ pptr type. Our definition of separating
conjunction then coincides with the one in the framework, and to show that
our logic is a Separation Logic, we only need to show that all actions in the
programming language are local. Locality is equivalent to the combination of
safety monotonicity and the frame property. In our setting, these two are:

10

{|P |} SKIP {|P |}
{|P |} c {|Q |} P 0 b�!c P Q b�!c Q 0

{|P 0|} c {|Q 0|}

{|P b^c |} c1 {|Q |} {|P b^c ¬|} c2 {|Q |}
{|P b^c ⌧b�|} IF b THEN c1 ELSE c2 {|Q |}

{|P b^c |} c {|P |} P b�!c ⌧b�

{|P |} WHILE b DO c {|P b^c ¬|}
{|P |} c1 {|Q |} {|Q |} c2 {|R|}

{|P |} c1 ; c2 {|R|}

{|P |} c {|Q |} {|R|} c {|S |}
{|P b^c R|} c {|Q b^c S |}

{|P |} c {|Q |} {|R|} c {|S |}
{|P b_c R|} c {|Q b_c S |}

{|(VPtr vp 7! � ^⇤ P) b^c [[l]] = vp b^c [[r]] = v |} l := r {|VPtr vp 7! v ^⇤ P |}

{|P |} c {|Q |}
{|P ^⇤ R|} c {|Q ^⇤ R|}

Fig. 5. The proof rules for Mapped Separation Logic.

separate from the heap in which the update occurs. Since the physical address of
the write is separate from the page table lookup for this address and from P, the
translation layer for their heaps is not a↵ected by the write. To reason about page
table updates we need a slightly stronger rule that unfolds the virtual-to-value

mapping and lets us talk about the physical address p:

{|(VPtr vp 7!v p ^⇤ p 7! � ^⇤ P) b^c [[l]] = vp b^c [[r]] = v |}
l := r

{|VPtr vp 7!v p ^⇤ p 7! v ^⇤ P |}

Reasoning with the new mapping predicates is similar to abstract-predicate
style reasoning [13] if we never unfold their definitions in client proofs. As we
will see in the case study, we only need to do this locally if we are reasoning
about changes to the page table and we are interested in the page that is being
modified. This obviously heavily depends on the page table encoding. Application
level reasoning can proceed fully abstractly.

The second interesting proof rule is the frame rule that allows global reasoning
based on local proofs. In many ways it can be seen as the core of Separation
Logic. Calcagno et al. [3] provide an abstract framework for identifying a logic as
Separation Logic and distill out the central property of locality. In their setting,
our separation algebra is the common heap monoid where the binary operation

is heap merge lifted to the heap ⇥ pptr type. Our definition of separating
conjunction then coincides with the one in the framework, and to show that
our logic is a Separation Logic, we only need to show that all actions in the
programming language are local. Locality is equivalent to the combination of
safety monotonicity and the frame property. In our setting, these two are:

10

{|P |} SKIP {|P |}
{|P |} c {|Q |} P 0 b�!c P Q b�!c Q 0

{|P 0|} c {|Q 0|}

{|P b^c |} c1 {|Q |} {|P b^c ¬|} c2 {|Q |}
{|P b^c ⌧b�|} IF b THEN c1 ELSE c2 {|Q |}

{|P b^c |} c {|P |} P b�!c ⌧b�

{|P |} WHILE b DO c {|P b^c ¬|}
{|P |} c1 {|Q |} {|Q |} c2 {|R|}

{|P |} c1 ; c2 {|R|}

{|P |} c {|Q |} {|R|} c {|S |}
{|P b^c R|} c {|Q b^c S |}

{|P |} c {|Q |} {|R|} c {|S |}
{|P b_c R|} c {|Q b_c S |}

{|(VPtr vp 7! � ^⇤ P) b^c [[l]] = vp b^c [[r]] = v |} l := r {|VPtr vp 7! v ^⇤ P |}

{|P |} c {|Q |}
{|P ^⇤ R|} c {|Q ^⇤ R|}

Fig. 5. The proof rules for Mapped Separation Logic.

separate from the heap in which the update occurs. Since the physical address of
the write is separate from the page table lookup for this address and from P, the
translation layer for their heaps is not a↵ected by the write. To reason about page
table updates we need a slightly stronger rule that unfolds the virtual-to-value

mapping and lets us talk about the physical address p:

{|(VPtr vp 7!v p ^⇤ p 7! � ^⇤ P) b^c [[l]] = vp b^c [[r]] = v |}
l := r

{|VPtr vp 7!v p ^⇤ p 7! v ^⇤ P |}

Reasoning with the new mapping predicates is similar to abstract-predicate
style reasoning [13] if we never unfold their definitions in client proofs. As we
will see in the case study, we only need to do this locally if we are reasoning
about changes to the page table and we are interested in the page that is being
modified. This obviously heavily depends on the page table encoding. Application
level reasoning can proceed fully abstractly.

The second interesting proof rule is the frame rule that allows global reasoning
based on local proofs. In many ways it can be seen as the core of Separation
Logic. Calcagno et al. [3] provide an abstract framework for identifying a logic as
Separation Logic and distill out the central property of locality. In their setting,
our separation algebra is the common heap monoid where the binary operation

is heap merge lifted to the heap ⇥ pptr type. Our definition of separating
conjunction then coincides with the one in the framework, and to show that
our logic is a Separation Logic, we only need to show that all actions in the
programming language are local. Locality is equivalent to the combination of
safety monotonicity and the frame property. In our setting, these two are:

10

{|P |} SKIP {|P |}
{|P |} c {|Q |} P 0 b�!c P Q b�!c Q 0

{|P 0|} c {|Q 0|}

{|P b^c |} c1 {|Q |} {|P b^c ¬|} c2 {|Q |}
{|P b^c ⌧b�|} IF b THEN c1 ELSE c2 {|Q |}

{|P b^c |} c {|P |} P b�!c ⌧b�

{|P |} WHILE b DO c {|P b^c ¬|}
{|P |} c1 {|Q |} {|Q |} c2 {|R|}

{|P |} c1 ; c2 {|R|}

{|P |} c {|Q |} {|R|} c {|S |}
{|P b^c R|} c {|Q b^c S |}

{|P |} c {|Q |} {|R|} c {|S |}
{|P b_c R|} c {|Q b_c S |}

{|(VPtr vp 7! � ^⇤ P) b^c [[l]] = vp b^c [[r]] = v |} l := r {|VPtr vp 7! v ^⇤ P |}

{|P |} c {|Q |}
{|P ^⇤ R|} c {|Q ^⇤ R|}

Fig. 5. The proof rules for Mapped Separation Logic.

separate from the heap in which the update occurs. Since the physical address of
the write is separate from the page table lookup for this address and from P, the
translation layer for their heaps is not a↵ected by the write. To reason about page
table updates we need a slightly stronger rule that unfolds the virtual-to-value

mapping and lets us talk about the physical address p:

{|(VPtr vp 7!v p ^⇤ p 7! � ^⇤ P) b^c [[l]] = vp b^c [[r]] = v |}
l := r

{|VPtr vp 7!v p ^⇤ p 7! v ^⇤ P |}

Reasoning with the new mapping predicates is similar to abstract-predicate
style reasoning [13] if we never unfold their definitions in client proofs. As we
will see in the case study, we only need to do this locally if we are reasoning
about changes to the page table and we are interested in the page that is being
modified. This obviously heavily depends on the page table encoding. Application
level reasoning can proceed fully abstractly.

The second interesting proof rule is the frame rule that allows global reasoning
based on local proofs. In many ways it can be seen as the core of Separation
Logic. Calcagno et al. [3] provide an abstract framework for identifying a logic as
Separation Logic and distill out the central property of locality. In their setting,
our separation algebra is the common heap monoid where the binary operation

is heap merge lifted to the heap ⇥ pptr type. Our definition of separating
conjunction then coincides with the one in the framework, and to show that
our logic is a Separation Logic, we only need to show that all actions in the
programming language are local. Locality is equivalent to the combination of
safety monotonicity and the frame property. In our setting, these two are:

10

{|P |} SKIP {|P |}
{|P |} c {|Q |} P 0 b�!c P Q b�!c Q 0

{|P 0|} c {|Q 0|}

{|P b^c |} c1 {|Q |} {|P b^c ¬|} c2 {|Q |}
{|P b^c ⌧b�|} IF b THEN c1 ELSE c2 {|Q |}

{|P b^c |} c {|P |} P b�!c ⌧b�

{|P |} WHILE b DO c {|P b^c ¬|}
{|P |} c1 {|Q |} {|Q |} c2 {|R|}

{|P |} c1 ; c2 {|R|}

{|P |} c {|Q |} {|R|} c {|S |}
{|P b^c R|} c {|Q b^c S |}

{|P |} c {|Q |} {|R|} c {|S |}
{|P b_c R|} c {|Q b_c S |}

{|(VPtr vp 7! � ^⇤ P) b^c [[l]] = vp b^c [[r]] = v |} l := r {|VPtr vp 7! v ^⇤ P |}

{|P |} c {|Q |}
{|P ^⇤ R|} c {|Q ^⇤ R|}

Fig. 5. The proof rules for Mapped Separation Logic.

separate from the heap in which the update occurs. Since the physical address of
the write is separate from the page table lookup for this address and from P, the
translation layer for their heaps is not a↵ected by the write. To reason about page
table updates we need a slightly stronger rule that unfolds the virtual-to-value

mapping and lets us talk about the physical address p:

{|(VPtr vp 7!v p ^⇤ p 7! � ^⇤ P) b^c [[l]] = vp b^c [[r]] = v |}
l := r

{|VPtr vp 7!v p ^⇤ p 7! v ^⇤ P |}

Reasoning with the new mapping predicates is similar to abstract-predicate
style reasoning [13] if we never unfold their definitions in client proofs. As we
will see in the case study, we only need to do this locally if we are reasoning
about changes to the page table and we are interested in the page that is being
modified. This obviously heavily depends on the page table encoding. Application
level reasoning can proceed fully abstractly.

The second interesting proof rule is the frame rule that allows global reasoning
based on local proofs. In many ways it can be seen as the core of Separation
Logic. Calcagno et al. [3] provide an abstract framework for identifying a logic as
Separation Logic and distill out the central property of locality. In their setting,
our separation algebra is the common heap monoid where the binary operation

is heap merge lifted to the heap ⇥ pptr type. Our definition of separating
conjunction then coincides with the one in the framework, and to show that
our logic is a Separation Logic, we only need to show that all actions in the
programming language are local. Locality is equivalent to the combination of
safety monotonicity and the frame property. In our setting, these two are:

10

{|P |} SKIP {|P |}
{|P |} c {|Q |} P 0 b�!c P Q b�!c Q 0

{|P 0|} c {|Q 0|}

{|P b^c |} c1 {|Q |} {|P b^c ¬|} c2 {|Q |}
{|P b^c ⌧b�|} IF b THEN c1 ELSE c2 {|Q |}

{|P b^c |} c {|P |} P b�!c ⌧b�

{|P |} WHILE b DO c {|P b^c ¬|}
{|P |} c1 {|Q |} {|Q |} c2 {|R|}

{|P |} c1 ; c2 {|R|}

{|P |} c {|Q |} {|R|} c {|S |}
{|P b^c R|} c {|Q b^c S |}

{|P |} c {|Q |} {|R|} c {|S |}
{|P b_c R|} c {|Q b_c S |}

{|(VPtr vp 7! � ^⇤ P) b^c [[l]] = vp b^c [[r]] = v |} l := r {|VPtr vp 7! v ^⇤ P |}

{|P |} c {|Q |}
{|P ^⇤ R|} c {|Q ^⇤ R|}

Fig. 5. The proof rules for Mapped Separation Logic.

separate from the heap in which the update occurs. Since the physical address of
the write is separate from the page table lookup for this address and from P, the
translation layer for their heaps is not a↵ected by the write. To reason about page
table updates we need a slightly stronger rule that unfolds the virtual-to-value

mapping and lets us talk about the physical address p:

{|(VPtr vp 7!v p ^⇤ p 7! � ^⇤ P) b^c [[l]] = vp b^c [[r]] = v |}
l := r

{|VPtr vp 7!v p ^⇤ p 7! v ^⇤ P |}

Reasoning with the new mapping predicates is similar to abstract-predicate
style reasoning [13] if we never unfold their definitions in client proofs. As we
will see in the case study, we only need to do this locally if we are reasoning
about changes to the page table and we are interested in the page that is being
modified. This obviously heavily depends on the page table encoding. Application
level reasoning can proceed fully abstractly.

The second interesting proof rule is the frame rule that allows global reasoning
based on local proofs. In many ways it can be seen as the core of Separation
Logic. Calcagno et al. [3] provide an abstract framework for identifying a logic as
Separation Logic and distill out the central property of locality. In their setting,
our separation algebra is the common heap monoid where the binary operation

is heap merge lifted to the heap ⇥ pptr type. Our definition of separating
conjunction then coincides with the one in the framework, and to show that
our logic is a Separation Logic, we only need to show that all actions in the
programming language are local. Locality is equivalent to the combination of
safety monotonicity and the frame property. In our setting, these two are:

10

- assignment

15

Program Logic — Rules

{|P|} SKIP {|P|}
{|P|} c {|Q|} P’ �! P

{|P’|} c {|Q|}

{|P ^ hbi|} c1 {|Q|} {|P ^ ¬hbi|} c2 {|Q|}
{|P ^ hhbii|} IF b THEN c1 ELSE c2 {|Q|}

{|P ^ hbi|} c {|P|} P �! hhbii
{|P|} WHILE b DO c {|P ^ ¬hbi|}

{|P|} c1 {|Q|} {|Q|} c2 {|R|}
{|P|} c1;; c2 {|R|}

Fig. 3. Hoare Logic rules for standard commands.

{|�s. [[l]] s = bvpc ^ [[r]] s = bvc ^ vp /2 IC s ^ Addr vp ,!s pp ^
P (heap_iset_updates (pp 7! v))|}

l ::= r {|P|}

{|�s. kernel s ^ [[rte]] s = brtc ^ P (root_iset_updates Addr rt)|}
UpdateTTBR0 rte {|P|}

{|�s. mode s = Kernel ^ P (asid_pt_snpshot_updates a)|} UpdateASID a {|P|}

{|�s. mode s = Kernel ^ P (iset_pt_snpshot_updates f)|} Flush f {|P|}

{|�s. mode s = Kernel ^ P (s(|mode := flg|))|} SetMode flg {|P|}

Fig. 4. Hoare Logic rules for commands with TLB e↵ects.

completely standard, as intended. We write hhbii s to denote that [[b]]b s 6= None:
the precondition in the IF and WHILE rules must be strong enough for failure free
evaluation of b. The rules in Fig. 4 are in weakest-precondition form. They have
a generic postcondition P and the weakest precondition that will establish P. We
will now explain them.

The assignment rule requires that the expressions l and r evaluate without
failure. The assignment succeeds if the virtual address vp is consistent in the
current state (vp /2 IC s) and vp is mapped (Addr vp ,!s pp), where

vp ,!s pp = (phy_ad (iset s) (heap s) (root s) (mode s) vp = bppc)

The e↵ect of the assignment is the heap and iset update heap_iset_update we
described in Sect. 4.2.

The rule for the command UpdateTTBR0, only available in kernel mode, up-
dates the current page table root to the value of the expression rte. The e↵ect
is modelled by root_iset_update defined in Sect. 4.2.

The UpdateASID command, also only available in kernel mode, sets the new
ASID a, increases the iset using snp_incon, and records a page table snapshot
for the old ASID using new_snp.

Finally, Flush is the instruction that the makes the iset smaller, and removes
mappings in the snapshots of inactive ASIDs, using iset_asid_map_update from
Sect. 4.2.

8

{|P|} SKIP {|P|}
{|P|} c {|Q|} P’ �! P

{|P’|} c {|Q|}

{|P ^ hbi|} c1 {|Q|} {|P ^ ¬hbi|} c2 {|Q|}
{|P ^ hhbii|} IF b THEN c1 ELSE c2 {|Q|}

{|P ^ hbi|} c {|P|} P �! hhbii
{|P|} WHILE b DO c {|P ^ ¬hbi|}

{|P|} c1 {|Q|} {|Q|} c2 {|R|}
{|P|} c1;; c2 {|R|}

Fig. 3. Hoare Logic rules for standard commands.

{|�s. [[l]] s = bvpc ^ [[r]] s = bvc ^ vp /2 IC s ^ Addr vp ,!s pp ^
P (heap_iset_updates (pp 7! v))|}

l ::= r {|P|}

{|�s. kernel s ^ [[rte]] s = brtc ^ P (root_iset_updates Addr rt)|}
UpdateTTBR0 rte {|P|}

{|�s. mode s = Kernel ^ P (asid_pt_snpshot_updates a)|} UpdateASID a {|P|}

{|�s. mode s = Kernel ^ P (iset_pt_snpshot_updates f)|} Flush f {|P|}

{|�s. mode s = Kernel ^ P (s(|mode := flg|))|} SetMode flg {|P|}

Fig. 4. Hoare Logic rules for commands with TLB e↵ects.

completely standard, as intended. We write hhbii s to denote that [[b]]b s 6= None:
the precondition in the IF and WHILE rules must be strong enough for failure free
evaluation of b. The rules in Fig. 4 are in weakest-precondition form. They have
a generic postcondition P and the weakest precondition that will establish P. We
will now explain them.

The assignment rule requires that the expressions l and r evaluate without
failure. The assignment succeeds if the virtual address vp is consistent in the
current state (vp /2 IC s) and vp is mapped (Addr vp ,!s pp), where

vp ,!s pp = (phy_ad (iset s) (heap s) (root s) (mode s) vp = bppc)

The e↵ect of the assignment is the heap and iset update heap_iset_update we
described in Sect. 4.2.

The rule for the command UpdateTTBR0, only available in kernel mode, up-
dates the current page table root to the value of the expression rte. The e↵ect
is modelled by root_iset_update defined in Sect. 4.2.

The UpdateASID command, also only available in kernel mode, sets the new
ASID a, increases the iset using snp_incon, and records a page table snapshot
for the old ASID using new_snp.

Finally, Flush is the instruction that the makes the iset smaller, and removes
mappings in the snapshots of inactive ASIDs, using iset_asid_map_update from
Sect. 4.2.

8

DR
AF
T

block-invalidation :: tlb) asid) va set) tlb

block-invalidation t a V ⌘ (
S

x2V. selective-invalidation t a x)

asid-invalidation :: tlb) asid) tlb

asid-invalidation t a ⌘ t - asid-entry-set t a

va-invalidation :: tlb) va) tlb

va-invalidation t v ⌘ t - va-set t v

selective-invalidation selectively removes the entry or entries covering the
given virtual address and ASID depending upon the outcome of lookup opera-
tion. Whereas, block-invalidation takes a set of virtual addresses along with
particular ASID and selectively invalidates all of them. asid-invalidation and
va-invalidation removes entries using asid-entry-set and va-entry-set re-
spectively. We have proved the correctness of invalidation functions by validating
many interesting theorems shown in Figure ??.

✏ �s. P (s(x := e s)) x := e P

4 TLB Model inclusion in Cambridge ARM model

5 Conclusions

 Program Verification in the Presence of TLB-Address Translation Hira Syeda

- assignment

✓incon_set update

15

Program Logic — Rules

{|P|} SKIP {|P|}
{|P|} c {|Q|} P’ �! P

{|P’|} c {|Q|}

{|P ^ hbi|} c1 {|Q|} {|P ^ ¬hbi|} c2 {|Q|}
{|P ^ hhbii|} IF b THEN c1 ELSE c2 {|Q|}

{|P ^ hbi|} c {|P|} P �! hhbii
{|P|} WHILE b DO c {|P ^ ¬hbi|}

{|P|} c1 {|Q|} {|Q|} c2 {|R|}
{|P|} c1;; c2 {|R|}

Fig. 3. Hoare Logic rules for standard commands.

{|�s. [[l]] s = bvpc ^ [[r]] s = bvc ^ vp /2 IC s ^ Addr vp ,!s pp ^
P (heap_iset_updates (pp 7! v))|}

l ::= r {|P|}

{|�s. kernel s ^ [[rte]] s = brtc ^ P (root_iset_updates Addr rt)|}
UpdateTTBR0 rte {|P|}

{|�s. mode s = Kernel ^ P (asid_pt_snpshot_updates a)|} UpdateASID a {|P|}

{|�s. mode s = Kernel ^ P (iset_pt_snpshot_updates f)|} Flush f {|P|}

{|�s. mode s = Kernel ^ P (s(|mode := flg|))|} SetMode flg {|P|}

Fig. 4. Hoare Logic rules for commands with TLB e↵ects.

completely standard, as intended. We write hhbii s to denote that [[b]]b s 6= None:
the precondition in the IF and WHILE rules must be strong enough for failure free
evaluation of b. The rules in Fig. 4 are in weakest-precondition form. They have
a generic postcondition P and the weakest precondition that will establish P. We
will now explain them.

The assignment rule requires that the expressions l and r evaluate without
failure. The assignment succeeds if the virtual address vp is consistent in the
current state (vp /2 IC s) and vp is mapped (Addr vp ,!s pp), where

vp ,!s pp = (phy_ad (iset s) (heap s) (root s) (mode s) vp = bppc)

The e↵ect of the assignment is the heap and iset update heap_iset_update we
described in Sect. 4.2.

The rule for the command UpdateTTBR0, only available in kernel mode, up-
dates the current page table root to the value of the expression rte. The e↵ect
is modelled by root_iset_update defined in Sect. 4.2.

The UpdateASID command, also only available in kernel mode, sets the new
ASID a, increases the iset using snp_incon, and records a page table snapshot
for the old ASID using new_snp.

Finally, Flush is the instruction that the makes the iset smaller, and removes
mappings in the snapshots of inactive ASIDs, using iset_asid_map_update from
Sect. 4.2.

8

{|P|} SKIP {|P|}
{|P|} c {|Q|} P’ �! P

{|P’|} c {|Q|}

{|P ^ hbi|} c1 {|Q|} {|P ^ ¬hbi|} c2 {|Q|}
{|P ^ hhbii|} IF b THEN c1 ELSE c2 {|Q|}

{|P ^ hbi|} c {|P|} P �! hhbii
{|P|} WHILE b DO c {|P ^ ¬hbi|}

{|P|} c1 {|Q|} {|Q|} c2 {|R|}
{|P|} c1;; c2 {|R|}

Fig. 3. Hoare Logic rules for standard commands.

{|�s. [[l]] s = bvpc ^ [[r]] s = bvc ^ vp /2 IC s ^ Addr vp ,!s pp ^
P (heap_iset_updates (pp 7! v))|}

l ::= r {|P|}

{|�s. kernel s ^ [[rte]] s = brtc ^ P (root_iset_updates Addr rt)|}
UpdateTTBR0 rte {|P|}

{|�s. mode s = Kernel ^ P (asid_pt_snpshot_updates a)|} UpdateASID a {|P|}

{|�s. mode s = Kernel ^ P (iset_pt_snpshot_updates f)|} Flush f {|P|}

{|�s. mode s = Kernel ^ P (s(|mode := flg|))|} SetMode flg {|P|}

Fig. 4. Hoare Logic rules for commands with TLB e↵ects.

completely standard, as intended. We write hhbii s to denote that [[b]]b s 6= None:
the precondition in the IF and WHILE rules must be strong enough for failure free
evaluation of b. The rules in Fig. 4 are in weakest-precondition form. They have
a generic postcondition P and the weakest precondition that will establish P. We
will now explain them.

The assignment rule requires that the expressions l and r evaluate without
failure. The assignment succeeds if the virtual address vp is consistent in the
current state (vp /2 IC s) and vp is mapped (Addr vp ,!s pp), where

vp ,!s pp = (phy_ad (iset s) (heap s) (root s) (mode s) vp = bppc)

The e↵ect of the assignment is the heap and iset update heap_iset_update we
described in Sect. 4.2.

The rule for the command UpdateTTBR0, only available in kernel mode, up-
dates the current page table root to the value of the expression rte. The e↵ect
is modelled by root_iset_update defined in Sect. 4.2.

The UpdateASID command, also only available in kernel mode, sets the new
ASID a, increases the iset using snp_incon, and records a page table snapshot
for the old ASID using new_snp.

Finally, Flush is the instruction that the makes the iset smaller, and removes
mappings in the snapshots of inactive ASIDs, using iset_asid_map_update from
Sect. 4.2.

8

DR
AF
T

block-invalidation :: tlb) asid) va set) tlb

block-invalidation t a V ⌘ (
S

x2V. selective-invalidation t a x)

asid-invalidation :: tlb) asid) tlb

asid-invalidation t a ⌘ t - asid-entry-set t a

va-invalidation :: tlb) va) tlb

va-invalidation t v ⌘ t - va-set t v

selective-invalidation selectively removes the entry or entries covering the
given virtual address and ASID depending upon the outcome of lookup opera-
tion. Whereas, block-invalidation takes a set of virtual addresses along with
particular ASID and selectively invalidates all of them. asid-invalidation and
va-invalidation removes entries using asid-entry-set and va-entry-set re-
spectively. We have proved the correctness of invalidation functions by validating
many interesting theorems shown in Figure ??.

✏ �s. P (s(x := e s)) x := e P

4 TLB Model inclusion in Cambridge ARM model

5 Conclusions comparison of the active page table
before and after the assignment for

all remapped and unmapped addresses

 Program Verification in the Presence of TLB-Address Translation Hira Syeda

- assignment

✓incon_set update

va3 is mapped to pa3

va4 is mapped to pa4

before assignment after assignment

incon_set : { va1 , va2 }

15

Program Logic — Rules

{|P|} SKIP {|P|}
{|P|} c {|Q|} P’ �! P

{|P’|} c {|Q|}

{|P ^ hbi|} c1 {|Q|} {|P ^ ¬hbi|} c2 {|Q|}
{|P ^ hhbii|} IF b THEN c1 ELSE c2 {|Q|}

{|P ^ hbi|} c {|P|} P �! hhbii
{|P|} WHILE b DO c {|P ^ ¬hbi|}

{|P|} c1 {|Q|} {|Q|} c2 {|R|}
{|P|} c1;; c2 {|R|}

Fig. 3. Hoare Logic rules for standard commands.

{|�s. [[l]] s = bvpc ^ [[r]] s = bvc ^ vp /2 IC s ^ Addr vp ,!s pp ^
P (heap_iset_updates (pp 7! v))|}

l ::= r {|P|}

{|�s. kernel s ^ [[rte]] s = brtc ^ P (root_iset_updates Addr rt)|}
UpdateTTBR0 rte {|P|}

{|�s. mode s = Kernel ^ P (asid_pt_snpshot_updates a)|} UpdateASID a {|P|}

{|�s. mode s = Kernel ^ P (iset_pt_snpshot_updates f)|} Flush f {|P|}

{|�s. mode s = Kernel ^ P (s(|mode := flg|))|} SetMode flg {|P|}

Fig. 4. Hoare Logic rules for commands with TLB e↵ects.

completely standard, as intended. We write hhbii s to denote that [[b]]b s 6= None:
the precondition in the IF and WHILE rules must be strong enough for failure free
evaluation of b. The rules in Fig. 4 are in weakest-precondition form. They have
a generic postcondition P and the weakest precondition that will establish P. We
will now explain them.

The assignment rule requires that the expressions l and r evaluate without
failure. The assignment succeeds if the virtual address vp is consistent in the
current state (vp /2 IC s) and vp is mapped (Addr vp ,!s pp), where

vp ,!s pp = (phy_ad (iset s) (heap s) (root s) (mode s) vp = bppc)

The e↵ect of the assignment is the heap and iset update heap_iset_update we
described in Sect. 4.2.

The rule for the command UpdateTTBR0, only available in kernel mode, up-
dates the current page table root to the value of the expression rte. The e↵ect
is modelled by root_iset_update defined in Sect. 4.2.

The UpdateASID command, also only available in kernel mode, sets the new
ASID a, increases the iset using snp_incon, and records a page table snapshot
for the old ASID using new_snp.

Finally, Flush is the instruction that the makes the iset smaller, and removes
mappings in the snapshots of inactive ASIDs, using iset_asid_map_update from
Sect. 4.2.

8

{|P|} SKIP {|P|}
{|P|} c {|Q|} P’ �! P

{|P’|} c {|Q|}

{|P ^ hbi|} c1 {|Q|} {|P ^ ¬hbi|} c2 {|Q|}
{|P ^ hhbii|} IF b THEN c1 ELSE c2 {|Q|}

{|P ^ hbi|} c {|P|} P �! hhbii
{|P|} WHILE b DO c {|P ^ ¬hbi|}

{|P|} c1 {|Q|} {|Q|} c2 {|R|}
{|P|} c1;; c2 {|R|}

Fig. 3. Hoare Logic rules for standard commands.

{|�s. [[l]] s = bvpc ^ [[r]] s = bvc ^ vp /2 IC s ^ Addr vp ,!s pp ^
P (heap_iset_updates (pp 7! v))|}

l ::= r {|P|}

{|�s. kernel s ^ [[rte]] s = brtc ^ P (root_iset_updates Addr rt)|}
UpdateTTBR0 rte {|P|}

{|�s. mode s = Kernel ^ P (asid_pt_snpshot_updates a)|} UpdateASID a {|P|}

{|�s. mode s = Kernel ^ P (iset_pt_snpshot_updates f)|} Flush f {|P|}

{|�s. mode s = Kernel ^ P (s(|mode := flg|))|} SetMode flg {|P|}

Fig. 4. Hoare Logic rules for commands with TLB e↵ects.

completely standard, as intended. We write hhbii s to denote that [[b]]b s 6= None:
the precondition in the IF and WHILE rules must be strong enough for failure free
evaluation of b. The rules in Fig. 4 are in weakest-precondition form. They have
a generic postcondition P and the weakest precondition that will establish P. We
will now explain them.

The assignment rule requires that the expressions l and r evaluate without
failure. The assignment succeeds if the virtual address vp is consistent in the
current state (vp /2 IC s) and vp is mapped (Addr vp ,!s pp), where

vp ,!s pp = (phy_ad (iset s) (heap s) (root s) (mode s) vp = bppc)

The e↵ect of the assignment is the heap and iset update heap_iset_update we
described in Sect. 4.2.

The rule for the command UpdateTTBR0, only available in kernel mode, up-
dates the current page table root to the value of the expression rte. The e↵ect
is modelled by root_iset_update defined in Sect. 4.2.

The UpdateASID command, also only available in kernel mode, sets the new
ASID a, increases the iset using snp_incon, and records a page table snapshot
for the old ASID using new_snp.

Finally, Flush is the instruction that the makes the iset smaller, and removes
mappings in the snapshots of inactive ASIDs, using iset_asid_map_update from
Sect. 4.2.

8

DR
AF
T

block-invalidation :: tlb) asid) va set) tlb

block-invalidation t a V ⌘ (
S

x2V. selective-invalidation t a x)

asid-invalidation :: tlb) asid) tlb

asid-invalidation t a ⌘ t - asid-entry-set t a

va-invalidation :: tlb) va) tlb

va-invalidation t v ⌘ t - va-set t v

selective-invalidation selectively removes the entry or entries covering the
given virtual address and ASID depending upon the outcome of lookup opera-
tion. Whereas, block-invalidation takes a set of virtual addresses along with
particular ASID and selectively invalidates all of them. asid-invalidation and
va-invalidation removes entries using asid-entry-set and va-entry-set re-
spectively. We have proved the correctness of invalidation functions by validating
many interesting theorems shown in Figure ??.

✏ �s. P (s(x := e s)) x := e P

4 TLB Model inclusion in Cambridge ARM model

5 Conclusions

 Program Verification in the Presence of TLB-Address Translation Hira Syeda

- assignment

✓incon_set update

va3 is mapped to pa3

va4 is mapped to pa4

before assignment after assignment

incon_set : { va1 , va2 }

15

Program Logic — Rules

{|P|} SKIP {|P|}
{|P|} c {|Q|} P’ �! P

{|P’|} c {|Q|}

{|P ^ hbi|} c1 {|Q|} {|P ^ ¬hbi|} c2 {|Q|}
{|P ^ hhbii|} IF b THEN c1 ELSE c2 {|Q|}

{|P ^ hbi|} c {|P|} P �! hhbii
{|P|} WHILE b DO c {|P ^ ¬hbi|}

{|P|} c1 {|Q|} {|Q|} c2 {|R|}
{|P|} c1;; c2 {|R|}

Fig. 3. Hoare Logic rules for standard commands.

{|�s. [[l]] s = bvpc ^ [[r]] s = bvc ^ vp /2 IC s ^ Addr vp ,!s pp ^
P (heap_iset_updates (pp 7! v))|}

l ::= r {|P|}

{|�s. kernel s ^ [[rte]] s = brtc ^ P (root_iset_updates Addr rt)|}
UpdateTTBR0 rte {|P|}

{|�s. mode s = Kernel ^ P (asid_pt_snpshot_updates a)|} UpdateASID a {|P|}

{|�s. mode s = Kernel ^ P (iset_pt_snpshot_updates f)|} Flush f {|P|}

{|�s. mode s = Kernel ^ P (s(|mode := flg|))|} SetMode flg {|P|}

Fig. 4. Hoare Logic rules for commands with TLB e↵ects.

completely standard, as intended. We write hhbii s to denote that [[b]]b s 6= None:
the precondition in the IF and WHILE rules must be strong enough for failure free
evaluation of b. The rules in Fig. 4 are in weakest-precondition form. They have
a generic postcondition P and the weakest precondition that will establish P. We
will now explain them.

The assignment rule requires that the expressions l and r evaluate without
failure. The assignment succeeds if the virtual address vp is consistent in the
current state (vp /2 IC s) and vp is mapped (Addr vp ,!s pp), where

vp ,!s pp = (phy_ad (iset s) (heap s) (root s) (mode s) vp = bppc)

The e↵ect of the assignment is the heap and iset update heap_iset_update we
described in Sect. 4.2.

The rule for the command UpdateTTBR0, only available in kernel mode, up-
dates the current page table root to the value of the expression rte. The e↵ect
is modelled by root_iset_update defined in Sect. 4.2.

The UpdateASID command, also only available in kernel mode, sets the new
ASID a, increases the iset using snp_incon, and records a page table snapshot
for the old ASID using new_snp.

Finally, Flush is the instruction that the makes the iset smaller, and removes
mappings in the snapshots of inactive ASIDs, using iset_asid_map_update from
Sect. 4.2.

8

{|P|} SKIP {|P|}
{|P|} c {|Q|} P’ �! P

{|P’|} c {|Q|}

{|P ^ hbi|} c1 {|Q|} {|P ^ ¬hbi|} c2 {|Q|}
{|P ^ hhbii|} IF b THEN c1 ELSE c2 {|Q|}

{|P ^ hbi|} c {|P|} P �! hhbii
{|P|} WHILE b DO c {|P ^ ¬hbi|}

{|P|} c1 {|Q|} {|Q|} c2 {|R|}
{|P|} c1;; c2 {|R|}

Fig. 3. Hoare Logic rules for standard commands.

{|�s. [[l]] s = bvpc ^ [[r]] s = bvc ^ vp /2 IC s ^ Addr vp ,!s pp ^
P (heap_iset_updates (pp 7! v))|}

l ::= r {|P|}

{|�s. kernel s ^ [[rte]] s = brtc ^ P (root_iset_updates Addr rt)|}
UpdateTTBR0 rte {|P|}

{|�s. mode s = Kernel ^ P (asid_pt_snpshot_updates a)|} UpdateASID a {|P|}

{|�s. mode s = Kernel ^ P (iset_pt_snpshot_updates f)|} Flush f {|P|}

{|�s. mode s = Kernel ^ P (s(|mode := flg|))|} SetMode flg {|P|}

Fig. 4. Hoare Logic rules for commands with TLB e↵ects.

completely standard, as intended. We write hhbii s to denote that [[b]]b s 6= None:
the precondition in the IF and WHILE rules must be strong enough for failure free
evaluation of b. The rules in Fig. 4 are in weakest-precondition form. They have
a generic postcondition P and the weakest precondition that will establish P. We
will now explain them.

The assignment rule requires that the expressions l and r evaluate without
failure. The assignment succeeds if the virtual address vp is consistent in the
current state (vp /2 IC s) and vp is mapped (Addr vp ,!s pp), where

vp ,!s pp = (phy_ad (iset s) (heap s) (root s) (mode s) vp = bppc)

The e↵ect of the assignment is the heap and iset update heap_iset_update we
described in Sect. 4.2.

The rule for the command UpdateTTBR0, only available in kernel mode, up-
dates the current page table root to the value of the expression rte. The e↵ect
is modelled by root_iset_update defined in Sect. 4.2.

The UpdateASID command, also only available in kernel mode, sets the new
ASID a, increases the iset using snp_incon, and records a page table snapshot
for the old ASID using new_snp.

Finally, Flush is the instruction that the makes the iset smaller, and removes
mappings in the snapshots of inactive ASIDs, using iset_asid_map_update from
Sect. 4.2.

8

DR
AF
T

block-invalidation :: tlb) asid) va set) tlb

block-invalidation t a V ⌘ (
S

x2V. selective-invalidation t a x)

asid-invalidation :: tlb) asid) tlb

asid-invalidation t a ⌘ t - asid-entry-set t a

va-invalidation :: tlb) va) tlb

va-invalidation t v ⌘ t - va-set t v

selective-invalidation selectively removes the entry or entries covering the
given virtual address and ASID depending upon the outcome of lookup opera-
tion. Whereas, block-invalidation takes a set of virtual addresses along with
particular ASID and selectively invalidates all of them. asid-invalidation and
va-invalidation removes entries using asid-entry-set and va-entry-set re-
spectively. We have proved the correctness of invalidation functions by validating
many interesting theorems shown in Figure ??.

✏ �s. P (s(x := e s)) x := e P

4 TLB Model inclusion in Cambridge ARM model

5 Conclusions

 Program Verification in the Presence of TLB-Address Translation Hira Syeda

- assignment

✓incon_set update

va3 is mapped to pa3

va4 is mapped to pa4

before assignment after assignment

incon_set : { va1 , va2 }

15

Program Logic — Rules

{|P|} SKIP {|P|}
{|P|} c {|Q|} P’ �! P

{|P’|} c {|Q|}

{|P ^ hbi|} c1 {|Q|} {|P ^ ¬hbi|} c2 {|Q|}
{|P ^ hhbii|} IF b THEN c1 ELSE c2 {|Q|}

{|P ^ hbi|} c {|P|} P �! hhbii
{|P|} WHILE b DO c {|P ^ ¬hbi|}

{|P|} c1 {|Q|} {|Q|} c2 {|R|}
{|P|} c1;; c2 {|R|}

Fig. 3. Hoare Logic rules for standard commands.

{|�s. [[l]] s = bvpc ^ [[r]] s = bvc ^ vp /2 IC s ^ Addr vp ,!s pp ^
P (heap_iset_updates (pp 7! v))|}

l ::= r {|P|}

{|�s. kernel s ^ [[rte]] s = brtc ^ P (root_iset_updates Addr rt)|}
UpdateTTBR0 rte {|P|}

{|�s. mode s = Kernel ^ P (asid_pt_snpshot_updates a)|} UpdateASID a {|P|}

{|�s. mode s = Kernel ^ P (iset_pt_snpshot_updates f)|} Flush f {|P|}

{|�s. mode s = Kernel ^ P (s(|mode := flg|))|} SetMode flg {|P|}

Fig. 4. Hoare Logic rules for commands with TLB e↵ects.

completely standard, as intended. We write hhbii s to denote that [[b]]b s 6= None:
the precondition in the IF and WHILE rules must be strong enough for failure free
evaluation of b. The rules in Fig. 4 are in weakest-precondition form. They have
a generic postcondition P and the weakest precondition that will establish P. We
will now explain them.

The assignment rule requires that the expressions l and r evaluate without
failure. The assignment succeeds if the virtual address vp is consistent in the
current state (vp /2 IC s) and vp is mapped (Addr vp ,!s pp), where

vp ,!s pp = (phy_ad (iset s) (heap s) (root s) (mode s) vp = bppc)

The e↵ect of the assignment is the heap and iset update heap_iset_update we
described in Sect. 4.2.

The rule for the command UpdateTTBR0, only available in kernel mode, up-
dates the current page table root to the value of the expression rte. The e↵ect
is modelled by root_iset_update defined in Sect. 4.2.

The UpdateASID command, also only available in kernel mode, sets the new
ASID a, increases the iset using snp_incon, and records a page table snapshot
for the old ASID using new_snp.

Finally, Flush is the instruction that the makes the iset smaller, and removes
mappings in the snapshots of inactive ASIDs, using iset_asid_map_update from
Sect. 4.2.

8

{|P|} SKIP {|P|}
{|P|} c {|Q|} P’ �! P

{|P’|} c {|Q|}

{|P ^ hbi|} c1 {|Q|} {|P ^ ¬hbi|} c2 {|Q|}
{|P ^ hhbii|} IF b THEN c1 ELSE c2 {|Q|}

{|P ^ hbi|} c {|P|} P �! hhbii
{|P|} WHILE b DO c {|P ^ ¬hbi|}

{|P|} c1 {|Q|} {|Q|} c2 {|R|}
{|P|} c1;; c2 {|R|}

Fig. 3. Hoare Logic rules for standard commands.

{|�s. [[l]] s = bvpc ^ [[r]] s = bvc ^ vp /2 IC s ^ Addr vp ,!s pp ^
P (heap_iset_updates (pp 7! v))|}

l ::= r {|P|}

{|�s. kernel s ^ [[rte]] s = brtc ^ P (root_iset_updates Addr rt)|}
UpdateTTBR0 rte {|P|}

{|�s. mode s = Kernel ^ P (asid_pt_snpshot_updates a)|} UpdateASID a {|P|}

{|�s. mode s = Kernel ^ P (iset_pt_snpshot_updates f)|} Flush f {|P|}

{|�s. mode s = Kernel ^ P (s(|mode := flg|))|} SetMode flg {|P|}

Fig. 4. Hoare Logic rules for commands with TLB e↵ects.

completely standard, as intended. We write hhbii s to denote that [[b]]b s 6= None:
the precondition in the IF and WHILE rules must be strong enough for failure free
evaluation of b. The rules in Fig. 4 are in weakest-precondition form. They have
a generic postcondition P and the weakest precondition that will establish P. We
will now explain them.

The assignment rule requires that the expressions l and r evaluate without
failure. The assignment succeeds if the virtual address vp is consistent in the
current state (vp /2 IC s) and vp is mapped (Addr vp ,!s pp), where

vp ,!s pp = (phy_ad (iset s) (heap s) (root s) (mode s) vp = bppc)

The e↵ect of the assignment is the heap and iset update heap_iset_update we
described in Sect. 4.2.

The rule for the command UpdateTTBR0, only available in kernel mode, up-
dates the current page table root to the value of the expression rte. The e↵ect
is modelled by root_iset_update defined in Sect. 4.2.

The UpdateASID command, also only available in kernel mode, sets the new
ASID a, increases the iset using snp_incon, and records a page table snapshot
for the old ASID using new_snp.

Finally, Flush is the instruction that the makes the iset smaller, and removes
mappings in the snapshots of inactive ASIDs, using iset_asid_map_update from
Sect. 4.2.

8

DR
AF
T

block-invalidation :: tlb) asid) va set) tlb

block-invalidation t a V ⌘ (
S

x2V. selective-invalidation t a x)

asid-invalidation :: tlb) asid) tlb

asid-invalidation t a ⌘ t - asid-entry-set t a

va-invalidation :: tlb) va) tlb

va-invalidation t v ⌘ t - va-set t v

selective-invalidation selectively removes the entry or entries covering the
given virtual address and ASID depending upon the outcome of lookup opera-
tion. Whereas, block-invalidation takes a set of virtual addresses along with
particular ASID and selectively invalidates all of them. asid-invalidation and
va-invalidation removes entries using asid-entry-set and va-entry-set re-
spectively. We have proved the correctness of invalidation functions by validating
many interesting theorems shown in Figure ??.

✏ �s. P (s(x := e s)) x := e P

4 TLB Model inclusion in Cambridge ARM model

5 Conclusions

 Program Verification in the Presence of TLB-Address Translation Hira Syeda

- assignment

✓incon_set update

va3 is remapped to pa5

va4 is unmapped

va3 is mapped to pa3

va4 is mapped to pa4

before assignment after assignment

incon_set : { va1 , va2 }

15

Program Logic — Rules

{|P|} SKIP {|P|}
{|P|} c {|Q|} P’ �! P

{|P’|} c {|Q|}

{|P ^ hbi|} c1 {|Q|} {|P ^ ¬hbi|} c2 {|Q|}
{|P ^ hhbii|} IF b THEN c1 ELSE c2 {|Q|}

{|P ^ hbi|} c {|P|} P �! hhbii
{|P|} WHILE b DO c {|P ^ ¬hbi|}

{|P|} c1 {|Q|} {|Q|} c2 {|R|}
{|P|} c1;; c2 {|R|}

Fig. 3. Hoare Logic rules for standard commands.

{|�s. [[l]] s = bvpc ^ [[r]] s = bvc ^ vp /2 IC s ^ Addr vp ,!s pp ^
P (heap_iset_updates (pp 7! v))|}

l ::= r {|P|}

{|�s. kernel s ^ [[rte]] s = brtc ^ P (root_iset_updates Addr rt)|}
UpdateTTBR0 rte {|P|}

{|�s. mode s = Kernel ^ P (asid_pt_snpshot_updates a)|} UpdateASID a {|P|}

{|�s. mode s = Kernel ^ P (iset_pt_snpshot_updates f)|} Flush f {|P|}

{|�s. mode s = Kernel ^ P (s(|mode := flg|))|} SetMode flg {|P|}

Fig. 4. Hoare Logic rules for commands with TLB e↵ects.

completely standard, as intended. We write hhbii s to denote that [[b]]b s 6= None:
the precondition in the IF and WHILE rules must be strong enough for failure free
evaluation of b. The rules in Fig. 4 are in weakest-precondition form. They have
a generic postcondition P and the weakest precondition that will establish P. We
will now explain them.

The assignment rule requires that the expressions l and r evaluate without
failure. The assignment succeeds if the virtual address vp is consistent in the
current state (vp /2 IC s) and vp is mapped (Addr vp ,!s pp), where

vp ,!s pp = (phy_ad (iset s) (heap s) (root s) (mode s) vp = bppc)

The e↵ect of the assignment is the heap and iset update heap_iset_update we
described in Sect. 4.2.

The rule for the command UpdateTTBR0, only available in kernel mode, up-
dates the current page table root to the value of the expression rte. The e↵ect
is modelled by root_iset_update defined in Sect. 4.2.

The UpdateASID command, also only available in kernel mode, sets the new
ASID a, increases the iset using snp_incon, and records a page table snapshot
for the old ASID using new_snp.

Finally, Flush is the instruction that the makes the iset smaller, and removes
mappings in the snapshots of inactive ASIDs, using iset_asid_map_update from
Sect. 4.2.

8

{|P|} SKIP {|P|}
{|P|} c {|Q|} P’ �! P

{|P’|} c {|Q|}

{|P ^ hbi|} c1 {|Q|} {|P ^ ¬hbi|} c2 {|Q|}
{|P ^ hhbii|} IF b THEN c1 ELSE c2 {|Q|}

{|P ^ hbi|} c {|P|} P �! hhbii
{|P|} WHILE b DO c {|P ^ ¬hbi|}

{|P|} c1 {|Q|} {|Q|} c2 {|R|}
{|P|} c1;; c2 {|R|}

Fig. 3. Hoare Logic rules for standard commands.

{|�s. [[l]] s = bvpc ^ [[r]] s = bvc ^ vp /2 IC s ^ Addr vp ,!s pp ^
P (heap_iset_updates (pp 7! v))|}

l ::= r {|P|}

{|�s. kernel s ^ [[rte]] s = brtc ^ P (root_iset_updates Addr rt)|}
UpdateTTBR0 rte {|P|}

{|�s. mode s = Kernel ^ P (asid_pt_snpshot_updates a)|} UpdateASID a {|P|}

{|�s. mode s = Kernel ^ P (iset_pt_snpshot_updates f)|} Flush f {|P|}

{|�s. mode s = Kernel ^ P (s(|mode := flg|))|} SetMode flg {|P|}

Fig. 4. Hoare Logic rules for commands with TLB e↵ects.

completely standard, as intended. We write hhbii s to denote that [[b]]b s 6= None:
the precondition in the IF and WHILE rules must be strong enough for failure free
evaluation of b. The rules in Fig. 4 are in weakest-precondition form. They have
a generic postcondition P and the weakest precondition that will establish P. We
will now explain them.

The assignment rule requires that the expressions l and r evaluate without
failure. The assignment succeeds if the virtual address vp is consistent in the
current state (vp /2 IC s) and vp is mapped (Addr vp ,!s pp), where

vp ,!s pp = (phy_ad (iset s) (heap s) (root s) (mode s) vp = bppc)

The e↵ect of the assignment is the heap and iset update heap_iset_update we
described in Sect. 4.2.

The rule for the command UpdateTTBR0, only available in kernel mode, up-
dates the current page table root to the value of the expression rte. The e↵ect
is modelled by root_iset_update defined in Sect. 4.2.

The UpdateASID command, also only available in kernel mode, sets the new
ASID a, increases the iset using snp_incon, and records a page table snapshot
for the old ASID using new_snp.

Finally, Flush is the instruction that the makes the iset smaller, and removes
mappings in the snapshots of inactive ASIDs, using iset_asid_map_update from
Sect. 4.2.

8

DR
AF
T

block-invalidation :: tlb) asid) va set) tlb

block-invalidation t a V ⌘ (
S

x2V. selective-invalidation t a x)

asid-invalidation :: tlb) asid) tlb

asid-invalidation t a ⌘ t - asid-entry-set t a

va-invalidation :: tlb) va) tlb

va-invalidation t v ⌘ t - va-set t v

selective-invalidation selectively removes the entry or entries covering the
given virtual address and ASID depending upon the outcome of lookup opera-
tion. Whereas, block-invalidation takes a set of virtual addresses along with
particular ASID and selectively invalidates all of them. asid-invalidation and
va-invalidation removes entries using asid-entry-set and va-entry-set re-
spectively. We have proved the correctness of invalidation functions by validating
many interesting theorems shown in Figure ??.

✏ �s. P (s(x := e s)) x := e P

4 TLB Model inclusion in Cambridge ARM model

5 Conclusions

 Program Verification in the Presence of TLB-Address Translation Hira Syeda

- assignment

✓incon_set update

va3 is remapped to pa5

va4 is unmapped

va3 is mapped to pa3

va4 is mapped to pa4

before assignment after assignment

incon_set : { va1 , va2 }

15

Program Logic — Rules

{|P|} SKIP {|P|}
{|P|} c {|Q|} P’ �! P

{|P’|} c {|Q|}

{|P ^ hbi|} c1 {|Q|} {|P ^ ¬hbi|} c2 {|Q|}
{|P ^ hhbii|} IF b THEN c1 ELSE c2 {|Q|}

{|P ^ hbi|} c {|P|} P �! hhbii
{|P|} WHILE b DO c {|P ^ ¬hbi|}

{|P|} c1 {|Q|} {|Q|} c2 {|R|}
{|P|} c1;; c2 {|R|}

Fig. 3. Hoare Logic rules for standard commands.

{|�s. [[l]] s = bvpc ^ [[r]] s = bvc ^ vp /2 IC s ^ Addr vp ,!s pp ^
P (heap_iset_updates (pp 7! v))|}

l ::= r {|P|}

{|�s. kernel s ^ [[rte]] s = brtc ^ P (root_iset_updates Addr rt)|}
UpdateTTBR0 rte {|P|}

{|�s. mode s = Kernel ^ P (asid_pt_snpshot_updates a)|} UpdateASID a {|P|}

{|�s. mode s = Kernel ^ P (iset_pt_snpshot_updates f)|} Flush f {|P|}

{|�s. mode s = Kernel ^ P (s(|mode := flg|))|} SetMode flg {|P|}

Fig. 4. Hoare Logic rules for commands with TLB e↵ects.

completely standard, as intended. We write hhbii s to denote that [[b]]b s 6= None:
the precondition in the IF and WHILE rules must be strong enough for failure free
evaluation of b. The rules in Fig. 4 are in weakest-precondition form. They have
a generic postcondition P and the weakest precondition that will establish P. We
will now explain them.

The assignment rule requires that the expressions l and r evaluate without
failure. The assignment succeeds if the virtual address vp is consistent in the
current state (vp /2 IC s) and vp is mapped (Addr vp ,!s pp), where

vp ,!s pp = (phy_ad (iset s) (heap s) (root s) (mode s) vp = bppc)

The e↵ect of the assignment is the heap and iset update heap_iset_update we
described in Sect. 4.2.

The rule for the command UpdateTTBR0, only available in kernel mode, up-
dates the current page table root to the value of the expression rte. The e↵ect
is modelled by root_iset_update defined in Sect. 4.2.

The UpdateASID command, also only available in kernel mode, sets the new
ASID a, increases the iset using snp_incon, and records a page table snapshot
for the old ASID using new_snp.

Finally, Flush is the instruction that the makes the iset smaller, and removes
mappings in the snapshots of inactive ASIDs, using iset_asid_map_update from
Sect. 4.2.

8

{|P|} SKIP {|P|}
{|P|} c {|Q|} P’ �! P

{|P’|} c {|Q|}

{|P ^ hbi|} c1 {|Q|} {|P ^ ¬hbi|} c2 {|Q|}
{|P ^ hhbii|} IF b THEN c1 ELSE c2 {|Q|}

{|P ^ hbi|} c {|P|} P �! hhbii
{|P|} WHILE b DO c {|P ^ ¬hbi|}

{|P|} c1 {|Q|} {|Q|} c2 {|R|}
{|P|} c1;; c2 {|R|}

Fig. 3. Hoare Logic rules for standard commands.

{|�s. [[l]] s = bvpc ^ [[r]] s = bvc ^ vp /2 IC s ^ Addr vp ,!s pp ^
P (heap_iset_updates (pp 7! v))|}

l ::= r {|P|}

{|�s. kernel s ^ [[rte]] s = brtc ^ P (root_iset_updates Addr rt)|}
UpdateTTBR0 rte {|P|}

{|�s. mode s = Kernel ^ P (asid_pt_snpshot_updates a)|} UpdateASID a {|P|}

{|�s. mode s = Kernel ^ P (iset_pt_snpshot_updates f)|} Flush f {|P|}

{|�s. mode s = Kernel ^ P (s(|mode := flg|))|} SetMode flg {|P|}

Fig. 4. Hoare Logic rules for commands with TLB e↵ects.

completely standard, as intended. We write hhbii s to denote that [[b]]b s 6= None:
the precondition in the IF and WHILE rules must be strong enough for failure free
evaluation of b. The rules in Fig. 4 are in weakest-precondition form. They have
a generic postcondition P and the weakest precondition that will establish P. We
will now explain them.

The assignment rule requires that the expressions l and r evaluate without
failure. The assignment succeeds if the virtual address vp is consistent in the
current state (vp /2 IC s) and vp is mapped (Addr vp ,!s pp), where

vp ,!s pp = (phy_ad (iset s) (heap s) (root s) (mode s) vp = bppc)

The e↵ect of the assignment is the heap and iset update heap_iset_update we
described in Sect. 4.2.

The rule for the command UpdateTTBR0, only available in kernel mode, up-
dates the current page table root to the value of the expression rte. The e↵ect
is modelled by root_iset_update defined in Sect. 4.2.

The UpdateASID command, also only available in kernel mode, sets the new
ASID a, increases the iset using snp_incon, and records a page table snapshot
for the old ASID using new_snp.

Finally, Flush is the instruction that the makes the iset smaller, and removes
mappings in the snapshots of inactive ASIDs, using iset_asid_map_update from
Sect. 4.2.

8

DR
AF
T

block-invalidation :: tlb) asid) va set) tlb

block-invalidation t a V ⌘ (
S

x2V. selective-invalidation t a x)

asid-invalidation :: tlb) asid) tlb

asid-invalidation t a ⌘ t - asid-entry-set t a

va-invalidation :: tlb) va) tlb

va-invalidation t v ⌘ t - va-set t v

selective-invalidation selectively removes the entry or entries covering the
given virtual address and ASID depending upon the outcome of lookup opera-
tion. Whereas, block-invalidation takes a set of virtual addresses along with
particular ASID and selectively invalidates all of them. asid-invalidation and
va-invalidation removes entries using asid-entry-set and va-entry-set re-
spectively. We have proved the correctness of invalidation functions by validating
many interesting theorems shown in Figure ??.

✏ �s. P (s(x := e s)) x := e P

4 TLB Model inclusion in Cambridge ARM model

5 Conclusions

 Program Verification in the Presence of TLB-Address Translation Hira Syeda

- assignment

✓incon_set update

va3 is remapped to pa5

va4 is unmapped

va3 is mapped to pa3

va4 is mapped to pa4

before assignment after assignment

incon_set : { va1 , va2 }

15

Program Logic — Rules

{|P|} SKIP {|P|}
{|P|} c {|Q|} P’ �! P

{|P’|} c {|Q|}

{|P ^ hbi|} c1 {|Q|} {|P ^ ¬hbi|} c2 {|Q|}
{|P ^ hhbii|} IF b THEN c1 ELSE c2 {|Q|}

{|P ^ hbi|} c {|P|} P �! hhbii
{|P|} WHILE b DO c {|P ^ ¬hbi|}

{|P|} c1 {|Q|} {|Q|} c2 {|R|}
{|P|} c1;; c2 {|R|}

Fig. 3. Hoare Logic rules for standard commands.

{|�s. [[l]] s = bvpc ^ [[r]] s = bvc ^ vp /2 IC s ^ Addr vp ,!s pp ^
P (heap_iset_updates (pp 7! v))|}

l ::= r {|P|}

{|�s. kernel s ^ [[rte]] s = brtc ^ P (root_iset_updates Addr rt)|}
UpdateTTBR0 rte {|P|}

{|�s. mode s = Kernel ^ P (asid_pt_snpshot_updates a)|} UpdateASID a {|P|}

{|�s. mode s = Kernel ^ P (iset_pt_snpshot_updates f)|} Flush f {|P|}

{|�s. mode s = Kernel ^ P (s(|mode := flg|))|} SetMode flg {|P|}

Fig. 4. Hoare Logic rules for commands with TLB e↵ects.

completely standard, as intended. We write hhbii s to denote that [[b]]b s 6= None:
the precondition in the IF and WHILE rules must be strong enough for failure free
evaluation of b. The rules in Fig. 4 are in weakest-precondition form. They have
a generic postcondition P and the weakest precondition that will establish P. We
will now explain them.

The assignment rule requires that the expressions l and r evaluate without
failure. The assignment succeeds if the virtual address vp is consistent in the
current state (vp /2 IC s) and vp is mapped (Addr vp ,!s pp), where

vp ,!s pp = (phy_ad (iset s) (heap s) (root s) (mode s) vp = bppc)

The e↵ect of the assignment is the heap and iset update heap_iset_update we
described in Sect. 4.2.

The rule for the command UpdateTTBR0, only available in kernel mode, up-
dates the current page table root to the value of the expression rte. The e↵ect
is modelled by root_iset_update defined in Sect. 4.2.

The UpdateASID command, also only available in kernel mode, sets the new
ASID a, increases the iset using snp_incon, and records a page table snapshot
for the old ASID using new_snp.

Finally, Flush is the instruction that the makes the iset smaller, and removes
mappings in the snapshots of inactive ASIDs, using iset_asid_map_update from
Sect. 4.2.

8

{|P|} SKIP {|P|}
{|P|} c {|Q|} P’ �! P

{|P’|} c {|Q|}

{|P ^ hbi|} c1 {|Q|} {|P ^ ¬hbi|} c2 {|Q|}
{|P ^ hhbii|} IF b THEN c1 ELSE c2 {|Q|}

{|P ^ hbi|} c {|P|} P �! hhbii
{|P|} WHILE b DO c {|P ^ ¬hbi|}

{|P|} c1 {|Q|} {|Q|} c2 {|R|}
{|P|} c1;; c2 {|R|}

Fig. 3. Hoare Logic rules for standard commands.

{|�s. [[l]] s = bvpc ^ [[r]] s = bvc ^ vp /2 IC s ^ Addr vp ,!s pp ^
P (heap_iset_updates (pp 7! v))|}

l ::= r {|P|}

{|�s. kernel s ^ [[rte]] s = brtc ^ P (root_iset_updates Addr rt)|}
UpdateTTBR0 rte {|P|}

{|�s. mode s = Kernel ^ P (asid_pt_snpshot_updates a)|} UpdateASID a {|P|}

{|�s. mode s = Kernel ^ P (iset_pt_snpshot_updates f)|} Flush f {|P|}

{|�s. mode s = Kernel ^ P (s(|mode := flg|))|} SetMode flg {|P|}

Fig. 4. Hoare Logic rules for commands with TLB e↵ects.

completely standard, as intended. We write hhbii s to denote that [[b]]b s 6= None:
the precondition in the IF and WHILE rules must be strong enough for failure free
evaluation of b. The rules in Fig. 4 are in weakest-precondition form. They have
a generic postcondition P and the weakest precondition that will establish P. We
will now explain them.

The assignment rule requires that the expressions l and r evaluate without
failure. The assignment succeeds if the virtual address vp is consistent in the
current state (vp /2 IC s) and vp is mapped (Addr vp ,!s pp), where

vp ,!s pp = (phy_ad (iset s) (heap s) (root s) (mode s) vp = bppc)

The e↵ect of the assignment is the heap and iset update heap_iset_update we
described in Sect. 4.2.

The rule for the command UpdateTTBR0, only available in kernel mode, up-
dates the current page table root to the value of the expression rte. The e↵ect
is modelled by root_iset_update defined in Sect. 4.2.

The UpdateASID command, also only available in kernel mode, sets the new
ASID a, increases the iset using snp_incon, and records a page table snapshot
for the old ASID using new_snp.

Finally, Flush is the instruction that the makes the iset smaller, and removes
mappings in the snapshots of inactive ASIDs, using iset_asid_map_update from
Sect. 4.2.

8

DR
AF
T

block-invalidation :: tlb) asid) va set) tlb

block-invalidation t a V ⌘ (
S

x2V. selective-invalidation t a x)

asid-invalidation :: tlb) asid) tlb

asid-invalidation t a ⌘ t - asid-entry-set t a

va-invalidation :: tlb) va) tlb

va-invalidation t v ⌘ t - va-set t v

selective-invalidation selectively removes the entry or entries covering the
given virtual address and ASID depending upon the outcome of lookup opera-
tion. Whereas, block-invalidation takes a set of virtual addresses along with
particular ASID and selectively invalidates all of them. asid-invalidation and
va-invalidation removes entries using asid-entry-set and va-entry-set re-
spectively. We have proved the correctness of invalidation functions by validating
many interesting theorems shown in Figure ??.

✏ �s. P (s(x := e s)) x := e P

4 TLB Model inclusion in Cambridge ARM model

5 Conclusions

 Program Verification in the Presence of TLB-Address Translation Hira Syeda

- assignment

✓incon_set update

va3 is remapped to pa5

va4 is unmapped

va3 is mapped to pa3

va4 is mapped to pa4

before assignment after assignment

incon_set : { va1 , va2 } incon_set : { va1 , va2 ,
 va3 , va4 }

15

Program Logic — Rules

{|P|} SKIP {|P|}
{|P|} c {|Q|} P’ �! P

{|P’|} c {|Q|}

{|P ^ hbi|} c1 {|Q|} {|P ^ ¬hbi|} c2 {|Q|}
{|P ^ hhbii|} IF b THEN c1 ELSE c2 {|Q|}

{|P ^ hbi|} c {|P|} P �! hhbii
{|P|} WHILE b DO c {|P ^ ¬hbi|}

{|P|} c1 {|Q|} {|Q|} c2 {|R|}
{|P|} c1;; c2 {|R|}

Fig. 3. Hoare Logic rules for standard commands.

{|�s. [[l]] s = bvpc ^ [[r]] s = bvc ^ vp /2 IC s ^ Addr vp ,!s pp ^
P (heap_iset_updates (pp 7! v))|}

l ::= r {|P|}

{|�s. kernel s ^ [[rte]] s = brtc ^ P (root_iset_updates Addr rt)|}
UpdateTTBR0 rte {|P|}

{|�s. mode s = Kernel ^ P (asid_pt_snpshot_updates a)|} UpdateASID a {|P|}

{|�s. mode s = Kernel ^ P (iset_pt_snpshot_updates f)|} Flush f {|P|}

{|�s. mode s = Kernel ^ P (s(|mode := flg|))|} SetMode flg {|P|}

Fig. 4. Hoare Logic rules for commands with TLB e↵ects.

completely standard, as intended. We write hhbii s to denote that [[b]]b s 6= None:
the precondition in the IF and WHILE rules must be strong enough for failure free
evaluation of b. The rules in Fig. 4 are in weakest-precondition form. They have
a generic postcondition P and the weakest precondition that will establish P. We
will now explain them.

The assignment rule requires that the expressions l and r evaluate without
failure. The assignment succeeds if the virtual address vp is consistent in the
current state (vp /2 IC s) and vp is mapped (Addr vp ,!s pp), where

vp ,!s pp = (phy_ad (iset s) (heap s) (root s) (mode s) vp = bppc)

The e↵ect of the assignment is the heap and iset update heap_iset_update we
described in Sect. 4.2.

The rule for the command UpdateTTBR0, only available in kernel mode, up-
dates the current page table root to the value of the expression rte. The e↵ect
is modelled by root_iset_update defined in Sect. 4.2.

The UpdateASID command, also only available in kernel mode, sets the new
ASID a, increases the iset using snp_incon, and records a page table snapshot
for the old ASID using new_snp.

Finally, Flush is the instruction that the makes the iset smaller, and removes
mappings in the snapshots of inactive ASIDs, using iset_asid_map_update from
Sect. 4.2.

8

{|P|} SKIP {|P|}
{|P|} c {|Q|} P’ �! P

{|P’|} c {|Q|}

{|P ^ hbi|} c1 {|Q|} {|P ^ ¬hbi|} c2 {|Q|}
{|P ^ hhbii|} IF b THEN c1 ELSE c2 {|Q|}

{|P ^ hbi|} c {|P|} P �! hhbii
{|P|} WHILE b DO c {|P ^ ¬hbi|}

{|P|} c1 {|Q|} {|Q|} c2 {|R|}
{|P|} c1;; c2 {|R|}

Fig. 3. Hoare Logic rules for standard commands.

{|�s. [[l]] s = bvpc ^ [[r]] s = bvc ^ vp /2 IC s ^ Addr vp ,!s pp ^
P (heap_iset_updates (pp 7! v))|}

l ::= r {|P|}

{|�s. kernel s ^ [[rte]] s = brtc ^ P (root_iset_updates Addr rt)|}
UpdateTTBR0 rte {|P|}

{|�s. mode s = Kernel ^ P (asid_pt_snpshot_updates a)|} UpdateASID a {|P|}

{|�s. mode s = Kernel ^ P (iset_pt_snpshot_updates f)|} Flush f {|P|}

{|�s. mode s = Kernel ^ P (s(|mode := flg|))|} SetMode flg {|P|}

Fig. 4. Hoare Logic rules for commands with TLB e↵ects.

completely standard, as intended. We write hhbii s to denote that [[b]]b s 6= None:
the precondition in the IF and WHILE rules must be strong enough for failure free
evaluation of b. The rules in Fig. 4 are in weakest-precondition form. They have
a generic postcondition P and the weakest precondition that will establish P. We
will now explain them.

The assignment rule requires that the expressions l and r evaluate without
failure. The assignment succeeds if the virtual address vp is consistent in the
current state (vp /2 IC s) and vp is mapped (Addr vp ,!s pp), where

vp ,!s pp = (phy_ad (iset s) (heap s) (root s) (mode s) vp = bppc)

The e↵ect of the assignment is the heap and iset update heap_iset_update we
described in Sect. 4.2.

The rule for the command UpdateTTBR0, only available in kernel mode, up-
dates the current page table root to the value of the expression rte. The e↵ect
is modelled by root_iset_update defined in Sect. 4.2.

The UpdateASID command, also only available in kernel mode, sets the new
ASID a, increases the iset using snp_incon, and records a page table snapshot
for the old ASID using new_snp.

Finally, Flush is the instruction that the makes the iset smaller, and removes
mappings in the snapshots of inactive ASIDs, using iset_asid_map_update from
Sect. 4.2.

8

DR
AF
T

block-invalidation :: tlb) asid) va set) tlb

block-invalidation t a V ⌘ (
S

x2V. selective-invalidation t a x)

asid-invalidation :: tlb) asid) tlb

asid-invalidation t a ⌘ t - asid-entry-set t a

va-invalidation :: tlb) va) tlb

va-invalidation t v ⌘ t - va-set t v

selective-invalidation selectively removes the entry or entries covering the
given virtual address and ASID depending upon the outcome of lookup opera-
tion. Whereas, block-invalidation takes a set of virtual addresses along with
particular ASID and selectively invalidates all of them. asid-invalidation and
va-invalidation removes entries using asid-entry-set and va-entry-set re-
spectively. We have proved the correctness of invalidation functions by validating
many interesting theorems shown in Figure ??.

✏ �s. P (s(x := e s)) x := e P

4 TLB Model inclusion in Cambridge ARM model

5 Conclusions

 Program Verification in the Presence of TLB-Address Translation Hira Syeda

- assignment

- updateRoot

- updateASID

16

Program Logic — Rules

 Program Verification in the Presence of TLB-Address Translation Hira Syeda

- updateRoot

17

Program Logic — Rules

✓available in kernel mode
✓ reasoning about root and incon_set update

{|�s. [[l]] s = bvpc ^ [[r]] s = bvc ^ vp /2 IC s ^ Addr vp ,!s pp ^
P (heap_iset_updates (pp 7! v))|}

l ::= r {|P|}

{|�s. kernel s ^ [[rte]] s = brtc ^ P (root_iset_updates Addr rt)|}
UpdateTTBR0 rte {|P|}

{|�s. kernel s ^ P (asid_pt_snpshot_updates a)|} UpdateASID a {|P|}

{|�s. kernel s ^ P (iset_pt_snpshot_updates f)|} Flush f {|P|}

{|�s. kernel s ^ P (s(|mode := flg|))|} SetMode flg {|P|}

Fig. 4. Hoare Logic rules for commands with TLB e↵ects.

The rule for the command UpdateTTBR0, only available in kernel mode, up-
dates the current page table root to the value of the expression rte. The e↵ect
is modelled by root_iset_update defined in Sect. 4.2.

The UpdateASID command, also only available in kernel mode, sets the new
ASID a, increases the iset using snp_incon, and records a page table snapshot
for the old ASID using new_snp.

Finally, Flush is the instruction that the makes the iset smaller, and removes
mappings in the snapshots of inactive ASIDs, using iset_asid_map_update from
Sect. 4.2.

4.4 Discussion

Our previous work [17] motivated an abstract TLB model that we have extended
and refined here. The program logic uses the (morally) same model, but there
is still a break in logic: the TLB abstraction is on a machine-level ISA model;
the program logic is for a higher-level language with explicit memory access,
intended for languages such as C. The bridge between the two worlds would
be a compiler correctness statement that takes the TLB into account. This may
initially not sound straightforward: the high-level language makes fewer memory
accesses visible than the low-level machine performs. In particular, a compiler
will usually implement a stack for local variables, and memory areas for global
variables, as well as for the code itself. These memory accesses are under address
translation and might be relevant for TLB reasoning.

Sect. 5 and 6 will show that we can ignore the TLB for kernel-level code, if we
can assume that these memory areas (code, stack, globals) are statically known
and that the compiler will not generate additional memory accesses outside these
static areas. This is a reasonable assumption — otherwise kernel code could
never be sure that privileged memory areas such as memory-mapped devices are
not randomly overwritten by compiler-generated accesses. We will then have to
prove that we never remove or change active mappings for these areas (adding
new mappings for e.g. the stack would be fine). For user-level code, we will see
that the issue becomes irrelevant.

9

DR
AF
T

block-invalidation :: tlb) asid) va set) tlb

block-invalidation t a V ⌘ (
S

x2V. selective-invalidation t a x)

asid-invalidation :: tlb) asid) tlb

asid-invalidation t a ⌘ t - asid-entry-set t a

va-invalidation :: tlb) va) tlb

va-invalidation t v ⌘ t - va-set t v

selective-invalidation selectively removes the entry or entries covering the
given virtual address and ASID depending upon the outcome of lookup opera-
tion. Whereas, block-invalidation takes a set of virtual addresses along with
particular ASID and selectively invalidates all of them. asid-invalidation and
va-invalidation removes entries using asid-entry-set and va-entry-set re-
spectively. We have proved the correctness of invalidation functions by validating
many interesting theorems shown in Figure ??.

✏ �s. P (s(x := e s)) x := e P

4 TLB Model inclusion in Cambridge ARM model

5 Conclusions

{|�s. [[l]] s = bvpc ^ [[r]] s = bvc ^ vp /2 IC s ^ Addr vp ,!s pp ^
P (heap_iset_updates (pp 7! v))|}

l ::= r {|P|}

{|�s. kernel s ^ [[rte]] s = brtc ^ P (root_iset_updates Addr rt)|}
UpdateTTBR0 rte {|P|}

{|�s. kernel s ^ P (asid_pt_snpshot_updates a)|} UpdateASID a {|P|}

{|�s. kernel s ^ P (iset_pt_snpshot_updates f)|} Flush f {|P|}

{|�s. kernel s ^ P (s(|mode := flg|))|} SetMode flg {|P|}

Fig. 4. Hoare Logic rules for commands with TLB e↵ects.

The rule for the command UpdateTTBR0, only available in kernel mode, up-
dates the current page table root to the value of the expression rte. The e↵ect
is modelled by root_iset_update defined in Sect. 4.2.

The UpdateASID command, also only available in kernel mode, sets the new
ASID a, increases the iset using snp_incon, and records a page table snapshot
for the old ASID using new_snp.

Finally, Flush is the instruction that the makes the iset smaller, and removes
mappings in the snapshots of inactive ASIDs, using iset_asid_map_update from
Sect. 4.2.

4.4 Discussion

Our previous work [17] motivated an abstract TLB model that we have extended
and refined here. The program logic uses the (morally) same model, but there
is still a break in logic: the TLB abstraction is on a machine-level ISA model;
the program logic is for a higher-level language with explicit memory access,
intended for languages such as C. The bridge between the two worlds would
be a compiler correctness statement that takes the TLB into account. This may
initially not sound straightforward: the high-level language makes fewer memory
accesses visible than the low-level machine performs. In particular, a compiler
will usually implement a stack for local variables, and memory areas for global
variables, as well as for the code itself. These memory accesses are under address
translation and might be relevant for TLB reasoning.

Sect. 5 and 6 will show that we can ignore the TLB for kernel-level code, if we
can assume that these memory areas (code, stack, globals) are statically known
and that the compiler will not generate additional memory accesses outside these
static areas. This is a reasonable assumption — otherwise kernel code could
never be sure that privileged memory areas such as memory-mapped devices are
not randomly overwritten by compiler-generated accesses. We will then have to
prove that we never remove or change active mappings for these areas (adding
new mappings for e.g. the stack would be fine). For user-level code, we will see
that the issue becomes irrelevant.

9

{|�s. [[l]] s = bvpc ^ [[r]] s = bvc ^ vp /2 IC s ^ Addr vp ,!s pp ^
P (heap_iset_updates (pp 7! v))|}

l ::= r {|P|}

{|�s. kernel s ^ [[rte]] s = brtc ^ P (root_iset_updates Addr rt)|}
UpdateTTBR0 rte {|P|}

{|�s. kernel s ^ P (asid_pt_snpshot_updates a)|} UpdateASID a {|P|}

{|�s. kernel s ^ P (iset_pt_snpshot_updates f)|} Flush f {|P|}

{|�s. kernel s ^ P (s(|mode := flg|))|} SetMode flg {|P|}

Fig. 4. Hoare Logic rules for commands with TLB e↵ects.

The rule for the command UpdateTTBR0, only available in kernel mode, up-
dates the current page table root to the value of the expression rte. The e↵ect
is modelled by root_iset_update defined in Sect. 4.2.

The UpdateASID command, also only available in kernel mode, sets the new
ASID a, increases the iset using snp_incon, and records a page table snapshot
for the old ASID using new_snp.

Finally, Flush is the instruction that the makes the iset smaller, and removes
mappings in the snapshots of inactive ASIDs, using iset_asid_map_update from
Sect. 4.2.

4.4 Discussion

Our previous work [17] motivated an abstract TLB model that we have extended
and refined here. The program logic uses the (morally) same model, but there
is still a break in logic: the TLB abstraction is on a machine-level ISA model;
the program logic is for a higher-level language with explicit memory access,
intended for languages such as C. The bridge between the two worlds would
be a compiler correctness statement that takes the TLB into account. This may
initially not sound straightforward: the high-level language makes fewer memory
accesses visible than the low-level machine performs. In particular, a compiler
will usually implement a stack for local variables, and memory areas for global
variables, as well as for the code itself. These memory accesses are under address
translation and might be relevant for TLB reasoning.

Sect. 5 and 6 will show that we can ignore the TLB for kernel-level code, if we
can assume that these memory areas (code, stack, globals) are statically known
and that the compiler will not generate additional memory accesses outside these
static areas. This is a reasonable assumption — otherwise kernel code could
never be sure that privileged memory areas such as memory-mapped devices are
not randomly overwritten by compiler-generated accesses. We will then have to
prove that we never remove or change active mappings for these areas (adding
new mappings for e.g. the stack would be fine). For user-level code, we will see
that the issue becomes irrelevant.

9

{|�s. [[l]] s = bvpc ^ [[r]] s = bvc ^ vp /2 IC s ^ Addr vp ,!s pp ^
P (heap_iset_updates (pp 7! v))|}

l ::= r {|P|}

{|�s. kernel s ^ [[rte]] s = brtc ^ P (root_iset_updates Addr rt)|}
UpdateTTBR0 rte {|P|}

{|�s. kernel s ^ P (asid_pt_snpshot_updates a)|} UpdateASID a {|P|}

{|�s. kernel s ^ P (iset_pt_snpshot_updates f)|} Flush f {|P|}

{|�s. kernel s ^ P (s(|mode := flg|))|} SetMode flg {|P|}

Fig. 4. Hoare Logic rules for commands with TLB e↵ects.

The rule for the command UpdateTTBR0, only available in kernel mode, up-
dates the current page table root to the value of the expression rte. The e↵ect
is modelled by root_iset_update defined in Sect. 4.2.

The UpdateASID command, also only available in kernel mode, sets the new
ASID a, increases the iset using snp_incon, and records a page table snapshot
for the old ASID using new_snp.

Finally, Flush is the instruction that the makes the iset smaller, and removes
mappings in the snapshots of inactive ASIDs, using iset_asid_map_update from
Sect. 4.2.

4.4 Discussion

Our previous work [17] motivated an abstract TLB model that we have extended
and refined here. The program logic uses the (morally) same model, but there
is still a break in logic: the TLB abstraction is on a machine-level ISA model;
the program logic is for a higher-level language with explicit memory access,
intended for languages such as C. The bridge between the two worlds would
be a compiler correctness statement that takes the TLB into account. This may
initially not sound straightforward: the high-level language makes fewer memory
accesses visible than the low-level machine performs. In particular, a compiler
will usually implement a stack for local variables, and memory areas for global
variables, as well as for the code itself. These memory accesses are under address
translation and might be relevant for TLB reasoning.

Sect. 5 and 6 will show that we can ignore the TLB for kernel-level code, if we
can assume that these memory areas (code, stack, globals) are statically known
and that the compiler will not generate additional memory accesses outside these
static areas. This is a reasonable assumption — otherwise kernel code could
never be sure that privileged memory areas such as memory-mapped devices are
not randomly overwritten by compiler-generated accesses. We will then have to
prove that we never remove or change active mappings for these areas (adding
new mappings for e.g. the stack would be fine). For user-level code, we will see
that the issue becomes irrelevant.

9

{|�s. [[l]] s = bvpc ^ [[r]] s = bvc ^ vp /2 IC s ^ Addr vp ,!s pp ^
P (heap_iset_updates (pp 7! v))|}

l ::= r {|P|}

{|�s. kernel s ^ [[rte]] s = brtc ^ P (root_iset_updates Addr rt)|}
UpdateTTBR0 rte {|P|}

{|�s. kernel s ^ P (asid_pt_snpshot_updates a)|} UpdateASID a {|P|}

{|�s. kernel s ^ P (iset_pt_snpshot_updates f)|} Flush f {|P|}

{|�s. kernel s ^ P (s(|mode := flg|))|} SetMode flg {|P|}

Fig. 4. Hoare Logic rules for commands with TLB e↵ects.

The rule for the command UpdateTTBR0, only available in kernel mode, up-
dates the current page table root to the value of the expression rte. The e↵ect
is modelled by root_iset_update defined in Sect. 4.2.

The UpdateASID command, also only available in kernel mode, sets the new
ASID a, increases the iset using snp_incon, and records a page table snapshot
for the old ASID using new_snp.

Finally, Flush is the instruction that the makes the iset smaller, and removes
mappings in the snapshots of inactive ASIDs, using iset_asid_map_update from
Sect. 4.2.

4.4 Discussion

Our previous work [17] motivated an abstract TLB model that we have extended
and refined here. The program logic uses the (morally) same model, but there
is still a break in logic: the TLB abstraction is on a machine-level ISA model;
the program logic is for a higher-level language with explicit memory access,
intended for languages such as C. The bridge between the two worlds would
be a compiler correctness statement that takes the TLB into account. This may
initially not sound straightforward: the high-level language makes fewer memory
accesses visible than the low-level machine performs. In particular, a compiler
will usually implement a stack for local variables, and memory areas for global
variables, as well as for the code itself. These memory accesses are under address
translation and might be relevant for TLB reasoning.

Sect. 5 and 6 will show that we can ignore the TLB for kernel-level code, if we
can assume that these memory areas (code, stack, globals) are statically known
and that the compiler will not generate additional memory accesses outside these
static areas. This is a reasonable assumption — otherwise kernel code could
never be sure that privileged memory areas such as memory-mapped devices are
not randomly overwritten by compiler-generated accesses. We will then have to
prove that we never remove or change active mappings for these areas (adding
new mappings for e.g. the stack would be fine). For user-level code, we will see
that the issue becomes irrelevant.

9

{|�s. [[l]] s = bvpc ^ [[r]] s = bvc ^ vp /2 IC s ^ Addr vp ,!s pp ^
P (heap_iset_updates (pp 7! v))|}

l ::= r {|P|}

{|�s. kernel s ^ [[rte]] s = brtc ^ P (root_iset_updates Addr rt)|}
UpdateTTBR0 rte {|P|}

{|�s. kernel s ^ P (asid_pt_snpshot_updates a)|} UpdateASID a {|P|}

{|�s. kernel s ^ P (iset_pt_snpshot_updates f)|} Flush f {|P|}

{|�s. kernel s ^ P (s(|mode := flg|))|} SetMode flg {|P|}

Fig. 4. Hoare Logic rules for commands with TLB e↵ects.

The rule for the command UpdateTTBR0, only available in kernel mode, up-
dates the current page table root to the value of the expression rte. The e↵ect
is modelled by root_iset_update defined in Sect. 4.2.

The UpdateASID command, also only available in kernel mode, sets the new
ASID a, increases the iset using snp_incon, and records a page table snapshot
for the old ASID using new_snp.

Finally, Flush is the instruction that the makes the iset smaller, and removes
mappings in the snapshots of inactive ASIDs, using iset_asid_map_update from
Sect. 4.2.

4.4 Discussion

Our previous work [17] motivated an abstract TLB model that we have extended
and refined here. The program logic uses the (morally) same model, but there
is still a break in logic: the TLB abstraction is on a machine-level ISA model;
the program logic is for a higher-level language with explicit memory access,
intended for languages such as C. The bridge between the two worlds would
be a compiler correctness statement that takes the TLB into account. This may
initially not sound straightforward: the high-level language makes fewer memory
accesses visible than the low-level machine performs. In particular, a compiler
will usually implement a stack for local variables, and memory areas for global
variables, as well as for the code itself. These memory accesses are under address
translation and might be relevant for TLB reasoning.

Sect. 5 and 6 will show that we can ignore the TLB for kernel-level code, if we
can assume that these memory areas (code, stack, globals) are statically known
and that the compiler will not generate additional memory accesses outside these
static areas. This is a reasonable assumption — otherwise kernel code could
never be sure that privileged memory areas such as memory-mapped devices are
not randomly overwritten by compiler-generated accesses. We will then have to
prove that we never remove or change active mappings for these areas (adding
new mappings for e.g. the stack would be fine). For user-level code, we will see
that the issue becomes irrelevant.

9

 Program Verification in the Presence of TLB-Address Translation Hira Syeda

- updateRoot

17

Program Logic — Rules

✓available in kernel mode
✓ reasoning about root and incon_set update

{|�s. [[l]] s = bvpc ^ [[r]] s = bvc ^ vp /2 IC s ^ Addr vp ,!s pp ^
P (heap_iset_updates (pp 7! v))|}

l ::= r {|P|}

{|�s. kernel s ^ [[rte]] s = brtc ^ P (root_iset_updates Addr rt)|}
UpdateTTBR0 rte {|P|}

{|�s. kernel s ^ P (asid_pt_snpshot_updates a)|} UpdateASID a {|P|}

{|�s. kernel s ^ P (iset_pt_snpshot_updates f)|} Flush f {|P|}

{|�s. kernel s ^ P (s(|mode := flg|))|} SetMode flg {|P|}

Fig. 4. Hoare Logic rules for commands with TLB e↵ects.

The rule for the command UpdateTTBR0, only available in kernel mode, up-
dates the current page table root to the value of the expression rte. The e↵ect
is modelled by root_iset_update defined in Sect. 4.2.

The UpdateASID command, also only available in kernel mode, sets the new
ASID a, increases the iset using snp_incon, and records a page table snapshot
for the old ASID using new_snp.

Finally, Flush is the instruction that the makes the iset smaller, and removes
mappings in the snapshots of inactive ASIDs, using iset_asid_map_update from
Sect. 4.2.

4.4 Discussion

Our previous work [17] motivated an abstract TLB model that we have extended
and refined here. The program logic uses the (morally) same model, but there
is still a break in logic: the TLB abstraction is on a machine-level ISA model;
the program logic is for a higher-level language with explicit memory access,
intended for languages such as C. The bridge between the two worlds would
be a compiler correctness statement that takes the TLB into account. This may
initially not sound straightforward: the high-level language makes fewer memory
accesses visible than the low-level machine performs. In particular, a compiler
will usually implement a stack for local variables, and memory areas for global
variables, as well as for the code itself. These memory accesses are under address
translation and might be relevant for TLB reasoning.

Sect. 5 and 6 will show that we can ignore the TLB for kernel-level code, if we
can assume that these memory areas (code, stack, globals) are statically known
and that the compiler will not generate additional memory accesses outside these
static areas. This is a reasonable assumption — otherwise kernel code could
never be sure that privileged memory areas such as memory-mapped devices are
not randomly overwritten by compiler-generated accesses. We will then have to
prove that we never remove or change active mappings for these areas (adding
new mappings for e.g. the stack would be fine). For user-level code, we will see
that the issue becomes irrelevant.

9

DR
AF
T

block-invalidation :: tlb) asid) va set) tlb

block-invalidation t a V ⌘ (
S

x2V. selective-invalidation t a x)

asid-invalidation :: tlb) asid) tlb

asid-invalidation t a ⌘ t - asid-entry-set t a

va-invalidation :: tlb) va) tlb

va-invalidation t v ⌘ t - va-set t v

selective-invalidation selectively removes the entry or entries covering the
given virtual address and ASID depending upon the outcome of lookup opera-
tion. Whereas, block-invalidation takes a set of virtual addresses along with
particular ASID and selectively invalidates all of them. asid-invalidation and
va-invalidation removes entries using asid-entry-set and va-entry-set re-
spectively. We have proved the correctness of invalidation functions by validating
many interesting theorems shown in Figure ??.

✏ �s. P (s(x := e s)) x := e P

4 TLB Model inclusion in Cambridge ARM model

5 Conclusions

{|�s. [[l]] s = bvpc ^ [[r]] s = bvc ^ vp /2 IC s ^ Addr vp ,!s pp ^
P (heap_iset_updates (pp 7! v))|}

l ::= r {|P|}

{|�s. kernel s ^ [[rte]] s = brtc ^ P (root_iset_updates Addr rt)|}
UpdateTTBR0 rte {|P|}

{|�s. kernel s ^ P (asid_pt_snpshot_updates a)|} UpdateASID a {|P|}

{|�s. kernel s ^ P (iset_pt_snpshot_updates f)|} Flush f {|P|}

{|�s. kernel s ^ P (s(|mode := flg|))|} SetMode flg {|P|}

Fig. 4. Hoare Logic rules for commands with TLB e↵ects.

The rule for the command UpdateTTBR0, only available in kernel mode, up-
dates the current page table root to the value of the expression rte. The e↵ect
is modelled by root_iset_update defined in Sect. 4.2.

The UpdateASID command, also only available in kernel mode, sets the new
ASID a, increases the iset using snp_incon, and records a page table snapshot
for the old ASID using new_snp.

Finally, Flush is the instruction that the makes the iset smaller, and removes
mappings in the snapshots of inactive ASIDs, using iset_asid_map_update from
Sect. 4.2.

4.4 Discussion

Our previous work [17] motivated an abstract TLB model that we have extended
and refined here. The program logic uses the (morally) same model, but there
is still a break in logic: the TLB abstraction is on a machine-level ISA model;
the program logic is for a higher-level language with explicit memory access,
intended for languages such as C. The bridge between the two worlds would
be a compiler correctness statement that takes the TLB into account. This may
initially not sound straightforward: the high-level language makes fewer memory
accesses visible than the low-level machine performs. In particular, a compiler
will usually implement a stack for local variables, and memory areas for global
variables, as well as for the code itself. These memory accesses are under address
translation and might be relevant for TLB reasoning.

Sect. 5 and 6 will show that we can ignore the TLB for kernel-level code, if we
can assume that these memory areas (code, stack, globals) are statically known
and that the compiler will not generate additional memory accesses outside these
static areas. This is a reasonable assumption — otherwise kernel code could
never be sure that privileged memory areas such as memory-mapped devices are
not randomly overwritten by compiler-generated accesses. We will then have to
prove that we never remove or change active mappings for these areas (adding
new mappings for e.g. the stack would be fine). For user-level code, we will see
that the issue becomes irrelevant.

9

{|�s. [[l]] s = bvpc ^ [[r]] s = bvc ^ vp /2 IC s ^ Addr vp ,!s pp ^
P (heap_iset_updates (pp 7! v))|}

l ::= r {|P|}

{|�s. kernel s ^ [[rte]] s = brtc ^ P (root_iset_updates Addr rt)|}
UpdateTTBR0 rte {|P|}

{|�s. kernel s ^ P (asid_pt_snpshot_updates a)|} UpdateASID a {|P|}

{|�s. kernel s ^ P (iset_pt_snpshot_updates f)|} Flush f {|P|}

{|�s. kernel s ^ P (s(|mode := flg|))|} SetMode flg {|P|}

Fig. 4. Hoare Logic rules for commands with TLB e↵ects.

The rule for the command UpdateTTBR0, only available in kernel mode, up-
dates the current page table root to the value of the expression rte. The e↵ect
is modelled by root_iset_update defined in Sect. 4.2.

The UpdateASID command, also only available in kernel mode, sets the new
ASID a, increases the iset using snp_incon, and records a page table snapshot
for the old ASID using new_snp.

Finally, Flush is the instruction that the makes the iset smaller, and removes
mappings in the snapshots of inactive ASIDs, using iset_asid_map_update from
Sect. 4.2.

4.4 Discussion

Our previous work [17] motivated an abstract TLB model that we have extended
and refined here. The program logic uses the (morally) same model, but there
is still a break in logic: the TLB abstraction is on a machine-level ISA model;
the program logic is for a higher-level language with explicit memory access,
intended for languages such as C. The bridge between the two worlds would
be a compiler correctness statement that takes the TLB into account. This may
initially not sound straightforward: the high-level language makes fewer memory
accesses visible than the low-level machine performs. In particular, a compiler
will usually implement a stack for local variables, and memory areas for global
variables, as well as for the code itself. These memory accesses are under address
translation and might be relevant for TLB reasoning.

Sect. 5 and 6 will show that we can ignore the TLB for kernel-level code, if we
can assume that these memory areas (code, stack, globals) are statically known
and that the compiler will not generate additional memory accesses outside these
static areas. This is a reasonable assumption — otherwise kernel code could
never be sure that privileged memory areas such as memory-mapped devices are
not randomly overwritten by compiler-generated accesses. We will then have to
prove that we never remove or change active mappings for these areas (adding
new mappings for e.g. the stack would be fine). For user-level code, we will see
that the issue becomes irrelevant.

9

{|�s. [[l]] s = bvpc ^ [[r]] s = bvc ^ vp /2 IC s ^ Addr vp ,!s pp ^
P (heap_iset_updates (pp 7! v))|}

l ::= r {|P|}

{|�s. kernel s ^ [[rte]] s = brtc ^ P (root_iset_updates Addr rt)|}
UpdateTTBR0 rte {|P|}

{|�s. kernel s ^ P (asid_pt_snpshot_updates a)|} UpdateASID a {|P|}

{|�s. kernel s ^ P (iset_pt_snpshot_updates f)|} Flush f {|P|}

{|�s. kernel s ^ P (s(|mode := flg|))|} SetMode flg {|P|}

Fig. 4. Hoare Logic rules for commands with TLB e↵ects.

The rule for the command UpdateTTBR0, only available in kernel mode, up-
dates the current page table root to the value of the expression rte. The e↵ect
is modelled by root_iset_update defined in Sect. 4.2.

The UpdateASID command, also only available in kernel mode, sets the new
ASID a, increases the iset using snp_incon, and records a page table snapshot
for the old ASID using new_snp.

Finally, Flush is the instruction that the makes the iset smaller, and removes
mappings in the snapshots of inactive ASIDs, using iset_asid_map_update from
Sect. 4.2.

4.4 Discussion

Our previous work [17] motivated an abstract TLB model that we have extended
and refined here. The program logic uses the (morally) same model, but there
is still a break in logic: the TLB abstraction is on a machine-level ISA model;
the program logic is for a higher-level language with explicit memory access,
intended for languages such as C. The bridge between the two worlds would
be a compiler correctness statement that takes the TLB into account. This may
initially not sound straightforward: the high-level language makes fewer memory
accesses visible than the low-level machine performs. In particular, a compiler
will usually implement a stack for local variables, and memory areas for global
variables, as well as for the code itself. These memory accesses are under address
translation and might be relevant for TLB reasoning.

Sect. 5 and 6 will show that we can ignore the TLB for kernel-level code, if we
can assume that these memory areas (code, stack, globals) are statically known
and that the compiler will not generate additional memory accesses outside these
static areas. This is a reasonable assumption — otherwise kernel code could
never be sure that privileged memory areas such as memory-mapped devices are
not randomly overwritten by compiler-generated accesses. We will then have to
prove that we never remove or change active mappings for these areas (adding
new mappings for e.g. the stack would be fine). For user-level code, we will see
that the issue becomes irrelevant.

9

{|�s. [[l]] s = bvpc ^ [[r]] s = bvc ^ vp /2 IC s ^ Addr vp ,!s pp ^
P (heap_iset_updates (pp 7! v))|}

l ::= r {|P|}

{|�s. kernel s ^ [[rte]] s = brtc ^ P (root_iset_updates Addr rt)|}
UpdateTTBR0 rte {|P|}

{|�s. kernel s ^ P (asid_pt_snpshot_updates a)|} UpdateASID a {|P|}

{|�s. kernel s ^ P (iset_pt_snpshot_updates f)|} Flush f {|P|}

{|�s. kernel s ^ P (s(|mode := flg|))|} SetMode flg {|P|}

Fig. 4. Hoare Logic rules for commands with TLB e↵ects.

The rule for the command UpdateTTBR0, only available in kernel mode, up-
dates the current page table root to the value of the expression rte. The e↵ect
is modelled by root_iset_update defined in Sect. 4.2.

The UpdateASID command, also only available in kernel mode, sets the new
ASID a, increases the iset using snp_incon, and records a page table snapshot
for the old ASID using new_snp.

Finally, Flush is the instruction that the makes the iset smaller, and removes
mappings in the snapshots of inactive ASIDs, using iset_asid_map_update from
Sect. 4.2.

4.4 Discussion

Our previous work [17] motivated an abstract TLB model that we have extended
and refined here. The program logic uses the (morally) same model, but there
is still a break in logic: the TLB abstraction is on a machine-level ISA model;
the program logic is for a higher-level language with explicit memory access,
intended for languages such as C. The bridge between the two worlds would
be a compiler correctness statement that takes the TLB into account. This may
initially not sound straightforward: the high-level language makes fewer memory
accesses visible than the low-level machine performs. In particular, a compiler
will usually implement a stack for local variables, and memory areas for global
variables, as well as for the code itself. These memory accesses are under address
translation and might be relevant for TLB reasoning.

Sect. 5 and 6 will show that we can ignore the TLB for kernel-level code, if we
can assume that these memory areas (code, stack, globals) are statically known
and that the compiler will not generate additional memory accesses outside these
static areas. This is a reasonable assumption — otherwise kernel code could
never be sure that privileged memory areas such as memory-mapped devices are
not randomly overwritten by compiler-generated accesses. We will then have to
prove that we never remove or change active mappings for these areas (adding
new mappings for e.g. the stack would be fine). For user-level code, we will see
that the issue becomes irrelevant.

9

{|�s. [[l]] s = bvpc ^ [[r]] s = bvc ^ vp /2 IC s ^ Addr vp ,!s pp ^
P (heap_iset_updates (pp 7! v))|}

l ::= r {|P|}

{|�s. kernel s ^ [[rte]] s = brtc ^ P (root_iset_updates Addr rt)|}
UpdateTTBR0 rte {|P|}

{|�s. kernel s ^ P (asid_pt_snpshot_updates a)|} UpdateASID a {|P|}

{|�s. kernel s ^ P (iset_pt_snpshot_updates f)|} Flush f {|P|}

{|�s. kernel s ^ P (s(|mode := flg|))|} SetMode flg {|P|}

Fig. 4. Hoare Logic rules for commands with TLB e↵ects.

The rule for the command UpdateTTBR0, only available in kernel mode, up-
dates the current page table root to the value of the expression rte. The e↵ect
is modelled by root_iset_update defined in Sect. 4.2.

The UpdateASID command, also only available in kernel mode, sets the new
ASID a, increases the iset using snp_incon, and records a page table snapshot
for the old ASID using new_snp.

Finally, Flush is the instruction that the makes the iset smaller, and removes
mappings in the snapshots of inactive ASIDs, using iset_asid_map_update from
Sect. 4.2.

4.4 Discussion

Our previous work [17] motivated an abstract TLB model that we have extended
and refined here. The program logic uses the (morally) same model, but there
is still a break in logic: the TLB abstraction is on a machine-level ISA model;
the program logic is for a higher-level language with explicit memory access,
intended for languages such as C. The bridge between the two worlds would
be a compiler correctness statement that takes the TLB into account. This may
initially not sound straightforward: the high-level language makes fewer memory
accesses visible than the low-level machine performs. In particular, a compiler
will usually implement a stack for local variables, and memory areas for global
variables, as well as for the code itself. These memory accesses are under address
translation and might be relevant for TLB reasoning.

Sect. 5 and 6 will show that we can ignore the TLB for kernel-level code, if we
can assume that these memory areas (code, stack, globals) are statically known
and that the compiler will not generate additional memory accesses outside these
static areas. This is a reasonable assumption — otherwise kernel code could
never be sure that privileged memory areas such as memory-mapped devices are
not randomly overwritten by compiler-generated accesses. We will then have to
prove that we never remove or change active mappings for these areas (adding
new mappings for e.g. the stack would be fine). For user-level code, we will see
that the issue becomes irrelevant.

9

 Program Verification in the Presence of TLB-Address Translation Hira Syeda

- updateRoot

17

Program Logic — Rules

✓available in kernel mode
✓ reasoning about root and incon_set update

{|�s. [[l]] s = bvpc ^ [[r]] s = bvc ^ vp /2 IC s ^ Addr vp ,!s pp ^
P (heap_iset_updates (pp 7! v))|}

l ::= r {|P|}

{|�s. kernel s ^ [[rte]] s = brtc ^ P (root_iset_updates Addr rt)|}
UpdateTTBR0 rte {|P|}

{|�s. kernel s ^ P (asid_pt_snpshot_updates a)|} UpdateASID a {|P|}

{|�s. kernel s ^ P (iset_pt_snpshot_updates f)|} Flush f {|P|}

{|�s. kernel s ^ P (s(|mode := flg|))|} SetMode flg {|P|}

Fig. 4. Hoare Logic rules for commands with TLB e↵ects.

The rule for the command UpdateTTBR0, only available in kernel mode, up-
dates the current page table root to the value of the expression rte. The e↵ect
is modelled by root_iset_update defined in Sect. 4.2.

The UpdateASID command, also only available in kernel mode, sets the new
ASID a, increases the iset using snp_incon, and records a page table snapshot
for the old ASID using new_snp.

Finally, Flush is the instruction that the makes the iset smaller, and removes
mappings in the snapshots of inactive ASIDs, using iset_asid_map_update from
Sect. 4.2.

4.4 Discussion

Our previous work [17] motivated an abstract TLB model that we have extended
and refined here. The program logic uses the (morally) same model, but there
is still a break in logic: the TLB abstraction is on a machine-level ISA model;
the program logic is for a higher-level language with explicit memory access,
intended for languages such as C. The bridge between the two worlds would
be a compiler correctness statement that takes the TLB into account. This may
initially not sound straightforward: the high-level language makes fewer memory
accesses visible than the low-level machine performs. In particular, a compiler
will usually implement a stack for local variables, and memory areas for global
variables, as well as for the code itself. These memory accesses are under address
translation and might be relevant for TLB reasoning.

Sect. 5 and 6 will show that we can ignore the TLB for kernel-level code, if we
can assume that these memory areas (code, stack, globals) are statically known
and that the compiler will not generate additional memory accesses outside these
static areas. This is a reasonable assumption — otherwise kernel code could
never be sure that privileged memory areas such as memory-mapped devices are
not randomly overwritten by compiler-generated accesses. We will then have to
prove that we never remove or change active mappings for these areas (adding
new mappings for e.g. the stack would be fine). For user-level code, we will see
that the issue becomes irrelevant.

9

DR
AF
T

block-invalidation :: tlb) asid) va set) tlb

block-invalidation t a V ⌘ (
S

x2V. selective-invalidation t a x)

asid-invalidation :: tlb) asid) tlb

asid-invalidation t a ⌘ t - asid-entry-set t a

va-invalidation :: tlb) va) tlb

va-invalidation t v ⌘ t - va-set t v

selective-invalidation selectively removes the entry or entries covering the
given virtual address and ASID depending upon the outcome of lookup opera-
tion. Whereas, block-invalidation takes a set of virtual addresses along with
particular ASID and selectively invalidates all of them. asid-invalidation and
va-invalidation removes entries using asid-entry-set and va-entry-set re-
spectively. We have proved the correctness of invalidation functions by validating
many interesting theorems shown in Figure ??.

✏ �s. P (s(x := e s)) x := e P

4 TLB Model inclusion in Cambridge ARM model

5 Conclusions

{|�s. [[l]] s = bvpc ^ [[r]] s = bvc ^ vp /2 IC s ^ Addr vp ,!s pp ^
P (heap_iset_updates (pp 7! v))|}

l ::= r {|P|}

{|�s. kernel s ^ [[rte]] s = brtc ^ P (root_iset_updates Addr rt)|}
UpdateTTBR0 rte {|P|}

{|�s. kernel s ^ P (asid_pt_snpshot_updates a)|} UpdateASID a {|P|}

{|�s. kernel s ^ P (iset_pt_snpshot_updates f)|} Flush f {|P|}

{|�s. kernel s ^ P (s(|mode := flg|))|} SetMode flg {|P|}

Fig. 4. Hoare Logic rules for commands with TLB e↵ects.

The rule for the command UpdateTTBR0, only available in kernel mode, up-
dates the current page table root to the value of the expression rte. The e↵ect
is modelled by root_iset_update defined in Sect. 4.2.

The UpdateASID command, also only available in kernel mode, sets the new
ASID a, increases the iset using snp_incon, and records a page table snapshot
for the old ASID using new_snp.

Finally, Flush is the instruction that the makes the iset smaller, and removes
mappings in the snapshots of inactive ASIDs, using iset_asid_map_update from
Sect. 4.2.

4.4 Discussion

Our previous work [17] motivated an abstract TLB model that we have extended
and refined here. The program logic uses the (morally) same model, but there
is still a break in logic: the TLB abstraction is on a machine-level ISA model;
the program logic is for a higher-level language with explicit memory access,
intended for languages such as C. The bridge between the two worlds would
be a compiler correctness statement that takes the TLB into account. This may
initially not sound straightforward: the high-level language makes fewer memory
accesses visible than the low-level machine performs. In particular, a compiler
will usually implement a stack for local variables, and memory areas for global
variables, as well as for the code itself. These memory accesses are under address
translation and might be relevant for TLB reasoning.

Sect. 5 and 6 will show that we can ignore the TLB for kernel-level code, if we
can assume that these memory areas (code, stack, globals) are statically known
and that the compiler will not generate additional memory accesses outside these
static areas. This is a reasonable assumption — otherwise kernel code could
never be sure that privileged memory areas such as memory-mapped devices are
not randomly overwritten by compiler-generated accesses. We will then have to
prove that we never remove or change active mappings for these areas (adding
new mappings for e.g. the stack would be fine). For user-level code, we will see
that the issue becomes irrelevant.

9

{|�s. [[l]] s = bvpc ^ [[r]] s = bvc ^ vp /2 IC s ^ Addr vp ,!s pp ^
P (heap_iset_updates (pp 7! v))|}

l ::= r {|P|}

{|�s. kernel s ^ [[rte]] s = brtc ^ P (root_iset_updates Addr rt)|}
UpdateTTBR0 rte {|P|}

{|�s. kernel s ^ P (asid_pt_snpshot_updates a)|} UpdateASID a {|P|}

{|�s. kernel s ^ P (iset_pt_snpshot_updates f)|} Flush f {|P|}

{|�s. kernel s ^ P (s(|mode := flg|))|} SetMode flg {|P|}

Fig. 4. Hoare Logic rules for commands with TLB e↵ects.

The rule for the command UpdateTTBR0, only available in kernel mode, up-
dates the current page table root to the value of the expression rte. The e↵ect
is modelled by root_iset_update defined in Sect. 4.2.

The UpdateASID command, also only available in kernel mode, sets the new
ASID a, increases the iset using snp_incon, and records a page table snapshot
for the old ASID using new_snp.

Finally, Flush is the instruction that the makes the iset smaller, and removes
mappings in the snapshots of inactive ASIDs, using iset_asid_map_update from
Sect. 4.2.

4.4 Discussion

Our previous work [17] motivated an abstract TLB model that we have extended
and refined here. The program logic uses the (morally) same model, but there
is still a break in logic: the TLB abstraction is on a machine-level ISA model;
the program logic is for a higher-level language with explicit memory access,
intended for languages such as C. The bridge between the two worlds would
be a compiler correctness statement that takes the TLB into account. This may
initially not sound straightforward: the high-level language makes fewer memory
accesses visible than the low-level machine performs. In particular, a compiler
will usually implement a stack for local variables, and memory areas for global
variables, as well as for the code itself. These memory accesses are under address
translation and might be relevant for TLB reasoning.

Sect. 5 and 6 will show that we can ignore the TLB for kernel-level code, if we
can assume that these memory areas (code, stack, globals) are statically known
and that the compiler will not generate additional memory accesses outside these
static areas. This is a reasonable assumption — otherwise kernel code could
never be sure that privileged memory areas such as memory-mapped devices are
not randomly overwritten by compiler-generated accesses. We will then have to
prove that we never remove or change active mappings for these areas (adding
new mappings for e.g. the stack would be fine). For user-level code, we will see
that the issue becomes irrelevant.

9

{|�s. [[l]] s = bvpc ^ [[r]] s = bvc ^ vp /2 IC s ^ Addr vp ,!s pp ^
P (heap_iset_updates (pp 7! v))|}

l ::= r {|P|}

{|�s. kernel s ^ [[rte]] s = brtc ^ P (root_iset_updates Addr rt)|}
UpdateTTBR0 rte {|P|}

{|�s. kernel s ^ P (asid_pt_snpshot_updates a)|} UpdateASID a {|P|}

{|�s. kernel s ^ P (iset_pt_snpshot_updates f)|} Flush f {|P|}

{|�s. kernel s ^ P (s(|mode := flg|))|} SetMode flg {|P|}

Fig. 4. Hoare Logic rules for commands with TLB e↵ects.

The rule for the command UpdateTTBR0, only available in kernel mode, up-
dates the current page table root to the value of the expression rte. The e↵ect
is modelled by root_iset_update defined in Sect. 4.2.

The UpdateASID command, also only available in kernel mode, sets the new
ASID a, increases the iset using snp_incon, and records a page table snapshot
for the old ASID using new_snp.

Finally, Flush is the instruction that the makes the iset smaller, and removes
mappings in the snapshots of inactive ASIDs, using iset_asid_map_update from
Sect. 4.2.

4.4 Discussion

Our previous work [17] motivated an abstract TLB model that we have extended
and refined here. The program logic uses the (morally) same model, but there
is still a break in logic: the TLB abstraction is on a machine-level ISA model;
the program logic is for a higher-level language with explicit memory access,
intended for languages such as C. The bridge between the two worlds would
be a compiler correctness statement that takes the TLB into account. This may
initially not sound straightforward: the high-level language makes fewer memory
accesses visible than the low-level machine performs. In particular, a compiler
will usually implement a stack for local variables, and memory areas for global
variables, as well as for the code itself. These memory accesses are under address
translation and might be relevant for TLB reasoning.

Sect. 5 and 6 will show that we can ignore the TLB for kernel-level code, if we
can assume that these memory areas (code, stack, globals) are statically known
and that the compiler will not generate additional memory accesses outside these
static areas. This is a reasonable assumption — otherwise kernel code could
never be sure that privileged memory areas such as memory-mapped devices are
not randomly overwritten by compiler-generated accesses. We will then have to
prove that we never remove or change active mappings for these areas (adding
new mappings for e.g. the stack would be fine). For user-level code, we will see
that the issue becomes irrelevant.

9

{|�s. [[l]] s = bvpc ^ [[r]] s = bvc ^ vp /2 IC s ^ Addr vp ,!s pp ^
P (heap_iset_updates (pp 7! v))|}

l ::= r {|P|}

{|�s. kernel s ^ [[rte]] s = brtc ^ P (root_iset_updates Addr rt)|}
UpdateTTBR0 rte {|P|}

{|�s. kernel s ^ P (asid_pt_snpshot_updates a)|} UpdateASID a {|P|}

{|�s. kernel s ^ P (iset_pt_snpshot_updates f)|} Flush f {|P|}

{|�s. kernel s ^ P (s(|mode := flg|))|} SetMode flg {|P|}

Fig. 4. Hoare Logic rules for commands with TLB e↵ects.

The rule for the command UpdateTTBR0, only available in kernel mode, up-
dates the current page table root to the value of the expression rte. The e↵ect
is modelled by root_iset_update defined in Sect. 4.2.

The UpdateASID command, also only available in kernel mode, sets the new
ASID a, increases the iset using snp_incon, and records a page table snapshot
for the old ASID using new_snp.

Finally, Flush is the instruction that the makes the iset smaller, and removes
mappings in the snapshots of inactive ASIDs, using iset_asid_map_update from
Sect. 4.2.

4.4 Discussion

Our previous work [17] motivated an abstract TLB model that we have extended
and refined here. The program logic uses the (morally) same model, but there
is still a break in logic: the TLB abstraction is on a machine-level ISA model;
the program logic is for a higher-level language with explicit memory access,
intended for languages such as C. The bridge between the two worlds would
be a compiler correctness statement that takes the TLB into account. This may
initially not sound straightforward: the high-level language makes fewer memory
accesses visible than the low-level machine performs. In particular, a compiler
will usually implement a stack for local variables, and memory areas for global
variables, as well as for the code itself. These memory accesses are under address
translation and might be relevant for TLB reasoning.

Sect. 5 and 6 will show that we can ignore the TLB for kernel-level code, if we
can assume that these memory areas (code, stack, globals) are statically known
and that the compiler will not generate additional memory accesses outside these
static areas. This is a reasonable assumption — otherwise kernel code could
never be sure that privileged memory areas such as memory-mapped devices are
not randomly overwritten by compiler-generated accesses. We will then have to
prove that we never remove or change active mappings for these areas (adding
new mappings for e.g. the stack would be fine). For user-level code, we will see
that the issue becomes irrelevant.

9

{|�s. [[l]] s = bvpc ^ [[r]] s = bvc ^ vp /2 IC s ^ Addr vp ,!s pp ^
P (heap_iset_updates (pp 7! v))|}

l ::= r {|P|}

{|�s. kernel s ^ [[rte]] s = brtc ^ P (root_iset_updates Addr rt)|}
UpdateTTBR0 rte {|P|}

{|�s. kernel s ^ P (asid_pt_snpshot_updates a)|} UpdateASID a {|P|}

{|�s. kernel s ^ P (iset_pt_snpshot_updates f)|} Flush f {|P|}

{|�s. kernel s ^ P (s(|mode := flg|))|} SetMode flg {|P|}

Fig. 4. Hoare Logic rules for commands with TLB e↵ects.

The rule for the command UpdateTTBR0, only available in kernel mode, up-
dates the current page table root to the value of the expression rte. The e↵ect
is modelled by root_iset_update defined in Sect. 4.2.

The UpdateASID command, also only available in kernel mode, sets the new
ASID a, increases the iset using snp_incon, and records a page table snapshot
for the old ASID using new_snp.

Finally, Flush is the instruction that the makes the iset smaller, and removes
mappings in the snapshots of inactive ASIDs, using iset_asid_map_update from
Sect. 4.2.

4.4 Discussion

Our previous work [17] motivated an abstract TLB model that we have extended
and refined here. The program logic uses the (morally) same model, but there
is still a break in logic: the TLB abstraction is on a machine-level ISA model;
the program logic is for a higher-level language with explicit memory access,
intended for languages such as C. The bridge between the two worlds would
be a compiler correctness statement that takes the TLB into account. This may
initially not sound straightforward: the high-level language makes fewer memory
accesses visible than the low-level machine performs. In particular, a compiler
will usually implement a stack for local variables, and memory areas for global
variables, as well as for the code itself. These memory accesses are under address
translation and might be relevant for TLB reasoning.

Sect. 5 and 6 will show that we can ignore the TLB for kernel-level code, if we
can assume that these memory areas (code, stack, globals) are statically known
and that the compiler will not generate additional memory accesses outside these
static areas. This is a reasonable assumption — otherwise kernel code could
never be sure that privileged memory areas such as memory-mapped devices are
not randomly overwritten by compiler-generated accesses. We will then have to
prove that we never remove or change active mappings for these areas (adding
new mappings for e.g. the stack would be fine). For user-level code, we will see
that the issue becomes irrelevant.

9

 Program Verification in the Presence of TLB-Address Translation Hira Syeda

- updateRoot

17

Program Logic — Rules

✓available in kernel mode
✓ reasoning about root and incon_set update

{|�s. [[l]] s = bvpc ^ [[r]] s = bvc ^ vp /2 IC s ^ Addr vp ,!s pp ^
P (heap_iset_updates (pp 7! v))|}

l ::= r {|P|}

{|�s. kernel s ^ [[rte]] s = brtc ^ P (root_iset_updates Addr rt)|}
UpdateTTBR0 rte {|P|}

{|�s. kernel s ^ P (asid_pt_snpshot_updates a)|} UpdateASID a {|P|}

{|�s. kernel s ^ P (iset_pt_snpshot_updates f)|} Flush f {|P|}

{|�s. kernel s ^ P (s(|mode := flg|))|} SetMode flg {|P|}

Fig. 4. Hoare Logic rules for commands with TLB e↵ects.

The rule for the command UpdateTTBR0, only available in kernel mode, up-
dates the current page table root to the value of the expression rte. The e↵ect
is modelled by root_iset_update defined in Sect. 4.2.

The UpdateASID command, also only available in kernel mode, sets the new
ASID a, increases the iset using snp_incon, and records a page table snapshot
for the old ASID using new_snp.

Finally, Flush is the instruction that the makes the iset smaller, and removes
mappings in the snapshots of inactive ASIDs, using iset_asid_map_update from
Sect. 4.2.

4.4 Discussion

Our previous work [17] motivated an abstract TLB model that we have extended
and refined here. The program logic uses the (morally) same model, but there
is still a break in logic: the TLB abstraction is on a machine-level ISA model;
the program logic is for a higher-level language with explicit memory access,
intended for languages such as C. The bridge between the two worlds would
be a compiler correctness statement that takes the TLB into account. This may
initially not sound straightforward: the high-level language makes fewer memory
accesses visible than the low-level machine performs. In particular, a compiler
will usually implement a stack for local variables, and memory areas for global
variables, as well as for the code itself. These memory accesses are under address
translation and might be relevant for TLB reasoning.

Sect. 5 and 6 will show that we can ignore the TLB for kernel-level code, if we
can assume that these memory areas (code, stack, globals) are statically known
and that the compiler will not generate additional memory accesses outside these
static areas. This is a reasonable assumption — otherwise kernel code could
never be sure that privileged memory areas such as memory-mapped devices are
not randomly overwritten by compiler-generated accesses. We will then have to
prove that we never remove or change active mappings for these areas (adding
new mappings for e.g. the stack would be fine). For user-level code, we will see
that the issue becomes irrelevant.

9

DR
AF
T

block-invalidation :: tlb) asid) va set) tlb

block-invalidation t a V ⌘ (
S

x2V. selective-invalidation t a x)

asid-invalidation :: tlb) asid) tlb

asid-invalidation t a ⌘ t - asid-entry-set t a

va-invalidation :: tlb) va) tlb

va-invalidation t v ⌘ t - va-set t v

selective-invalidation selectively removes the entry or entries covering the
given virtual address and ASID depending upon the outcome of lookup opera-
tion. Whereas, block-invalidation takes a set of virtual addresses along with
particular ASID and selectively invalidates all of them. asid-invalidation and
va-invalidation removes entries using asid-entry-set and va-entry-set re-
spectively. We have proved the correctness of invalidation functions by validating
many interesting theorems shown in Figure ??.

✏ �s. P (s(x := e s)) x := e P

4 TLB Model inclusion in Cambridge ARM model

5 Conclusions

{|�s. [[l]] s = bvpc ^ [[r]] s = bvc ^ vp /2 IC s ^ Addr vp ,!s pp ^
P (heap_iset_updates (pp 7! v))|}

l ::= r {|P|}

{|�s. kernel s ^ [[rte]] s = brtc ^ P (root_iset_updates Addr rt)|}
UpdateTTBR0 rte {|P|}

{|�s. kernel s ^ P (asid_pt_snpshot_updates a)|} UpdateASID a {|P|}

{|�s. kernel s ^ P (iset_pt_snpshot_updates f)|} Flush f {|P|}

{|�s. kernel s ^ P (s(|mode := flg|))|} SetMode flg {|P|}

Fig. 4. Hoare Logic rules for commands with TLB e↵ects.

The rule for the command UpdateTTBR0, only available in kernel mode, up-
dates the current page table root to the value of the expression rte. The e↵ect
is modelled by root_iset_update defined in Sect. 4.2.

The UpdateASID command, also only available in kernel mode, sets the new
ASID a, increases the iset using snp_incon, and records a page table snapshot
for the old ASID using new_snp.

Finally, Flush is the instruction that the makes the iset smaller, and removes
mappings in the snapshots of inactive ASIDs, using iset_asid_map_update from
Sect. 4.2.

4.4 Discussion

Our previous work [17] motivated an abstract TLB model that we have extended
and refined here. The program logic uses the (morally) same model, but there
is still a break in logic: the TLB abstraction is on a machine-level ISA model;
the program logic is for a higher-level language with explicit memory access,
intended for languages such as C. The bridge between the two worlds would
be a compiler correctness statement that takes the TLB into account. This may
initially not sound straightforward: the high-level language makes fewer memory
accesses visible than the low-level machine performs. In particular, a compiler
will usually implement a stack for local variables, and memory areas for global
variables, as well as for the code itself. These memory accesses are under address
translation and might be relevant for TLB reasoning.

Sect. 5 and 6 will show that we can ignore the TLB for kernel-level code, if we
can assume that these memory areas (code, stack, globals) are statically known
and that the compiler will not generate additional memory accesses outside these
static areas. This is a reasonable assumption — otherwise kernel code could
never be sure that privileged memory areas such as memory-mapped devices are
not randomly overwritten by compiler-generated accesses. We will then have to
prove that we never remove or change active mappings for these areas (adding
new mappings for e.g. the stack would be fine). For user-level code, we will see
that the issue becomes irrelevant.

9

{|�s. [[l]] s = bvpc ^ [[r]] s = bvc ^ vp /2 IC s ^ Addr vp ,!s pp ^
P (heap_iset_updates (pp 7! v))|}

l ::= r {|P|}

{|�s. kernel s ^ [[rte]] s = brtc ^ P (root_iset_updates Addr rt)|}
UpdateTTBR0 rte {|P|}

{|�s. kernel s ^ P (asid_pt_snpshot_updates a)|} UpdateASID a {|P|}

{|�s. kernel s ^ P (iset_pt_snpshot_updates f)|} Flush f {|P|}

{|�s. kernel s ^ P (s(|mode := flg|))|} SetMode flg {|P|}

Fig. 4. Hoare Logic rules for commands with TLB e↵ects.

The rule for the command UpdateTTBR0, only available in kernel mode, up-
dates the current page table root to the value of the expression rte. The e↵ect
is modelled by root_iset_update defined in Sect. 4.2.

The UpdateASID command, also only available in kernel mode, sets the new
ASID a, increases the iset using snp_incon, and records a page table snapshot
for the old ASID using new_snp.

Finally, Flush is the instruction that the makes the iset smaller, and removes
mappings in the snapshots of inactive ASIDs, using iset_asid_map_update from
Sect. 4.2.

4.4 Discussion

Our previous work [17] motivated an abstract TLB model that we have extended
and refined here. The program logic uses the (morally) same model, but there
is still a break in logic: the TLB abstraction is on a machine-level ISA model;
the program logic is for a higher-level language with explicit memory access,
intended for languages such as C. The bridge between the two worlds would
be a compiler correctness statement that takes the TLB into account. This may
initially not sound straightforward: the high-level language makes fewer memory
accesses visible than the low-level machine performs. In particular, a compiler
will usually implement a stack for local variables, and memory areas for global
variables, as well as for the code itself. These memory accesses are under address
translation and might be relevant for TLB reasoning.

Sect. 5 and 6 will show that we can ignore the TLB for kernel-level code, if we
can assume that these memory areas (code, stack, globals) are statically known
and that the compiler will not generate additional memory accesses outside these
static areas. This is a reasonable assumption — otherwise kernel code could
never be sure that privileged memory areas such as memory-mapped devices are
not randomly overwritten by compiler-generated accesses. We will then have to
prove that we never remove or change active mappings for these areas (adding
new mappings for e.g. the stack would be fine). For user-level code, we will see
that the issue becomes irrelevant.

9

{|�s. [[l]] s = bvpc ^ [[r]] s = bvc ^ vp /2 IC s ^ Addr vp ,!s pp ^
P (heap_iset_updates (pp 7! v))|}

l ::= r {|P|}

{|�s. kernel s ^ [[rte]] s = brtc ^ P (root_iset_updates Addr rt)|}
UpdateTTBR0 rte {|P|}

{|�s. kernel s ^ P (asid_pt_snpshot_updates a)|} UpdateASID a {|P|}

{|�s. kernel s ^ P (iset_pt_snpshot_updates f)|} Flush f {|P|}

{|�s. kernel s ^ P (s(|mode := flg|))|} SetMode flg {|P|}

Fig. 4. Hoare Logic rules for commands with TLB e↵ects.

The rule for the command UpdateTTBR0, only available in kernel mode, up-
dates the current page table root to the value of the expression rte. The e↵ect
is modelled by root_iset_update defined in Sect. 4.2.

The UpdateASID command, also only available in kernel mode, sets the new
ASID a, increases the iset using snp_incon, and records a page table snapshot
for the old ASID using new_snp.

Finally, Flush is the instruction that the makes the iset smaller, and removes
mappings in the snapshots of inactive ASIDs, using iset_asid_map_update from
Sect. 4.2.

4.4 Discussion

Our previous work [17] motivated an abstract TLB model that we have extended
and refined here. The program logic uses the (morally) same model, but there
is still a break in logic: the TLB abstraction is on a machine-level ISA model;
the program logic is for a higher-level language with explicit memory access,
intended for languages such as C. The bridge between the two worlds would
be a compiler correctness statement that takes the TLB into account. This may
initially not sound straightforward: the high-level language makes fewer memory
accesses visible than the low-level machine performs. In particular, a compiler
will usually implement a stack for local variables, and memory areas for global
variables, as well as for the code itself. These memory accesses are under address
translation and might be relevant for TLB reasoning.

Sect. 5 and 6 will show that we can ignore the TLB for kernel-level code, if we
can assume that these memory areas (code, stack, globals) are statically known
and that the compiler will not generate additional memory accesses outside these
static areas. This is a reasonable assumption — otherwise kernel code could
never be sure that privileged memory areas such as memory-mapped devices are
not randomly overwritten by compiler-generated accesses. We will then have to
prove that we never remove or change active mappings for these areas (adding
new mappings for e.g. the stack would be fine). For user-level code, we will see
that the issue becomes irrelevant.

9

{|�s. [[l]] s = bvpc ^ [[r]] s = bvc ^ vp /2 IC s ^ Addr vp ,!s pp ^
P (heap_iset_updates (pp 7! v))|}

l ::= r {|P|}

{|�s. kernel s ^ [[rte]] s = brtc ^ P (root_iset_updates Addr rt)|}
UpdateTTBR0 rte {|P|}

{|�s. kernel s ^ P (asid_pt_snpshot_updates a)|} UpdateASID a {|P|}

{|�s. kernel s ^ P (iset_pt_snpshot_updates f)|} Flush f {|P|}

{|�s. kernel s ^ P (s(|mode := flg|))|} SetMode flg {|P|}

Fig. 4. Hoare Logic rules for commands with TLB e↵ects.

The rule for the command UpdateTTBR0, only available in kernel mode, up-
dates the current page table root to the value of the expression rte. The e↵ect
is modelled by root_iset_update defined in Sect. 4.2.

The UpdateASID command, also only available in kernel mode, sets the new
ASID a, increases the iset using snp_incon, and records a page table snapshot
for the old ASID using new_snp.

Finally, Flush is the instruction that the makes the iset smaller, and removes
mappings in the snapshots of inactive ASIDs, using iset_asid_map_update from
Sect. 4.2.

4.4 Discussion

Our previous work [17] motivated an abstract TLB model that we have extended
and refined here. The program logic uses the (morally) same model, but there
is still a break in logic: the TLB abstraction is on a machine-level ISA model;
the program logic is for a higher-level language with explicit memory access,
intended for languages such as C. The bridge between the two worlds would
be a compiler correctness statement that takes the TLB into account. This may
initially not sound straightforward: the high-level language makes fewer memory
accesses visible than the low-level machine performs. In particular, a compiler
will usually implement a stack for local variables, and memory areas for global
variables, as well as for the code itself. These memory accesses are under address
translation and might be relevant for TLB reasoning.

Sect. 5 and 6 will show that we can ignore the TLB for kernel-level code, if we
can assume that these memory areas (code, stack, globals) are statically known
and that the compiler will not generate additional memory accesses outside these
static areas. This is a reasonable assumption — otherwise kernel code could
never be sure that privileged memory areas such as memory-mapped devices are
not randomly overwritten by compiler-generated accesses. We will then have to
prove that we never remove or change active mappings for these areas (adding
new mappings for e.g. the stack would be fine). For user-level code, we will see
that the issue becomes irrelevant.

9

{|�s. [[l]] s = bvpc ^ [[r]] s = bvc ^ vp /2 IC s ^ Addr vp ,!s pp ^
P (heap_iset_updates (pp 7! v))|}

l ::= r {|P|}

{|�s. kernel s ^ [[rte]] s = brtc ^ P (root_iset_updates Addr rt)|}
UpdateTTBR0 rte {|P|}

{|�s. kernel s ^ P (asid_pt_snpshot_updates a)|} UpdateASID a {|P|}

{|�s. kernel s ^ P (iset_pt_snpshot_updates f)|} Flush f {|P|}

{|�s. kernel s ^ P (s(|mode := flg|))|} SetMode flg {|P|}

Fig. 4. Hoare Logic rules for commands with TLB e↵ects.

The rule for the command UpdateTTBR0, only available in kernel mode, up-
dates the current page table root to the value of the expression rte. The e↵ect
is modelled by root_iset_update defined in Sect. 4.2.

The UpdateASID command, also only available in kernel mode, sets the new
ASID a, increases the iset using snp_incon, and records a page table snapshot
for the old ASID using new_snp.

Finally, Flush is the instruction that the makes the iset smaller, and removes
mappings in the snapshots of inactive ASIDs, using iset_asid_map_update from
Sect. 4.2.

4.4 Discussion

Our previous work [17] motivated an abstract TLB model that we have extended
and refined here. The program logic uses the (morally) same model, but there
is still a break in logic: the TLB abstraction is on a machine-level ISA model;
the program logic is for a higher-level language with explicit memory access,
intended for languages such as C. The bridge between the two worlds would
be a compiler correctness statement that takes the TLB into account. This may
initially not sound straightforward: the high-level language makes fewer memory
accesses visible than the low-level machine performs. In particular, a compiler
will usually implement a stack for local variables, and memory areas for global
variables, as well as for the code itself. These memory accesses are under address
translation and might be relevant for TLB reasoning.

Sect. 5 and 6 will show that we can ignore the TLB for kernel-level code, if we
can assume that these memory areas (code, stack, globals) are statically known
and that the compiler will not generate additional memory accesses outside these
static areas. This is a reasonable assumption — otherwise kernel code could
never be sure that privileged memory areas such as memory-mapped devices are
not randomly overwritten by compiler-generated accesses. We will then have to
prove that we never remove or change active mappings for these areas (adding
new mappings for e.g. the stack would be fine). For user-level code, we will see
that the issue becomes irrelevant.

9

comparison of the two page tables
before and after updating root for
all remapped and unmapped addresses

incon_set update:

 Program Verification in the Presence of TLB-Address Translation Hira Syeda

- assignment

- updateRoot

- updateASID

18

Program Logic — Rules

 Program Verification in the Presence of TLB-Address Translation Hira Syeda

- updateASID

19

Program Logic — Rules{|�s. [[l]] s = bvpc ^ [[r]] s = bvc ^ vp /2 IC s ^ Addr vp ,!s pp ^
P (heap_iset_updates (pp 7! v))|}

l ::= r {|P|}

{|�s. kernel s ^ [[rte]] s = brtc ^ P (root_iset_updates Addr rt)|}
UpdateTTBR0 rte {|P|}

{|�s. kernel s ^ P (asid_pt_snpshot_updates a)|} UpdateASID a {|P|}

{|�s. kernel s ^ P (iset_pt_snpshot_updates f)|} Flush f {|P|}

{|�s. kernel s ^ P (s(|mode := flg|))|} SetMode flg {|P|}

Fig. 4. Hoare Logic rules for commands with TLB e↵ects.

The rule for the command UpdateTTBR0, only available in kernel mode, up-
dates the current page table root to the value of the expression rte. The e↵ect
is modelled by root_iset_update defined in Sect. 4.2.

The UpdateASID command, also only available in kernel mode, sets the new
ASID a, increases the iset using snp_incon, and records a page table snapshot
for the old ASID using new_snp.

Finally, Flush is the instruction that the makes the iset smaller, and removes
mappings in the snapshots of inactive ASIDs, using iset_asid_map_update from
Sect. 4.2.

4.4 Discussion

Our previous work [17] motivated an abstract TLB model that we have extended
and refined here. The program logic uses the (morally) same model, but there
is still a break in logic: the TLB abstraction is on a machine-level ISA model;
the program logic is for a higher-level language with explicit memory access,
intended for languages such as C. The bridge between the two worlds would
be a compiler correctness statement that takes the TLB into account. This may
initially not sound straightforward: the high-level language makes fewer memory
accesses visible than the low-level machine performs. In particular, a compiler
will usually implement a stack for local variables, and memory areas for global
variables, as well as for the code itself. These memory accesses are under address
translation and might be relevant for TLB reasoning.

Sect. 5 and 6 will show that we can ignore the TLB for kernel-level code, if we
can assume that these memory areas (code, stack, globals) are statically known
and that the compiler will not generate additional memory accesses outside these
static areas. This is a reasonable assumption — otherwise kernel code could
never be sure that privileged memory areas such as memory-mapped devices are
not randomly overwritten by compiler-generated accesses. We will then have to
prove that we never remove or change active mappings for these areas (adding
new mappings for e.g. the stack would be fine). For user-level code, we will see
that the issue becomes irrelevant.

9

{|�s. [[l]] s = bvpc ^ [[r]] s = bvc ^ vp /2 IC s ^ Addr vp ,!s pp ^
P (heap_iset_updates (pp 7! v))|}

l ::= r {|P|}

{|�s. kernel s ^ [[rte]] s = brtc ^ P (root_iset_updates Addr rt)|}
UpdateTTBR0 rte {|P|}

{|�s. kernel s ^ P (asid_pt_snpshot_updates a)|} UpdateASID a {|P|}

{|�s. kernel s ^ P (iset_pt_snpshot_updates f)|} Flush f {|P|}

{|�s. kernel s ^ P (s(|mode := flg|))|} SetMode flg {|P|}

Fig. 4. Hoare Logic rules for commands with TLB e↵ects.

The rule for the command UpdateTTBR0, only available in kernel mode, up-
dates the current page table root to the value of the expression rte. The e↵ect
is modelled by root_iset_update defined in Sect. 4.2.

The UpdateASID command, also only available in kernel mode, sets the new
ASID a, increases the iset using snp_incon, and records a page table snapshot
for the old ASID using new_snp.

Finally, Flush is the instruction that the makes the iset smaller, and removes
mappings in the snapshots of inactive ASIDs, using iset_asid_map_update from
Sect. 4.2.

4.4 Discussion

Our previous work [17] motivated an abstract TLB model that we have extended
and refined here. The program logic uses the (morally) same model, but there
is still a break in logic: the TLB abstraction is on a machine-level ISA model;
the program logic is for a higher-level language with explicit memory access,
intended for languages such as C. The bridge between the two worlds would
be a compiler correctness statement that takes the TLB into account. This may
initially not sound straightforward: the high-level language makes fewer memory
accesses visible than the low-level machine performs. In particular, a compiler
will usually implement a stack for local variables, and memory areas for global
variables, as well as for the code itself. These memory accesses are under address
translation and might be relevant for TLB reasoning.

Sect. 5 and 6 will show that we can ignore the TLB for kernel-level code, if we
can assume that these memory areas (code, stack, globals) are statically known
and that the compiler will not generate additional memory accesses outside these
static areas. This is a reasonable assumption — otherwise kernel code could
never be sure that privileged memory areas such as memory-mapped devices are
not randomly overwritten by compiler-generated accesses. We will then have to
prove that we never remove or change active mappings for these areas (adding
new mappings for e.g. the stack would be fine). For user-level code, we will see
that the issue becomes irrelevant.

9

{|�s. [[l]] s = bvpc ^ [[r]] s = bvc ^ vp /2 IC s ^ Addr vp ,!s pp ^
P (heap_iset_updates (pp 7! v))|}

l ::= r {|P|}

{|�s. kernel s ^ [[rte]] s = brtc ^ P (root_iset_updates Addr rt)|}
UpdateTTBR0 rte {|P|}

{|�s. kernel s ^ P (asid_pt_snpshot_updates a)|} UpdateASID a {|P|}

{|�s. kernel s ^ P (iset_pt_snpshot_updates f)|} Flush f {|P|}

{|�s. kernel s ^ P (s(|mode := flg|))|} SetMode flg {|P|}

Fig. 4. Hoare Logic rules for commands with TLB e↵ects.

The rule for the command UpdateTTBR0, only available in kernel mode, up-
dates the current page table root to the value of the expression rte. The e↵ect
is modelled by root_iset_update defined in Sect. 4.2.

The UpdateASID command, also only available in kernel mode, sets the new
ASID a, increases the iset using snp_incon, and records a page table snapshot
for the old ASID using new_snp.

Finally, Flush is the instruction that the makes the iset smaller, and removes
mappings in the snapshots of inactive ASIDs, using iset_asid_map_update from
Sect. 4.2.

4.4 Discussion

Our previous work [17] motivated an abstract TLB model that we have extended
and refined here. The program logic uses the (morally) same model, but there
is still a break in logic: the TLB abstraction is on a machine-level ISA model;
the program logic is for a higher-level language with explicit memory access,
intended for languages such as C. The bridge between the two worlds would
be a compiler correctness statement that takes the TLB into account. This may
initially not sound straightforward: the high-level language makes fewer memory
accesses visible than the low-level machine performs. In particular, a compiler
will usually implement a stack for local variables, and memory areas for global
variables, as well as for the code itself. These memory accesses are under address
translation and might be relevant for TLB reasoning.

Sect. 5 and 6 will show that we can ignore the TLB for kernel-level code, if we
can assume that these memory areas (code, stack, globals) are statically known
and that the compiler will not generate additional memory accesses outside these
static areas. This is a reasonable assumption — otherwise kernel code could
never be sure that privileged memory areas such as memory-mapped devices are
not randomly overwritten by compiler-generated accesses. We will then have to
prove that we never remove or change active mappings for these areas (adding
new mappings for e.g. the stack would be fine). For user-level code, we will see
that the issue becomes irrelevant.

9

✓available in kernel mode
✓ reasoning about asid, incon_set and pt_snapshot update

 Program Verification in the Presence of TLB-Address Translation Hira Syeda

- updateASID

19

Program Logic — Rules{|�s. [[l]] s = bvpc ^ [[r]] s = bvc ^ vp /2 IC s ^ Addr vp ,!s pp ^
P (heap_iset_updates (pp 7! v))|}

l ::= r {|P|}

{|�s. kernel s ^ [[rte]] s = brtc ^ P (root_iset_updates Addr rt)|}
UpdateTTBR0 rte {|P|}

{|�s. kernel s ^ P (asid_pt_snpshot_updates a)|} UpdateASID a {|P|}

{|�s. kernel s ^ P (iset_pt_snpshot_updates f)|} Flush f {|P|}

{|�s. kernel s ^ P (s(|mode := flg|))|} SetMode flg {|P|}

Fig. 4. Hoare Logic rules for commands with TLB e↵ects.

The rule for the command UpdateTTBR0, only available in kernel mode, up-
dates the current page table root to the value of the expression rte. The e↵ect
is modelled by root_iset_update defined in Sect. 4.2.

The UpdateASID command, also only available in kernel mode, sets the new
ASID a, increases the iset using snp_incon, and records a page table snapshot
for the old ASID using new_snp.

Finally, Flush is the instruction that the makes the iset smaller, and removes
mappings in the snapshots of inactive ASIDs, using iset_asid_map_update from
Sect. 4.2.

4.4 Discussion

Our previous work [17] motivated an abstract TLB model that we have extended
and refined here. The program logic uses the (morally) same model, but there
is still a break in logic: the TLB abstraction is on a machine-level ISA model;
the program logic is for a higher-level language with explicit memory access,
intended for languages such as C. The bridge between the two worlds would
be a compiler correctness statement that takes the TLB into account. This may
initially not sound straightforward: the high-level language makes fewer memory
accesses visible than the low-level machine performs. In particular, a compiler
will usually implement a stack for local variables, and memory areas for global
variables, as well as for the code itself. These memory accesses are under address
translation and might be relevant for TLB reasoning.

Sect. 5 and 6 will show that we can ignore the TLB for kernel-level code, if we
can assume that these memory areas (code, stack, globals) are statically known
and that the compiler will not generate additional memory accesses outside these
static areas. This is a reasonable assumption — otherwise kernel code could
never be sure that privileged memory areas such as memory-mapped devices are
not randomly overwritten by compiler-generated accesses. We will then have to
prove that we never remove or change active mappings for these areas (adding
new mappings for e.g. the stack would be fine). For user-level code, we will see
that the issue becomes irrelevant.

9

{|�s. [[l]] s = bvpc ^ [[r]] s = bvc ^ vp /2 IC s ^ Addr vp ,!s pp ^
P (heap_iset_updates (pp 7! v))|}

l ::= r {|P|}

{|�s. kernel s ^ [[rte]] s = brtc ^ P (root_iset_updates Addr rt)|}
UpdateTTBR0 rte {|P|}

{|�s. kernel s ^ P (asid_pt_snpshot_updates a)|} UpdateASID a {|P|}

{|�s. kernel s ^ P (iset_pt_snpshot_updates f)|} Flush f {|P|}

{|�s. kernel s ^ P (s(|mode := flg|))|} SetMode flg {|P|}

Fig. 4. Hoare Logic rules for commands with TLB e↵ects.

The rule for the command UpdateTTBR0, only available in kernel mode, up-
dates the current page table root to the value of the expression rte. The e↵ect
is modelled by root_iset_update defined in Sect. 4.2.

The UpdateASID command, also only available in kernel mode, sets the new
ASID a, increases the iset using snp_incon, and records a page table snapshot
for the old ASID using new_snp.

Finally, Flush is the instruction that the makes the iset smaller, and removes
mappings in the snapshots of inactive ASIDs, using iset_asid_map_update from
Sect. 4.2.

4.4 Discussion

Our previous work [17] motivated an abstract TLB model that we have extended
and refined here. The program logic uses the (morally) same model, but there
is still a break in logic: the TLB abstraction is on a machine-level ISA model;
the program logic is for a higher-level language with explicit memory access,
intended for languages such as C. The bridge between the two worlds would
be a compiler correctness statement that takes the TLB into account. This may
initially not sound straightforward: the high-level language makes fewer memory
accesses visible than the low-level machine performs. In particular, a compiler
will usually implement a stack for local variables, and memory areas for global
variables, as well as for the code itself. These memory accesses are under address
translation and might be relevant for TLB reasoning.

Sect. 5 and 6 will show that we can ignore the TLB for kernel-level code, if we
can assume that these memory areas (code, stack, globals) are statically known
and that the compiler will not generate additional memory accesses outside these
static areas. This is a reasonable assumption — otherwise kernel code could
never be sure that privileged memory areas such as memory-mapped devices are
not randomly overwritten by compiler-generated accesses. We will then have to
prove that we never remove or change active mappings for these areas (adding
new mappings for e.g. the stack would be fine). For user-level code, we will see
that the issue becomes irrelevant.

9

{|�s. [[l]] s = bvpc ^ [[r]] s = bvc ^ vp /2 IC s ^ Addr vp ,!s pp ^
P (heap_iset_updates (pp 7! v))|}

l ::= r {|P|}

{|�s. kernel s ^ [[rte]] s = brtc ^ P (root_iset_updates Addr rt)|}
UpdateTTBR0 rte {|P|}

{|�s. kernel s ^ P (asid_pt_snpshot_updates a)|} UpdateASID a {|P|}

{|�s. kernel s ^ P (iset_pt_snpshot_updates f)|} Flush f {|P|}

{|�s. kernel s ^ P (s(|mode := flg|))|} SetMode flg {|P|}

Fig. 4. Hoare Logic rules for commands with TLB e↵ects.

The rule for the command UpdateTTBR0, only available in kernel mode, up-
dates the current page table root to the value of the expression rte. The e↵ect
is modelled by root_iset_update defined in Sect. 4.2.

The UpdateASID command, also only available in kernel mode, sets the new
ASID a, increases the iset using snp_incon, and records a page table snapshot
for the old ASID using new_snp.

Finally, Flush is the instruction that the makes the iset smaller, and removes
mappings in the snapshots of inactive ASIDs, using iset_asid_map_update from
Sect. 4.2.

4.4 Discussion

Our previous work [17] motivated an abstract TLB model that we have extended
and refined here. The program logic uses the (morally) same model, but there
is still a break in logic: the TLB abstraction is on a machine-level ISA model;
the program logic is for a higher-level language with explicit memory access,
intended for languages such as C. The bridge between the two worlds would
be a compiler correctness statement that takes the TLB into account. This may
initially not sound straightforward: the high-level language makes fewer memory
accesses visible than the low-level machine performs. In particular, a compiler
will usually implement a stack for local variables, and memory areas for global
variables, as well as for the code itself. These memory accesses are under address
translation and might be relevant for TLB reasoning.

Sect. 5 and 6 will show that we can ignore the TLB for kernel-level code, if we
can assume that these memory areas (code, stack, globals) are statically known
and that the compiler will not generate additional memory accesses outside these
static areas. This is a reasonable assumption — otherwise kernel code could
never be sure that privileged memory areas such as memory-mapped devices are
not randomly overwritten by compiler-generated accesses. We will then have to
prove that we never remove or change active mappings for these areas (adding
new mappings for e.g. the stack would be fine). For user-level code, we will see
that the issue becomes irrelevant.

9

✓available in kernel mode
✓ reasoning about asid, incon_set and pt_snapshot update

 Program Verification in the Presence of TLB-Address Translation Hira Syeda

- updateASID

19

Program Logic — Rules{|�s. [[l]] s = bvpc ^ [[r]] s = bvc ^ vp /2 IC s ^ Addr vp ,!s pp ^
P (heap_iset_updates (pp 7! v))|}

l ::= r {|P|}

{|�s. kernel s ^ [[rte]] s = brtc ^ P (root_iset_updates Addr rt)|}
UpdateTTBR0 rte {|P|}

{|�s. kernel s ^ P (asid_pt_snpshot_updates a)|} UpdateASID a {|P|}

{|�s. kernel s ^ P (iset_pt_snpshot_updates f)|} Flush f {|P|}

{|�s. kernel s ^ P (s(|mode := flg|))|} SetMode flg {|P|}

Fig. 4. Hoare Logic rules for commands with TLB e↵ects.

The rule for the command UpdateTTBR0, only available in kernel mode, up-
dates the current page table root to the value of the expression rte. The e↵ect
is modelled by root_iset_update defined in Sect. 4.2.

The UpdateASID command, also only available in kernel mode, sets the new
ASID a, increases the iset using snp_incon, and records a page table snapshot
for the old ASID using new_snp.

Finally, Flush is the instruction that the makes the iset smaller, and removes
mappings in the snapshots of inactive ASIDs, using iset_asid_map_update from
Sect. 4.2.

4.4 Discussion

Our previous work [17] motivated an abstract TLB model that we have extended
and refined here. The program logic uses the (morally) same model, but there
is still a break in logic: the TLB abstraction is on a machine-level ISA model;
the program logic is for a higher-level language with explicit memory access,
intended for languages such as C. The bridge between the two worlds would
be a compiler correctness statement that takes the TLB into account. This may
initially not sound straightforward: the high-level language makes fewer memory
accesses visible than the low-level machine performs. In particular, a compiler
will usually implement a stack for local variables, and memory areas for global
variables, as well as for the code itself. These memory accesses are under address
translation and might be relevant for TLB reasoning.

Sect. 5 and 6 will show that we can ignore the TLB for kernel-level code, if we
can assume that these memory areas (code, stack, globals) are statically known
and that the compiler will not generate additional memory accesses outside these
static areas. This is a reasonable assumption — otherwise kernel code could
never be sure that privileged memory areas such as memory-mapped devices are
not randomly overwritten by compiler-generated accesses. We will then have to
prove that we never remove or change active mappings for these areas (adding
new mappings for e.g. the stack would be fine). For user-level code, we will see
that the issue becomes irrelevant.

9

{|�s. [[l]] s = bvpc ^ [[r]] s = bvc ^ vp /2 IC s ^ Addr vp ,!s pp ^
P (heap_iset_updates (pp 7! v))|}

l ::= r {|P|}

{|�s. kernel s ^ [[rte]] s = brtc ^ P (root_iset_updates Addr rt)|}
UpdateTTBR0 rte {|P|}

{|�s. kernel s ^ P (asid_pt_snpshot_updates a)|} UpdateASID a {|P|}

{|�s. kernel s ^ P (iset_pt_snpshot_updates f)|} Flush f {|P|}

{|�s. kernel s ^ P (s(|mode := flg|))|} SetMode flg {|P|}

Fig. 4. Hoare Logic rules for commands with TLB e↵ects.

The rule for the command UpdateTTBR0, only available in kernel mode, up-
dates the current page table root to the value of the expression rte. The e↵ect
is modelled by root_iset_update defined in Sect. 4.2.

The UpdateASID command, also only available in kernel mode, sets the new
ASID a, increases the iset using snp_incon, and records a page table snapshot
for the old ASID using new_snp.

Finally, Flush is the instruction that the makes the iset smaller, and removes
mappings in the snapshots of inactive ASIDs, using iset_asid_map_update from
Sect. 4.2.

4.4 Discussion

Our previous work [17] motivated an abstract TLB model that we have extended
and refined here. The program logic uses the (morally) same model, but there
is still a break in logic: the TLB abstraction is on a machine-level ISA model;
the program logic is for a higher-level language with explicit memory access,
intended for languages such as C. The bridge between the two worlds would
be a compiler correctness statement that takes the TLB into account. This may
initially not sound straightforward: the high-level language makes fewer memory
accesses visible than the low-level machine performs. In particular, a compiler
will usually implement a stack for local variables, and memory areas for global
variables, as well as for the code itself. These memory accesses are under address
translation and might be relevant for TLB reasoning.

Sect. 5 and 6 will show that we can ignore the TLB for kernel-level code, if we
can assume that these memory areas (code, stack, globals) are statically known
and that the compiler will not generate additional memory accesses outside these
static areas. This is a reasonable assumption — otherwise kernel code could
never be sure that privileged memory areas such as memory-mapped devices are
not randomly overwritten by compiler-generated accesses. We will then have to
prove that we never remove or change active mappings for these areas (adding
new mappings for e.g. the stack would be fine). For user-level code, we will see
that the issue becomes irrelevant.

9

{|�s. [[l]] s = bvpc ^ [[r]] s = bvc ^ vp /2 IC s ^ Addr vp ,!s pp ^
P (heap_iset_updates (pp 7! v))|}

l ::= r {|P|}

{|�s. kernel s ^ [[rte]] s = brtc ^ P (root_iset_updates Addr rt)|}
UpdateTTBR0 rte {|P|}

{|�s. kernel s ^ P (asid_pt_snpshot_updates a)|} UpdateASID a {|P|}

{|�s. kernel s ^ P (iset_pt_snpshot_updates f)|} Flush f {|P|}

{|�s. kernel s ^ P (s(|mode := flg|))|} SetMode flg {|P|}

Fig. 4. Hoare Logic rules for commands with TLB e↵ects.

The rule for the command UpdateTTBR0, only available in kernel mode, up-
dates the current page table root to the value of the expression rte. The e↵ect
is modelled by root_iset_update defined in Sect. 4.2.

The UpdateASID command, also only available in kernel mode, sets the new
ASID a, increases the iset using snp_incon, and records a page table snapshot
for the old ASID using new_snp.

Finally, Flush is the instruction that the makes the iset smaller, and removes
mappings in the snapshots of inactive ASIDs, using iset_asid_map_update from
Sect. 4.2.

4.4 Discussion

Our previous work [17] motivated an abstract TLB model that we have extended
and refined here. The program logic uses the (morally) same model, but there
is still a break in logic: the TLB abstraction is on a machine-level ISA model;
the program logic is for a higher-level language with explicit memory access,
intended for languages such as C. The bridge between the two worlds would
be a compiler correctness statement that takes the TLB into account. This may
initially not sound straightforward: the high-level language makes fewer memory
accesses visible than the low-level machine performs. In particular, a compiler
will usually implement a stack for local variables, and memory areas for global
variables, as well as for the code itself. These memory accesses are under address
translation and might be relevant for TLB reasoning.

Sect. 5 and 6 will show that we can ignore the TLB for kernel-level code, if we
can assume that these memory areas (code, stack, globals) are statically known
and that the compiler will not generate additional memory accesses outside these
static areas. This is a reasonable assumption — otherwise kernel code could
never be sure that privileged memory areas such as memory-mapped devices are
not randomly overwritten by compiler-generated accesses. We will then have to
prove that we never remove or change active mappings for these areas (adding
new mappings for e.g. the stack would be fine). For user-level code, we will see
that the issue becomes irrelevant.

9

✓available in kernel mode
✓ reasoning about asid, incon_set and pt_snapshot update

 Program Verification in the Presence of TLB-Address Translation Hira Syeda

- updateASID

19

Program Logic — Rules{|�s. [[l]] s = bvpc ^ [[r]] s = bvc ^ vp /2 IC s ^ Addr vp ,!s pp ^
P (heap_iset_updates (pp 7! v))|}

l ::= r {|P|}

{|�s. kernel s ^ [[rte]] s = brtc ^ P (root_iset_updates Addr rt)|}
UpdateTTBR0 rte {|P|}

{|�s. kernel s ^ P (asid_pt_snpshot_updates a)|} UpdateASID a {|P|}

{|�s. kernel s ^ P (iset_pt_snpshot_updates f)|} Flush f {|P|}

{|�s. kernel s ^ P (s(|mode := flg|))|} SetMode flg {|P|}

Fig. 4. Hoare Logic rules for commands with TLB e↵ects.

The rule for the command UpdateTTBR0, only available in kernel mode, up-
dates the current page table root to the value of the expression rte. The e↵ect
is modelled by root_iset_update defined in Sect. 4.2.

The UpdateASID command, also only available in kernel mode, sets the new
ASID a, increases the iset using snp_incon, and records a page table snapshot
for the old ASID using new_snp.

Finally, Flush is the instruction that the makes the iset smaller, and removes
mappings in the snapshots of inactive ASIDs, using iset_asid_map_update from
Sect. 4.2.

4.4 Discussion

Our previous work [17] motivated an abstract TLB model that we have extended
and refined here. The program logic uses the (morally) same model, but there
is still a break in logic: the TLB abstraction is on a machine-level ISA model;
the program logic is for a higher-level language with explicit memory access,
intended for languages such as C. The bridge between the two worlds would
be a compiler correctness statement that takes the TLB into account. This may
initially not sound straightforward: the high-level language makes fewer memory
accesses visible than the low-level machine performs. In particular, a compiler
will usually implement a stack for local variables, and memory areas for global
variables, as well as for the code itself. These memory accesses are under address
translation and might be relevant for TLB reasoning.

Sect. 5 and 6 will show that we can ignore the TLB for kernel-level code, if we
can assume that these memory areas (code, stack, globals) are statically known
and that the compiler will not generate additional memory accesses outside these
static areas. This is a reasonable assumption — otherwise kernel code could
never be sure that privileged memory areas such as memory-mapped devices are
not randomly overwritten by compiler-generated accesses. We will then have to
prove that we never remove or change active mappings for these areas (adding
new mappings for e.g. the stack would be fine). For user-level code, we will see
that the issue becomes irrelevant.

9

{|�s. [[l]] s = bvpc ^ [[r]] s = bvc ^ vp /2 IC s ^ Addr vp ,!s pp ^
P (heap_iset_updates (pp 7! v))|}

l ::= r {|P|}

{|�s. kernel s ^ [[rte]] s = brtc ^ P (root_iset_updates Addr rt)|}
UpdateTTBR0 rte {|P|}

{|�s. kernel s ^ P (asid_pt_snpshot_updates a)|} UpdateASID a {|P|}

{|�s. kernel s ^ P (iset_pt_snpshot_updates f)|} Flush f {|P|}

{|�s. kernel s ^ P (s(|mode := flg|))|} SetMode flg {|P|}

Fig. 4. Hoare Logic rules for commands with TLB e↵ects.

The rule for the command UpdateTTBR0, only available in kernel mode, up-
dates the current page table root to the value of the expression rte. The e↵ect
is modelled by root_iset_update defined in Sect. 4.2.

The UpdateASID command, also only available in kernel mode, sets the new
ASID a, increases the iset using snp_incon, and records a page table snapshot
for the old ASID using new_snp.

Finally, Flush is the instruction that the makes the iset smaller, and removes
mappings in the snapshots of inactive ASIDs, using iset_asid_map_update from
Sect. 4.2.

4.4 Discussion

Our previous work [17] motivated an abstract TLB model that we have extended
and refined here. The program logic uses the (morally) same model, but there
is still a break in logic: the TLB abstraction is on a machine-level ISA model;
the program logic is for a higher-level language with explicit memory access,
intended for languages such as C. The bridge between the two worlds would
be a compiler correctness statement that takes the TLB into account. This may
initially not sound straightforward: the high-level language makes fewer memory
accesses visible than the low-level machine performs. In particular, a compiler
will usually implement a stack for local variables, and memory areas for global
variables, as well as for the code itself. These memory accesses are under address
translation and might be relevant for TLB reasoning.

Sect. 5 and 6 will show that we can ignore the TLB for kernel-level code, if we
can assume that these memory areas (code, stack, globals) are statically known
and that the compiler will not generate additional memory accesses outside these
static areas. This is a reasonable assumption — otherwise kernel code could
never be sure that privileged memory areas such as memory-mapped devices are
not randomly overwritten by compiler-generated accesses. We will then have to
prove that we never remove or change active mappings for these areas (adding
new mappings for e.g. the stack would be fine). For user-level code, we will see
that the issue becomes irrelevant.

9

{|�s. [[l]] s = bvpc ^ [[r]] s = bvc ^ vp /2 IC s ^ Addr vp ,!s pp ^
P (heap_iset_updates (pp 7! v))|}

l ::= r {|P|}

{|�s. kernel s ^ [[rte]] s = brtc ^ P (root_iset_updates Addr rt)|}
UpdateTTBR0 rte {|P|}

{|�s. kernel s ^ P (asid_pt_snpshot_updates a)|} UpdateASID a {|P|}

{|�s. kernel s ^ P (iset_pt_snpshot_updates f)|} Flush f {|P|}

{|�s. kernel s ^ P (s(|mode := flg|))|} SetMode flg {|P|}

Fig. 4. Hoare Logic rules for commands with TLB e↵ects.

The rule for the command UpdateTTBR0, only available in kernel mode, up-
dates the current page table root to the value of the expression rte. The e↵ect
is modelled by root_iset_update defined in Sect. 4.2.

The UpdateASID command, also only available in kernel mode, sets the new
ASID a, increases the iset using snp_incon, and records a page table snapshot
for the old ASID using new_snp.

Finally, Flush is the instruction that the makes the iset smaller, and removes
mappings in the snapshots of inactive ASIDs, using iset_asid_map_update from
Sect. 4.2.

4.4 Discussion

Our previous work [17] motivated an abstract TLB model that we have extended
and refined here. The program logic uses the (morally) same model, but there
is still a break in logic: the TLB abstraction is on a machine-level ISA model;
the program logic is for a higher-level language with explicit memory access,
intended for languages such as C. The bridge between the two worlds would
be a compiler correctness statement that takes the TLB into account. This may
initially not sound straightforward: the high-level language makes fewer memory
accesses visible than the low-level machine performs. In particular, a compiler
will usually implement a stack for local variables, and memory areas for global
variables, as well as for the code itself. These memory accesses are under address
translation and might be relevant for TLB reasoning.

Sect. 5 and 6 will show that we can ignore the TLB for kernel-level code, if we
can assume that these memory areas (code, stack, globals) are statically known
and that the compiler will not generate additional memory accesses outside these
static areas. This is a reasonable assumption — otherwise kernel code could
never be sure that privileged memory areas such as memory-mapped devices are
not randomly overwritten by compiler-generated accesses. We will then have to
prove that we never remove or change active mappings for these areas (adding
new mappings for e.g. the stack would be fine). For user-level code, we will see
that the issue becomes irrelevant.

9

Steps:

 Program Verification in the Presence of TLB-Address Translation Hira Syeda

- updateASID

19

Program Logic — Rules{|�s. [[l]] s = bvpc ^ [[r]] s = bvc ^ vp /2 IC s ^ Addr vp ,!s pp ^
P (heap_iset_updates (pp 7! v))|}

l ::= r {|P|}

{|�s. kernel s ^ [[rte]] s = brtc ^ P (root_iset_updates Addr rt)|}
UpdateTTBR0 rte {|P|}

{|�s. kernel s ^ P (asid_pt_snpshot_updates a)|} UpdateASID a {|P|}

{|�s. kernel s ^ P (iset_pt_snpshot_updates f)|} Flush f {|P|}

{|�s. kernel s ^ P (s(|mode := flg|))|} SetMode flg {|P|}

Fig. 4. Hoare Logic rules for commands with TLB e↵ects.

The rule for the command UpdateTTBR0, only available in kernel mode, up-
dates the current page table root to the value of the expression rte. The e↵ect
is modelled by root_iset_update defined in Sect. 4.2.

The UpdateASID command, also only available in kernel mode, sets the new
ASID a, increases the iset using snp_incon, and records a page table snapshot
for the old ASID using new_snp.

Finally, Flush is the instruction that the makes the iset smaller, and removes
mappings in the snapshots of inactive ASIDs, using iset_asid_map_update from
Sect. 4.2.

4.4 Discussion

Our previous work [17] motivated an abstract TLB model that we have extended
and refined here. The program logic uses the (morally) same model, but there
is still a break in logic: the TLB abstraction is on a machine-level ISA model;
the program logic is for a higher-level language with explicit memory access,
intended for languages such as C. The bridge between the two worlds would
be a compiler correctness statement that takes the TLB into account. This may
initially not sound straightforward: the high-level language makes fewer memory
accesses visible than the low-level machine performs. In particular, a compiler
will usually implement a stack for local variables, and memory areas for global
variables, as well as for the code itself. These memory accesses are under address
translation and might be relevant for TLB reasoning.

Sect. 5 and 6 will show that we can ignore the TLB for kernel-level code, if we
can assume that these memory areas (code, stack, globals) are statically known
and that the compiler will not generate additional memory accesses outside these
static areas. This is a reasonable assumption — otherwise kernel code could
never be sure that privileged memory areas such as memory-mapped devices are
not randomly overwritten by compiler-generated accesses. We will then have to
prove that we never remove or change active mappings for these areas (adding
new mappings for e.g. the stack would be fine). For user-level code, we will see
that the issue becomes irrelevant.

9

{|�s. [[l]] s = bvpc ^ [[r]] s = bvc ^ vp /2 IC s ^ Addr vp ,!s pp ^
P (heap_iset_updates (pp 7! v))|}

l ::= r {|P|}

{|�s. kernel s ^ [[rte]] s = brtc ^ P (root_iset_updates Addr rt)|}
UpdateTTBR0 rte {|P|}

{|�s. kernel s ^ P (asid_pt_snpshot_updates a)|} UpdateASID a {|P|}

{|�s. kernel s ^ P (iset_pt_snpshot_updates f)|} Flush f {|P|}

{|�s. kernel s ^ P (s(|mode := flg|))|} SetMode flg {|P|}

Fig. 4. Hoare Logic rules for commands with TLB e↵ects.

The rule for the command UpdateTTBR0, only available in kernel mode, up-
dates the current page table root to the value of the expression rte. The e↵ect
is modelled by root_iset_update defined in Sect. 4.2.

The UpdateASID command, also only available in kernel mode, sets the new
ASID a, increases the iset using snp_incon, and records a page table snapshot
for the old ASID using new_snp.

Finally, Flush is the instruction that the makes the iset smaller, and removes
mappings in the snapshots of inactive ASIDs, using iset_asid_map_update from
Sect. 4.2.

4.4 Discussion

Our previous work [17] motivated an abstract TLB model that we have extended
and refined here. The program logic uses the (morally) same model, but there
is still a break in logic: the TLB abstraction is on a machine-level ISA model;
the program logic is for a higher-level language with explicit memory access,
intended for languages such as C. The bridge between the two worlds would
be a compiler correctness statement that takes the TLB into account. This may
initially not sound straightforward: the high-level language makes fewer memory
accesses visible than the low-level machine performs. In particular, a compiler
will usually implement a stack for local variables, and memory areas for global
variables, as well as for the code itself. These memory accesses are under address
translation and might be relevant for TLB reasoning.

Sect. 5 and 6 will show that we can ignore the TLB for kernel-level code, if we
can assume that these memory areas (code, stack, globals) are statically known
and that the compiler will not generate additional memory accesses outside these
static areas. This is a reasonable assumption — otherwise kernel code could
never be sure that privileged memory areas such as memory-mapped devices are
not randomly overwritten by compiler-generated accesses. We will then have to
prove that we never remove or change active mappings for these areas (adding
new mappings for e.g. the stack would be fine). For user-level code, we will see
that the issue becomes irrelevant.

9

{|�s. [[l]] s = bvpc ^ [[r]] s = bvc ^ vp /2 IC s ^ Addr vp ,!s pp ^
P (heap_iset_updates (pp 7! v))|}

l ::= r {|P|}

{|�s. kernel s ^ [[rte]] s = brtc ^ P (root_iset_updates Addr rt)|}
UpdateTTBR0 rte {|P|}

{|�s. kernel s ^ P (asid_pt_snpshot_updates a)|} UpdateASID a {|P|}

{|�s. kernel s ^ P (iset_pt_snpshot_updates f)|} Flush f {|P|}

{|�s. kernel s ^ P (s(|mode := flg|))|} SetMode flg {|P|}

Fig. 4. Hoare Logic rules for commands with TLB e↵ects.

The rule for the command UpdateTTBR0, only available in kernel mode, up-
dates the current page table root to the value of the expression rte. The e↵ect
is modelled by root_iset_update defined in Sect. 4.2.

The UpdateASID command, also only available in kernel mode, sets the new
ASID a, increases the iset using snp_incon, and records a page table snapshot
for the old ASID using new_snp.

Finally, Flush is the instruction that the makes the iset smaller, and removes
mappings in the snapshots of inactive ASIDs, using iset_asid_map_update from
Sect. 4.2.

4.4 Discussion

Our previous work [17] motivated an abstract TLB model that we have extended
and refined here. The program logic uses the (morally) same model, but there
is still a break in logic: the TLB abstraction is on a machine-level ISA model;
the program logic is for a higher-level language with explicit memory access,
intended for languages such as C. The bridge between the two worlds would
be a compiler correctness statement that takes the TLB into account. This may
initially not sound straightforward: the high-level language makes fewer memory
accesses visible than the low-level machine performs. In particular, a compiler
will usually implement a stack for local variables, and memory areas for global
variables, as well as for the code itself. These memory accesses are under address
translation and might be relevant for TLB reasoning.

Sect. 5 and 6 will show that we can ignore the TLB for kernel-level code, if we
can assume that these memory areas (code, stack, globals) are statically known
and that the compiler will not generate additional memory accesses outside these
static areas. This is a reasonable assumption — otherwise kernel code could
never be sure that privileged memory areas such as memory-mapped devices are
not randomly overwritten by compiler-generated accesses. We will then have to
prove that we never remove or change active mappings for these areas (adding
new mappings for e.g. the stack would be fine). For user-level code, we will see
that the issue becomes irrelevant.

9

Steps:
store the incon_set and the

page table of the active ASID to
the pt_snapshot

1

 Program Verification in the Presence of TLB-Address Translation Hira Syeda

- updateASID

19

Program Logic — Rules{|�s. [[l]] s = bvpc ^ [[r]] s = bvc ^ vp /2 IC s ^ Addr vp ,!s pp ^
P (heap_iset_updates (pp 7! v))|}

l ::= r {|P|}

{|�s. kernel s ^ [[rte]] s = brtc ^ P (root_iset_updates Addr rt)|}
UpdateTTBR0 rte {|P|}

{|�s. kernel s ^ P (asid_pt_snpshot_updates a)|} UpdateASID a {|P|}

{|�s. kernel s ^ P (iset_pt_snpshot_updates f)|} Flush f {|P|}

{|�s. kernel s ^ P (s(|mode := flg|))|} SetMode flg {|P|}

Fig. 4. Hoare Logic rules for commands with TLB e↵ects.

The rule for the command UpdateTTBR0, only available in kernel mode, up-
dates the current page table root to the value of the expression rte. The e↵ect
is modelled by root_iset_update defined in Sect. 4.2.

The UpdateASID command, also only available in kernel mode, sets the new
ASID a, increases the iset using snp_incon, and records a page table snapshot
for the old ASID using new_snp.

Finally, Flush is the instruction that the makes the iset smaller, and removes
mappings in the snapshots of inactive ASIDs, using iset_asid_map_update from
Sect. 4.2.

4.4 Discussion

Our previous work [17] motivated an abstract TLB model that we have extended
and refined here. The program logic uses the (morally) same model, but there
is still a break in logic: the TLB abstraction is on a machine-level ISA model;
the program logic is for a higher-level language with explicit memory access,
intended for languages such as C. The bridge between the two worlds would
be a compiler correctness statement that takes the TLB into account. This may
initially not sound straightforward: the high-level language makes fewer memory
accesses visible than the low-level machine performs. In particular, a compiler
will usually implement a stack for local variables, and memory areas for global
variables, as well as for the code itself. These memory accesses are under address
translation and might be relevant for TLB reasoning.

Sect. 5 and 6 will show that we can ignore the TLB for kernel-level code, if we
can assume that these memory areas (code, stack, globals) are statically known
and that the compiler will not generate additional memory accesses outside these
static areas. This is a reasonable assumption — otherwise kernel code could
never be sure that privileged memory areas such as memory-mapped devices are
not randomly overwritten by compiler-generated accesses. We will then have to
prove that we never remove or change active mappings for these areas (adding
new mappings for e.g. the stack would be fine). For user-level code, we will see
that the issue becomes irrelevant.

9

{|�s. [[l]] s = bvpc ^ [[r]] s = bvc ^ vp /2 IC s ^ Addr vp ,!s pp ^
P (heap_iset_updates (pp 7! v))|}

l ::= r {|P|}

{|�s. kernel s ^ [[rte]] s = brtc ^ P (root_iset_updates Addr rt)|}
UpdateTTBR0 rte {|P|}

{|�s. kernel s ^ P (asid_pt_snpshot_updates a)|} UpdateASID a {|P|}

{|�s. kernel s ^ P (iset_pt_snpshot_updates f)|} Flush f {|P|}

{|�s. kernel s ^ P (s(|mode := flg|))|} SetMode flg {|P|}

Fig. 4. Hoare Logic rules for commands with TLB e↵ects.

The rule for the command UpdateTTBR0, only available in kernel mode, up-
dates the current page table root to the value of the expression rte. The e↵ect
is modelled by root_iset_update defined in Sect. 4.2.

The UpdateASID command, also only available in kernel mode, sets the new
ASID a, increases the iset using snp_incon, and records a page table snapshot
for the old ASID using new_snp.

Finally, Flush is the instruction that the makes the iset smaller, and removes
mappings in the snapshots of inactive ASIDs, using iset_asid_map_update from
Sect. 4.2.

4.4 Discussion

Our previous work [17] motivated an abstract TLB model that we have extended
and refined here. The program logic uses the (morally) same model, but there
is still a break in logic: the TLB abstraction is on a machine-level ISA model;
the program logic is for a higher-level language with explicit memory access,
intended for languages such as C. The bridge between the two worlds would
be a compiler correctness statement that takes the TLB into account. This may
initially not sound straightforward: the high-level language makes fewer memory
accesses visible than the low-level machine performs. In particular, a compiler
will usually implement a stack for local variables, and memory areas for global
variables, as well as for the code itself. These memory accesses are under address
translation and might be relevant for TLB reasoning.

Sect. 5 and 6 will show that we can ignore the TLB for kernel-level code, if we
can assume that these memory areas (code, stack, globals) are statically known
and that the compiler will not generate additional memory accesses outside these
static areas. This is a reasonable assumption — otherwise kernel code could
never be sure that privileged memory areas such as memory-mapped devices are
not randomly overwritten by compiler-generated accesses. We will then have to
prove that we never remove or change active mappings for these areas (adding
new mappings for e.g. the stack would be fine). For user-level code, we will see
that the issue becomes irrelevant.

9

{|�s. [[l]] s = bvpc ^ [[r]] s = bvc ^ vp /2 IC s ^ Addr vp ,!s pp ^
P (heap_iset_updates (pp 7! v))|}

l ::= r {|P|}

{|�s. kernel s ^ [[rte]] s = brtc ^ P (root_iset_updates Addr rt)|}
UpdateTTBR0 rte {|P|}

{|�s. kernel s ^ P (asid_pt_snpshot_updates a)|} UpdateASID a {|P|}

{|�s. kernel s ^ P (iset_pt_snpshot_updates f)|} Flush f {|P|}

{|�s. kernel s ^ P (s(|mode := flg|))|} SetMode flg {|P|}

Fig. 4. Hoare Logic rules for commands with TLB e↵ects.

The rule for the command UpdateTTBR0, only available in kernel mode, up-
dates the current page table root to the value of the expression rte. The e↵ect
is modelled by root_iset_update defined in Sect. 4.2.

The UpdateASID command, also only available in kernel mode, sets the new
ASID a, increases the iset using snp_incon, and records a page table snapshot
for the old ASID using new_snp.

Finally, Flush is the instruction that the makes the iset smaller, and removes
mappings in the snapshots of inactive ASIDs, using iset_asid_map_update from
Sect. 4.2.

4.4 Discussion

Our previous work [17] motivated an abstract TLB model that we have extended
and refined here. The program logic uses the (morally) same model, but there
is still a break in logic: the TLB abstraction is on a machine-level ISA model;
the program logic is for a higher-level language with explicit memory access,
intended for languages such as C. The bridge between the two worlds would
be a compiler correctness statement that takes the TLB into account. This may
initially not sound straightforward: the high-level language makes fewer memory
accesses visible than the low-level machine performs. In particular, a compiler
will usually implement a stack for local variables, and memory areas for global
variables, as well as for the code itself. These memory accesses are under address
translation and might be relevant for TLB reasoning.

Sect. 5 and 6 will show that we can ignore the TLB for kernel-level code, if we
can assume that these memory areas (code, stack, globals) are statically known
and that the compiler will not generate additional memory accesses outside these
static areas. This is a reasonable assumption — otherwise kernel code could
never be sure that privileged memory areas such as memory-mapped devices are
not randomly overwritten by compiler-generated accesses. We will then have to
prove that we never remove or change active mappings for these areas (adding
new mappings for e.g. the stack would be fine). For user-level code, we will see
that the issue becomes irrelevant.

9

Steps:
store the incon_set and the

page table of the active ASID to
the pt_snapshot

update the ASID

1

2

 Program Verification in the Presence of TLB-Address Translation Hira Syeda

- updateASID

19

Program Logic — Rules{|�s. [[l]] s = bvpc ^ [[r]] s = bvc ^ vp /2 IC s ^ Addr vp ,!s pp ^
P (heap_iset_updates (pp 7! v))|}

l ::= r {|P|}

{|�s. kernel s ^ [[rte]] s = brtc ^ P (root_iset_updates Addr rt)|}
UpdateTTBR0 rte {|P|}

{|�s. kernel s ^ P (asid_pt_snpshot_updates a)|} UpdateASID a {|P|}

{|�s. kernel s ^ P (iset_pt_snpshot_updates f)|} Flush f {|P|}

{|�s. kernel s ^ P (s(|mode := flg|))|} SetMode flg {|P|}

Fig. 4. Hoare Logic rules for commands with TLB e↵ects.

The rule for the command UpdateTTBR0, only available in kernel mode, up-
dates the current page table root to the value of the expression rte. The e↵ect
is modelled by root_iset_update defined in Sect. 4.2.

The UpdateASID command, also only available in kernel mode, sets the new
ASID a, increases the iset using snp_incon, and records a page table snapshot
for the old ASID using new_snp.

Finally, Flush is the instruction that the makes the iset smaller, and removes
mappings in the snapshots of inactive ASIDs, using iset_asid_map_update from
Sect. 4.2.

4.4 Discussion

Our previous work [17] motivated an abstract TLB model that we have extended
and refined here. The program logic uses the (morally) same model, but there
is still a break in logic: the TLB abstraction is on a machine-level ISA model;
the program logic is for a higher-level language with explicit memory access,
intended for languages such as C. The bridge between the two worlds would
be a compiler correctness statement that takes the TLB into account. This may
initially not sound straightforward: the high-level language makes fewer memory
accesses visible than the low-level machine performs. In particular, a compiler
will usually implement a stack for local variables, and memory areas for global
variables, as well as for the code itself. These memory accesses are under address
translation and might be relevant for TLB reasoning.

Sect. 5 and 6 will show that we can ignore the TLB for kernel-level code, if we
can assume that these memory areas (code, stack, globals) are statically known
and that the compiler will not generate additional memory accesses outside these
static areas. This is a reasonable assumption — otherwise kernel code could
never be sure that privileged memory areas such as memory-mapped devices are
not randomly overwritten by compiler-generated accesses. We will then have to
prove that we never remove or change active mappings for these areas (adding
new mappings for e.g. the stack would be fine). For user-level code, we will see
that the issue becomes irrelevant.

9

{|�s. [[l]] s = bvpc ^ [[r]] s = bvc ^ vp /2 IC s ^ Addr vp ,!s pp ^
P (heap_iset_updates (pp 7! v))|}

l ::= r {|P|}

{|�s. kernel s ^ [[rte]] s = brtc ^ P (root_iset_updates Addr rt)|}
UpdateTTBR0 rte {|P|}

{|�s. kernel s ^ P (asid_pt_snpshot_updates a)|} UpdateASID a {|P|}

{|�s. kernel s ^ P (iset_pt_snpshot_updates f)|} Flush f {|P|}

{|�s. kernel s ^ P (s(|mode := flg|))|} SetMode flg {|P|}

Fig. 4. Hoare Logic rules for commands with TLB e↵ects.

The rule for the command UpdateTTBR0, only available in kernel mode, up-
dates the current page table root to the value of the expression rte. The e↵ect
is modelled by root_iset_update defined in Sect. 4.2.

The UpdateASID command, also only available in kernel mode, sets the new
ASID a, increases the iset using snp_incon, and records a page table snapshot
for the old ASID using new_snp.

Finally, Flush is the instruction that the makes the iset smaller, and removes
mappings in the snapshots of inactive ASIDs, using iset_asid_map_update from
Sect. 4.2.

4.4 Discussion

Our previous work [17] motivated an abstract TLB model that we have extended
and refined here. The program logic uses the (morally) same model, but there
is still a break in logic: the TLB abstraction is on a machine-level ISA model;
the program logic is for a higher-level language with explicit memory access,
intended for languages such as C. The bridge between the two worlds would
be a compiler correctness statement that takes the TLB into account. This may
initially not sound straightforward: the high-level language makes fewer memory
accesses visible than the low-level machine performs. In particular, a compiler
will usually implement a stack for local variables, and memory areas for global
variables, as well as for the code itself. These memory accesses are under address
translation and might be relevant for TLB reasoning.

Sect. 5 and 6 will show that we can ignore the TLB for kernel-level code, if we
can assume that these memory areas (code, stack, globals) are statically known
and that the compiler will not generate additional memory accesses outside these
static areas. This is a reasonable assumption — otherwise kernel code could
never be sure that privileged memory areas such as memory-mapped devices are
not randomly overwritten by compiler-generated accesses. We will then have to
prove that we never remove or change active mappings for these areas (adding
new mappings for e.g. the stack would be fine). For user-level code, we will see
that the issue becomes irrelevant.

9

{|�s. [[l]] s = bvpc ^ [[r]] s = bvc ^ vp /2 IC s ^ Addr vp ,!s pp ^
P (heap_iset_updates (pp 7! v))|}

l ::= r {|P|}

{|�s. kernel s ^ [[rte]] s = brtc ^ P (root_iset_updates Addr rt)|}
UpdateTTBR0 rte {|P|}

{|�s. kernel s ^ P (asid_pt_snpshot_updates a)|} UpdateASID a {|P|}

{|�s. kernel s ^ P (iset_pt_snpshot_updates f)|} Flush f {|P|}

{|�s. kernel s ^ P (s(|mode := flg|))|} SetMode flg {|P|}

Fig. 4. Hoare Logic rules for commands with TLB e↵ects.

The rule for the command UpdateTTBR0, only available in kernel mode, up-
dates the current page table root to the value of the expression rte. The e↵ect
is modelled by root_iset_update defined in Sect. 4.2.

The UpdateASID command, also only available in kernel mode, sets the new
ASID a, increases the iset using snp_incon, and records a page table snapshot
for the old ASID using new_snp.

Finally, Flush is the instruction that the makes the iset smaller, and removes
mappings in the snapshots of inactive ASIDs, using iset_asid_map_update from
Sect. 4.2.

4.4 Discussion

Our previous work [17] motivated an abstract TLB model that we have extended
and refined here. The program logic uses the (morally) same model, but there
is still a break in logic: the TLB abstraction is on a machine-level ISA model;
the program logic is for a higher-level language with explicit memory access,
intended for languages such as C. The bridge between the two worlds would
be a compiler correctness statement that takes the TLB into account. This may
initially not sound straightforward: the high-level language makes fewer memory
accesses visible than the low-level machine performs. In particular, a compiler
will usually implement a stack for local variables, and memory areas for global
variables, as well as for the code itself. These memory accesses are under address
translation and might be relevant for TLB reasoning.

Sect. 5 and 6 will show that we can ignore the TLB for kernel-level code, if we
can assume that these memory areas (code, stack, globals) are statically known
and that the compiler will not generate additional memory accesses outside these
static areas. This is a reasonable assumption — otherwise kernel code could
never be sure that privileged memory areas such as memory-mapped devices are
not randomly overwritten by compiler-generated accesses. We will then have to
prove that we never remove or change active mappings for these areas (adding
new mappings for e.g. the stack would be fine). For user-level code, we will see
that the issue becomes irrelevant.

9

Steps:
store the incon_set and the

page table of the active ASID to
the pt_snapshot

update the ASID

compute new incon_set from the
pt_snapshot and the active page table

1

2

3

 Program Verification in the Presence of TLB-Address Translation Hira Syeda

before updateASID

pt_sanpshot: a1,va3 => unmap
 a1,va7 => pa1
 a1,va6 => unmap
 a2,va1 => Incon
 a2,va6 => pa2

- updateASID

19

Program Logic — Rules{|�s. [[l]] s = bvpc ^ [[r]] s = bvc ^ vp /2 IC s ^ Addr vp ,!s pp ^
P (heap_iset_updates (pp 7! v))|}

l ::= r {|P|}

{|�s. kernel s ^ [[rte]] s = brtc ^ P (root_iset_updates Addr rt)|}
UpdateTTBR0 rte {|P|}

{|�s. kernel s ^ P (asid_pt_snpshot_updates a)|} UpdateASID a {|P|}

{|�s. kernel s ^ P (iset_pt_snpshot_updates f)|} Flush f {|P|}

{|�s. kernel s ^ P (s(|mode := flg|))|} SetMode flg {|P|}

Fig. 4. Hoare Logic rules for commands with TLB e↵ects.

The rule for the command UpdateTTBR0, only available in kernel mode, up-
dates the current page table root to the value of the expression rte. The e↵ect
is modelled by root_iset_update defined in Sect. 4.2.

The UpdateASID command, also only available in kernel mode, sets the new
ASID a, increases the iset using snp_incon, and records a page table snapshot
for the old ASID using new_snp.

Finally, Flush is the instruction that the makes the iset smaller, and removes
mappings in the snapshots of inactive ASIDs, using iset_asid_map_update from
Sect. 4.2.

4.4 Discussion

Our previous work [17] motivated an abstract TLB model that we have extended
and refined here. The program logic uses the (morally) same model, but there
is still a break in logic: the TLB abstraction is on a machine-level ISA model;
the program logic is for a higher-level language with explicit memory access,
intended for languages such as C. The bridge between the two worlds would
be a compiler correctness statement that takes the TLB into account. This may
initially not sound straightforward: the high-level language makes fewer memory
accesses visible than the low-level machine performs. In particular, a compiler
will usually implement a stack for local variables, and memory areas for global
variables, as well as for the code itself. These memory accesses are under address
translation and might be relevant for TLB reasoning.

Sect. 5 and 6 will show that we can ignore the TLB for kernel-level code, if we
can assume that these memory areas (code, stack, globals) are statically known
and that the compiler will not generate additional memory accesses outside these
static areas. This is a reasonable assumption — otherwise kernel code could
never be sure that privileged memory areas such as memory-mapped devices are
not randomly overwritten by compiler-generated accesses. We will then have to
prove that we never remove or change active mappings for these areas (adding
new mappings for e.g. the stack would be fine). For user-level code, we will see
that the issue becomes irrelevant.

9

{|�s. [[l]] s = bvpc ^ [[r]] s = bvc ^ vp /2 IC s ^ Addr vp ,!s pp ^
P (heap_iset_updates (pp 7! v))|}

l ::= r {|P|}

{|�s. kernel s ^ [[rte]] s = brtc ^ P (root_iset_updates Addr rt)|}
UpdateTTBR0 rte {|P|}

{|�s. kernel s ^ P (asid_pt_snpshot_updates a)|} UpdateASID a {|P|}

{|�s. kernel s ^ P (iset_pt_snpshot_updates f)|} Flush f {|P|}

{|�s. kernel s ^ P (s(|mode := flg|))|} SetMode flg {|P|}

Fig. 4. Hoare Logic rules for commands with TLB e↵ects.

The rule for the command UpdateTTBR0, only available in kernel mode, up-
dates the current page table root to the value of the expression rte. The e↵ect
is modelled by root_iset_update defined in Sect. 4.2.

The UpdateASID command, also only available in kernel mode, sets the new
ASID a, increases the iset using snp_incon, and records a page table snapshot
for the old ASID using new_snp.

Finally, Flush is the instruction that the makes the iset smaller, and removes
mappings in the snapshots of inactive ASIDs, using iset_asid_map_update from
Sect. 4.2.

4.4 Discussion

Our previous work [17] motivated an abstract TLB model that we have extended
and refined here. The program logic uses the (morally) same model, but there
is still a break in logic: the TLB abstraction is on a machine-level ISA model;
the program logic is for a higher-level language with explicit memory access,
intended for languages such as C. The bridge between the two worlds would
be a compiler correctness statement that takes the TLB into account. This may
initially not sound straightforward: the high-level language makes fewer memory
accesses visible than the low-level machine performs. In particular, a compiler
will usually implement a stack for local variables, and memory areas for global
variables, as well as for the code itself. These memory accesses are under address
translation and might be relevant for TLB reasoning.

Sect. 5 and 6 will show that we can ignore the TLB for kernel-level code, if we
can assume that these memory areas (code, stack, globals) are statically known
and that the compiler will not generate additional memory accesses outside these
static areas. This is a reasonable assumption — otherwise kernel code could
never be sure that privileged memory areas such as memory-mapped devices are
not randomly overwritten by compiler-generated accesses. We will then have to
prove that we never remove or change active mappings for these areas (adding
new mappings for e.g. the stack would be fine). For user-level code, we will see
that the issue becomes irrelevant.

9

{|�s. [[l]] s = bvpc ^ [[r]] s = bvc ^ vp /2 IC s ^ Addr vp ,!s pp ^
P (heap_iset_updates (pp 7! v))|}

l ::= r {|P|}

{|�s. kernel s ^ [[rte]] s = brtc ^ P (root_iset_updates Addr rt)|}
UpdateTTBR0 rte {|P|}

{|�s. kernel s ^ P (asid_pt_snpshot_updates a)|} UpdateASID a {|P|}

{|�s. kernel s ^ P (iset_pt_snpshot_updates f)|} Flush f {|P|}

{|�s. kernel s ^ P (s(|mode := flg|))|} SetMode flg {|P|}

Fig. 4. Hoare Logic rules for commands with TLB e↵ects.

The rule for the command UpdateTTBR0, only available in kernel mode, up-
dates the current page table root to the value of the expression rte. The e↵ect
is modelled by root_iset_update defined in Sect. 4.2.

The UpdateASID command, also only available in kernel mode, sets the new
ASID a, increases the iset using snp_incon, and records a page table snapshot
for the old ASID using new_snp.

Finally, Flush is the instruction that the makes the iset smaller, and removes
mappings in the snapshots of inactive ASIDs, using iset_asid_map_update from
Sect. 4.2.

4.4 Discussion

Our previous work [17] motivated an abstract TLB model that we have extended
and refined here. The program logic uses the (morally) same model, but there
is still a break in logic: the TLB abstraction is on a machine-level ISA model;
the program logic is for a higher-level language with explicit memory access,
intended for languages such as C. The bridge between the two worlds would
be a compiler correctness statement that takes the TLB into account. This may
initially not sound straightforward: the high-level language makes fewer memory
accesses visible than the low-level machine performs. In particular, a compiler
will usually implement a stack for local variables, and memory areas for global
variables, as well as for the code itself. These memory accesses are under address
translation and might be relevant for TLB reasoning.

Sect. 5 and 6 will show that we can ignore the TLB for kernel-level code, if we
can assume that these memory areas (code, stack, globals) are statically known
and that the compiler will not generate additional memory accesses outside these
static areas. This is a reasonable assumption — otherwise kernel code could
never be sure that privileged memory areas such as memory-mapped devices are
not randomly overwritten by compiler-generated accesses. We will then have to
prove that we never remove or change active mappings for these areas (adding
new mappings for e.g. the stack would be fine). For user-level code, we will see
that the issue becomes irrelevant.

9

Steps:

after updateASID

active_ASID : a1

incon_set : { va3 , va7 }

active_ASID :

incon_set : { , }

pt_snapshot:

page table: va6 => pa7

switching from a1 to a2

 Program Verification in the Presence of TLB-Address Translation Hira Syeda

before updateASID

pt_sanpshot: a1,va3 => unmap
 a1,va7 => pa1
 a1,va6 => unmap
 a2,va1 => Incon
 a2,va6 => pa2

- updateASID

19

Program Logic — Rules{|�s. [[l]] s = bvpc ^ [[r]] s = bvc ^ vp /2 IC s ^ Addr vp ,!s pp ^
P (heap_iset_updates (pp 7! v))|}

l ::= r {|P|}

{|�s. kernel s ^ [[rte]] s = brtc ^ P (root_iset_updates Addr rt)|}
UpdateTTBR0 rte {|P|}

{|�s. kernel s ^ P (asid_pt_snpshot_updates a)|} UpdateASID a {|P|}

{|�s. kernel s ^ P (iset_pt_snpshot_updates f)|} Flush f {|P|}

{|�s. kernel s ^ P (s(|mode := flg|))|} SetMode flg {|P|}

Fig. 4. Hoare Logic rules for commands with TLB e↵ects.

The rule for the command UpdateTTBR0, only available in kernel mode, up-
dates the current page table root to the value of the expression rte. The e↵ect
is modelled by root_iset_update defined in Sect. 4.2.

The UpdateASID command, also only available in kernel mode, sets the new
ASID a, increases the iset using snp_incon, and records a page table snapshot
for the old ASID using new_snp.

Finally, Flush is the instruction that the makes the iset smaller, and removes
mappings in the snapshots of inactive ASIDs, using iset_asid_map_update from
Sect. 4.2.

4.4 Discussion

Our previous work [17] motivated an abstract TLB model that we have extended
and refined here. The program logic uses the (morally) same model, but there
is still a break in logic: the TLB abstraction is on a machine-level ISA model;
the program logic is for a higher-level language with explicit memory access,
intended for languages such as C. The bridge between the two worlds would
be a compiler correctness statement that takes the TLB into account. This may
initially not sound straightforward: the high-level language makes fewer memory
accesses visible than the low-level machine performs. In particular, a compiler
will usually implement a stack for local variables, and memory areas for global
variables, as well as for the code itself. These memory accesses are under address
translation and might be relevant for TLB reasoning.

Sect. 5 and 6 will show that we can ignore the TLB for kernel-level code, if we
can assume that these memory areas (code, stack, globals) are statically known
and that the compiler will not generate additional memory accesses outside these
static areas. This is a reasonable assumption — otherwise kernel code could
never be sure that privileged memory areas such as memory-mapped devices are
not randomly overwritten by compiler-generated accesses. We will then have to
prove that we never remove or change active mappings for these areas (adding
new mappings for e.g. the stack would be fine). For user-level code, we will see
that the issue becomes irrelevant.

9

{|�s. [[l]] s = bvpc ^ [[r]] s = bvc ^ vp /2 IC s ^ Addr vp ,!s pp ^
P (heap_iset_updates (pp 7! v))|}

l ::= r {|P|}

{|�s. kernel s ^ [[rte]] s = brtc ^ P (root_iset_updates Addr rt)|}
UpdateTTBR0 rte {|P|}

{|�s. kernel s ^ P (asid_pt_snpshot_updates a)|} UpdateASID a {|P|}

{|�s. kernel s ^ P (iset_pt_snpshot_updates f)|} Flush f {|P|}

{|�s. kernel s ^ P (s(|mode := flg|))|} SetMode flg {|P|}

Fig. 4. Hoare Logic rules for commands with TLB e↵ects.

The rule for the command UpdateTTBR0, only available in kernel mode, up-
dates the current page table root to the value of the expression rte. The e↵ect
is modelled by root_iset_update defined in Sect. 4.2.

The UpdateASID command, also only available in kernel mode, sets the new
ASID a, increases the iset using snp_incon, and records a page table snapshot
for the old ASID using new_snp.

Finally, Flush is the instruction that the makes the iset smaller, and removes
mappings in the snapshots of inactive ASIDs, using iset_asid_map_update from
Sect. 4.2.

4.4 Discussion

Our previous work [17] motivated an abstract TLB model that we have extended
and refined here. The program logic uses the (morally) same model, but there
is still a break in logic: the TLB abstraction is on a machine-level ISA model;
the program logic is for a higher-level language with explicit memory access,
intended for languages such as C. The bridge between the two worlds would
be a compiler correctness statement that takes the TLB into account. This may
initially not sound straightforward: the high-level language makes fewer memory
accesses visible than the low-level machine performs. In particular, a compiler
will usually implement a stack for local variables, and memory areas for global
variables, as well as for the code itself. These memory accesses are under address
translation and might be relevant for TLB reasoning.

Sect. 5 and 6 will show that we can ignore the TLB for kernel-level code, if we
can assume that these memory areas (code, stack, globals) are statically known
and that the compiler will not generate additional memory accesses outside these
static areas. This is a reasonable assumption — otherwise kernel code could
never be sure that privileged memory areas such as memory-mapped devices are
not randomly overwritten by compiler-generated accesses. We will then have to
prove that we never remove or change active mappings for these areas (adding
new mappings for e.g. the stack would be fine). For user-level code, we will see
that the issue becomes irrelevant.

9

{|�s. [[l]] s = bvpc ^ [[r]] s = bvc ^ vp /2 IC s ^ Addr vp ,!s pp ^
P (heap_iset_updates (pp 7! v))|}

l ::= r {|P|}

{|�s. kernel s ^ [[rte]] s = brtc ^ P (root_iset_updates Addr rt)|}
UpdateTTBR0 rte {|P|}

{|�s. kernel s ^ P (asid_pt_snpshot_updates a)|} UpdateASID a {|P|}

{|�s. kernel s ^ P (iset_pt_snpshot_updates f)|} Flush f {|P|}

{|�s. kernel s ^ P (s(|mode := flg|))|} SetMode flg {|P|}

Fig. 4. Hoare Logic rules for commands with TLB e↵ects.

The rule for the command UpdateTTBR0, only available in kernel mode, up-
dates the current page table root to the value of the expression rte. The e↵ect
is modelled by root_iset_update defined in Sect. 4.2.

The UpdateASID command, also only available in kernel mode, sets the new
ASID a, increases the iset using snp_incon, and records a page table snapshot
for the old ASID using new_snp.

Finally, Flush is the instruction that the makes the iset smaller, and removes
mappings in the snapshots of inactive ASIDs, using iset_asid_map_update from
Sect. 4.2.

4.4 Discussion

Our previous work [17] motivated an abstract TLB model that we have extended
and refined here. The program logic uses the (morally) same model, but there
is still a break in logic: the TLB abstraction is on a machine-level ISA model;
the program logic is for a higher-level language with explicit memory access,
intended for languages such as C. The bridge between the two worlds would
be a compiler correctness statement that takes the TLB into account. This may
initially not sound straightforward: the high-level language makes fewer memory
accesses visible than the low-level machine performs. In particular, a compiler
will usually implement a stack for local variables, and memory areas for global
variables, as well as for the code itself. These memory accesses are under address
translation and might be relevant for TLB reasoning.

Sect. 5 and 6 will show that we can ignore the TLB for kernel-level code, if we
can assume that these memory areas (code, stack, globals) are statically known
and that the compiler will not generate additional memory accesses outside these
static areas. This is a reasonable assumption — otherwise kernel code could
never be sure that privileged memory areas such as memory-mapped devices are
not randomly overwritten by compiler-generated accesses. We will then have to
prove that we never remove or change active mappings for these areas (adding
new mappings for e.g. the stack would be fine). For user-level code, we will see
that the issue becomes irrelevant.

9

Steps:

after updateASID

active_ASID : a1

incon_set : { va3 , va7 }

active_ASID :

incon_set : { , }

pt_snapshot: a1,va3 => Incon
a1,va7 => Incon
a1,va6 => pa7

page table: va6 => pa7

1

switching from a1 to a2

 Program Verification in the Presence of TLB-Address Translation Hira Syeda

before updateASID

pt_sanpshot: a1,va3 => unmap
 a1,va7 => pa1
 a1,va6 => unmap
 a2,va1 => Incon
 a2,va6 => pa2

- updateASID

19

Program Logic — Rules{|�s. [[l]] s = bvpc ^ [[r]] s = bvc ^ vp /2 IC s ^ Addr vp ,!s pp ^
P (heap_iset_updates (pp 7! v))|}

l ::= r {|P|}

{|�s. kernel s ^ [[rte]] s = brtc ^ P (root_iset_updates Addr rt)|}
UpdateTTBR0 rte {|P|}

{|�s. kernel s ^ P (asid_pt_snpshot_updates a)|} UpdateASID a {|P|}

{|�s. kernel s ^ P (iset_pt_snpshot_updates f)|} Flush f {|P|}

{|�s. kernel s ^ P (s(|mode := flg|))|} SetMode flg {|P|}

Fig. 4. Hoare Logic rules for commands with TLB e↵ects.

The rule for the command UpdateTTBR0, only available in kernel mode, up-
dates the current page table root to the value of the expression rte. The e↵ect
is modelled by root_iset_update defined in Sect. 4.2.

The UpdateASID command, also only available in kernel mode, sets the new
ASID a, increases the iset using snp_incon, and records a page table snapshot
for the old ASID using new_snp.

Finally, Flush is the instruction that the makes the iset smaller, and removes
mappings in the snapshots of inactive ASIDs, using iset_asid_map_update from
Sect. 4.2.

4.4 Discussion

Our previous work [17] motivated an abstract TLB model that we have extended
and refined here. The program logic uses the (morally) same model, but there
is still a break in logic: the TLB abstraction is on a machine-level ISA model;
the program logic is for a higher-level language with explicit memory access,
intended for languages such as C. The bridge between the two worlds would
be a compiler correctness statement that takes the TLB into account. This may
initially not sound straightforward: the high-level language makes fewer memory
accesses visible than the low-level machine performs. In particular, a compiler
will usually implement a stack for local variables, and memory areas for global
variables, as well as for the code itself. These memory accesses are under address
translation and might be relevant for TLB reasoning.

Sect. 5 and 6 will show that we can ignore the TLB for kernel-level code, if we
can assume that these memory areas (code, stack, globals) are statically known
and that the compiler will not generate additional memory accesses outside these
static areas. This is a reasonable assumption — otherwise kernel code could
never be sure that privileged memory areas such as memory-mapped devices are
not randomly overwritten by compiler-generated accesses. We will then have to
prove that we never remove or change active mappings for these areas (adding
new mappings for e.g. the stack would be fine). For user-level code, we will see
that the issue becomes irrelevant.

9

{|�s. [[l]] s = bvpc ^ [[r]] s = bvc ^ vp /2 IC s ^ Addr vp ,!s pp ^
P (heap_iset_updates (pp 7! v))|}

l ::= r {|P|}

{|�s. kernel s ^ [[rte]] s = brtc ^ P (root_iset_updates Addr rt)|}
UpdateTTBR0 rte {|P|}

{|�s. kernel s ^ P (asid_pt_snpshot_updates a)|} UpdateASID a {|P|}

{|�s. kernel s ^ P (iset_pt_snpshot_updates f)|} Flush f {|P|}

{|�s. kernel s ^ P (s(|mode := flg|))|} SetMode flg {|P|}

Fig. 4. Hoare Logic rules for commands with TLB e↵ects.

The rule for the command UpdateTTBR0, only available in kernel mode, up-
dates the current page table root to the value of the expression rte. The e↵ect
is modelled by root_iset_update defined in Sect. 4.2.

The UpdateASID command, also only available in kernel mode, sets the new
ASID a, increases the iset using snp_incon, and records a page table snapshot
for the old ASID using new_snp.

Finally, Flush is the instruction that the makes the iset smaller, and removes
mappings in the snapshots of inactive ASIDs, using iset_asid_map_update from
Sect. 4.2.

4.4 Discussion

Our previous work [17] motivated an abstract TLB model that we have extended
and refined here. The program logic uses the (morally) same model, but there
is still a break in logic: the TLB abstraction is on a machine-level ISA model;
the program logic is for a higher-level language with explicit memory access,
intended for languages such as C. The bridge between the two worlds would
be a compiler correctness statement that takes the TLB into account. This may
initially not sound straightforward: the high-level language makes fewer memory
accesses visible than the low-level machine performs. In particular, a compiler
will usually implement a stack for local variables, and memory areas for global
variables, as well as for the code itself. These memory accesses are under address
translation and might be relevant for TLB reasoning.

Sect. 5 and 6 will show that we can ignore the TLB for kernel-level code, if we
can assume that these memory areas (code, stack, globals) are statically known
and that the compiler will not generate additional memory accesses outside these
static areas. This is a reasonable assumption — otherwise kernel code could
never be sure that privileged memory areas such as memory-mapped devices are
not randomly overwritten by compiler-generated accesses. We will then have to
prove that we never remove or change active mappings for these areas (adding
new mappings for e.g. the stack would be fine). For user-level code, we will see
that the issue becomes irrelevant.

9

{|�s. [[l]] s = bvpc ^ [[r]] s = bvc ^ vp /2 IC s ^ Addr vp ,!s pp ^
P (heap_iset_updates (pp 7! v))|}

l ::= r {|P|}

{|�s. kernel s ^ [[rte]] s = brtc ^ P (root_iset_updates Addr rt)|}
UpdateTTBR0 rte {|P|}

{|�s. kernel s ^ P (asid_pt_snpshot_updates a)|} UpdateASID a {|P|}

{|�s. kernel s ^ P (iset_pt_snpshot_updates f)|} Flush f {|P|}

{|�s. kernel s ^ P (s(|mode := flg|))|} SetMode flg {|P|}

Fig. 4. Hoare Logic rules for commands with TLB e↵ects.

The rule for the command UpdateTTBR0, only available in kernel mode, up-
dates the current page table root to the value of the expression rte. The e↵ect
is modelled by root_iset_update defined in Sect. 4.2.

The UpdateASID command, also only available in kernel mode, sets the new
ASID a, increases the iset using snp_incon, and records a page table snapshot
for the old ASID using new_snp.

Finally, Flush is the instruction that the makes the iset smaller, and removes
mappings in the snapshots of inactive ASIDs, using iset_asid_map_update from
Sect. 4.2.

4.4 Discussion

Our previous work [17] motivated an abstract TLB model that we have extended
and refined here. The program logic uses the (morally) same model, but there
is still a break in logic: the TLB abstraction is on a machine-level ISA model;
the program logic is for a higher-level language with explicit memory access,
intended for languages such as C. The bridge between the two worlds would
be a compiler correctness statement that takes the TLB into account. This may
initially not sound straightforward: the high-level language makes fewer memory
accesses visible than the low-level machine performs. In particular, a compiler
will usually implement a stack for local variables, and memory areas for global
variables, as well as for the code itself. These memory accesses are under address
translation and might be relevant for TLB reasoning.

Sect. 5 and 6 will show that we can ignore the TLB for kernel-level code, if we
can assume that these memory areas (code, stack, globals) are statically known
and that the compiler will not generate additional memory accesses outside these
static areas. This is a reasonable assumption — otherwise kernel code could
never be sure that privileged memory areas such as memory-mapped devices are
not randomly overwritten by compiler-generated accesses. We will then have to
prove that we never remove or change active mappings for these areas (adding
new mappings for e.g. the stack would be fine). For user-level code, we will see
that the issue becomes irrelevant.

9

Steps:

after updateASID

active_ASID : a1

incon_set : { va3 , va7 }

active_ASID :

incon_set : { , }

pt_snapshot: a1,va3 => Incon
a1,va7 => Incon
a1,va6 => pa7

page table: va6 => pa7

a2 2

switching from a1 to a2

 Program Verification in the Presence of TLB-Address Translation Hira Syeda

before updateASID

pt_sanpshot: a1,va3 => unmap
 a1,va7 => pa1
 a1,va6 => unmap
 a2,va1 => Incon
 a2,va6 => pa2

- updateASID

19

Program Logic — Rules{|�s. [[l]] s = bvpc ^ [[r]] s = bvc ^ vp /2 IC s ^ Addr vp ,!s pp ^
P (heap_iset_updates (pp 7! v))|}

l ::= r {|P|}

{|�s. kernel s ^ [[rte]] s = brtc ^ P (root_iset_updates Addr rt)|}
UpdateTTBR0 rte {|P|}

{|�s. kernel s ^ P (asid_pt_snpshot_updates a)|} UpdateASID a {|P|}

{|�s. kernel s ^ P (iset_pt_snpshot_updates f)|} Flush f {|P|}

{|�s. kernel s ^ P (s(|mode := flg|))|} SetMode flg {|P|}

Fig. 4. Hoare Logic rules for commands with TLB e↵ects.

The rule for the command UpdateTTBR0, only available in kernel mode, up-
dates the current page table root to the value of the expression rte. The e↵ect
is modelled by root_iset_update defined in Sect. 4.2.

The UpdateASID command, also only available in kernel mode, sets the new
ASID a, increases the iset using snp_incon, and records a page table snapshot
for the old ASID using new_snp.

Finally, Flush is the instruction that the makes the iset smaller, and removes
mappings in the snapshots of inactive ASIDs, using iset_asid_map_update from
Sect. 4.2.

4.4 Discussion

Our previous work [17] motivated an abstract TLB model that we have extended
and refined here. The program logic uses the (morally) same model, but there
is still a break in logic: the TLB abstraction is on a machine-level ISA model;
the program logic is for a higher-level language with explicit memory access,
intended for languages such as C. The bridge between the two worlds would
be a compiler correctness statement that takes the TLB into account. This may
initially not sound straightforward: the high-level language makes fewer memory
accesses visible than the low-level machine performs. In particular, a compiler
will usually implement a stack for local variables, and memory areas for global
variables, as well as for the code itself. These memory accesses are under address
translation and might be relevant for TLB reasoning.

Sect. 5 and 6 will show that we can ignore the TLB for kernel-level code, if we
can assume that these memory areas (code, stack, globals) are statically known
and that the compiler will not generate additional memory accesses outside these
static areas. This is a reasonable assumption — otherwise kernel code could
never be sure that privileged memory areas such as memory-mapped devices are
not randomly overwritten by compiler-generated accesses. We will then have to
prove that we never remove or change active mappings for these areas (adding
new mappings for e.g. the stack would be fine). For user-level code, we will see
that the issue becomes irrelevant.

9

{|�s. [[l]] s = bvpc ^ [[r]] s = bvc ^ vp /2 IC s ^ Addr vp ,!s pp ^
P (heap_iset_updates (pp 7! v))|}

l ::= r {|P|}

{|�s. kernel s ^ [[rte]] s = brtc ^ P (root_iset_updates Addr rt)|}
UpdateTTBR0 rte {|P|}

{|�s. kernel s ^ P (asid_pt_snpshot_updates a)|} UpdateASID a {|P|}

{|�s. kernel s ^ P (iset_pt_snpshot_updates f)|} Flush f {|P|}

{|�s. kernel s ^ P (s(|mode := flg|))|} SetMode flg {|P|}

Fig. 4. Hoare Logic rules for commands with TLB e↵ects.

The rule for the command UpdateTTBR0, only available in kernel mode, up-
dates the current page table root to the value of the expression rte. The e↵ect
is modelled by root_iset_update defined in Sect. 4.2.

The UpdateASID command, also only available in kernel mode, sets the new
ASID a, increases the iset using snp_incon, and records a page table snapshot
for the old ASID using new_snp.

Finally, Flush is the instruction that the makes the iset smaller, and removes
mappings in the snapshots of inactive ASIDs, using iset_asid_map_update from
Sect. 4.2.

4.4 Discussion

Our previous work [17] motivated an abstract TLB model that we have extended
and refined here. The program logic uses the (morally) same model, but there
is still a break in logic: the TLB abstraction is on a machine-level ISA model;
the program logic is for a higher-level language with explicit memory access,
intended for languages such as C. The bridge between the two worlds would
be a compiler correctness statement that takes the TLB into account. This may
initially not sound straightforward: the high-level language makes fewer memory
accesses visible than the low-level machine performs. In particular, a compiler
will usually implement a stack for local variables, and memory areas for global
variables, as well as for the code itself. These memory accesses are under address
translation and might be relevant for TLB reasoning.

Sect. 5 and 6 will show that we can ignore the TLB for kernel-level code, if we
can assume that these memory areas (code, stack, globals) are statically known
and that the compiler will not generate additional memory accesses outside these
static areas. This is a reasonable assumption — otherwise kernel code could
never be sure that privileged memory areas such as memory-mapped devices are
not randomly overwritten by compiler-generated accesses. We will then have to
prove that we never remove or change active mappings for these areas (adding
new mappings for e.g. the stack would be fine). For user-level code, we will see
that the issue becomes irrelevant.

9

{|�s. [[l]] s = bvpc ^ [[r]] s = bvc ^ vp /2 IC s ^ Addr vp ,!s pp ^
P (heap_iset_updates (pp 7! v))|}

l ::= r {|P|}

{|�s. kernel s ^ [[rte]] s = brtc ^ P (root_iset_updates Addr rt)|}
UpdateTTBR0 rte {|P|}

{|�s. kernel s ^ P (asid_pt_snpshot_updates a)|} UpdateASID a {|P|}

{|�s. kernel s ^ P (iset_pt_snpshot_updates f)|} Flush f {|P|}

{|�s. kernel s ^ P (s(|mode := flg|))|} SetMode flg {|P|}

Fig. 4. Hoare Logic rules for commands with TLB e↵ects.

The rule for the command UpdateTTBR0, only available in kernel mode, up-
dates the current page table root to the value of the expression rte. The e↵ect
is modelled by root_iset_update defined in Sect. 4.2.

The UpdateASID command, also only available in kernel mode, sets the new
ASID a, increases the iset using snp_incon, and records a page table snapshot
for the old ASID using new_snp.

Finally, Flush is the instruction that the makes the iset smaller, and removes
mappings in the snapshots of inactive ASIDs, using iset_asid_map_update from
Sect. 4.2.

4.4 Discussion

Our previous work [17] motivated an abstract TLB model that we have extended
and refined here. The program logic uses the (morally) same model, but there
is still a break in logic: the TLB abstraction is on a machine-level ISA model;
the program logic is for a higher-level language with explicit memory access,
intended for languages such as C. The bridge between the two worlds would
be a compiler correctness statement that takes the TLB into account. This may
initially not sound straightforward: the high-level language makes fewer memory
accesses visible than the low-level machine performs. In particular, a compiler
will usually implement a stack for local variables, and memory areas for global
variables, as well as for the code itself. These memory accesses are under address
translation and might be relevant for TLB reasoning.

Sect. 5 and 6 will show that we can ignore the TLB for kernel-level code, if we
can assume that these memory areas (code, stack, globals) are statically known
and that the compiler will not generate additional memory accesses outside these
static areas. This is a reasonable assumption — otherwise kernel code could
never be sure that privileged memory areas such as memory-mapped devices are
not randomly overwritten by compiler-generated accesses. We will then have to
prove that we never remove or change active mappings for these areas (adding
new mappings for e.g. the stack would be fine). For user-level code, we will see
that the issue becomes irrelevant.

9

Steps:

after updateASID

active_ASID : a1

incon_set : { va3 , va7 }

active_ASID :

incon_set : { , }

pt_snapshot:

 va1 va6

a1,va3 => Incon
a1,va7 => Incon
a1,va6 => pa7

page table: va6 => pa7

a2

3

switching from a1 to a2

 Program Verification in the Presence of TLB-Address Translation Hira Syeda

- assignment

- updateRoot

- updateASID

20

Program Logic — Rules

Take-away:

TLB has been reduced to consistency check

Inconsistency is recomputed after every instruction

 Program Verification in the Presence of TLB-Address Translation Hira Syeda21

- TLB-aware program logic in Isabelle/HOL
- sound abstraction of ARMv7-style MMU

- language with TLB management primitives

- TLB-aware Hoare logic rules

Contributions

- Reduction theorems for program verification at
- user- and kernel-level execution

- context switch

 Program Verification in the Presence of TLB-Address Translation Hira Syeda22

- Address space management
- inspired by seL4

Program Verification

 Program Verification in the Presence of TLB-Address Translation Hira Syeda22

- Address space management
- inspired by seL4

Program Verification

0

max

paddr space

kernel data
including page tables

vaddr space

-1

0

user
addrs

kernel
window

 Program Verification in the Presence of TLB-Address Translation Hira Syeda22

- Address space management
- inspired by seL4

Program Verification

0

max

paddr space

kernel data
including page tables

vaddr space

-1

0

user
addrs

kernel
window

 Program Verification in the Presence of TLB-Address Translation Hira Syeda22

- Address space management
- inspired by seL4

Program Verification

0

max

paddr space

kernel data
including page tables

vaddr space

-1

0

user
addrs

kernel
window

 Program Verification in the Presence of TLB-Address Translation Hira Syeda22

- Address space management
- inspired by seL4

Program Verification

0

max

paddr space

kernel data
including page tables

vaddr space

-1

0

user
addrs

kernel
window

 Program Verification in the Presence of TLB-Address Translation Hira Syeda

- User-level assignment
- user cannot update page table,

hence cannot affect TLB consistency

23

Reduction Theorems

non_overlapping [] = True
non_overlapping (x · xs) = (x \

S
set xs = ; ^ non_overlapping xs)

To avoid flushing the TLB, we maintain for most of the execution the ad-
ditional invariant that the TLB is fully consistent for all ASIDs that we might
switch to, and that for each ASID the TLB snapshot agrees with the page table
that we would switch to for that ASID. This means, if there were page table
modifications for a user we are about to switch to, we assume that the cor-
responding flush has already happened. Since the property is not valid for all
ASIDs between page table modifications and flush, we provide a set of ASIDs
as argument to exclude. If this set is empty, we will omit the argument in the
notation.

asids_consistent S s ⌘
8 r a. root_map s r = bac ^ a /2 S [{asid s} �!

(8 v. pt_snpshot s a v = Miss _
pt_snpshot s a v = Hit (pt_walk a (heap s) r v))

This concludes the formalisation of the necessary kernel invariants.

6.1 User Execution

The simplest of the reduction theorems is user-level execution: when the kernel
has switched to user mode, the iset should be empty for the current ASID, and
since the user cannot perform any actions that adds addresses to this set, it
will remain empty. Most actions that have any e↵ect on the iset are explicitly
privileged, i.e. unavailable in user mode. Only assignments could possibly have
an adverse e↵ect.

The following theorem shows that they do not, and that any arbitrary assign-
ment in user mode will preserve not only this property of the iset, but, almost
trivially, also all kernel invariants. In that sense it is a simple demonstration of
the separation that virtual memory achieves between kernel and user processes.

Theorem 3 When the kernel invariants hold, we are in user mode, and the
iset is empty, then these three conditions are preserved, and the heap is updated
as expected. We assume that the address the left-hand side resolves to is mapped.

{|�s. mmu_layout s ^ mode s = User ^
IC s = ; ^ [[lval]] s = bvpc ^ [[rval]] s = bvc ^ Addr vp ,!s p|}

lval ::= rval
{|�s. mmu_layout s ^ mode s = User ^ IC s = ; ^ heap s p = bvc|}

Proof. See lemma user_safe_assignment in [18].

The essence of the rule above is the same as Kolanski’s assignment rule [11]
without TLB. The invariant part of the rule could be moved to the definition of
validity and be hidden from the user completely. Like Kolanski, we still had to
assume that the address vp is mapped, because we do not distinguish between
recoverable page faults and program failure. In the settings we are interested in,
we aim to avoid page faults. In a setting with dynamically mapped pages, e.g. by

13

non_overlapping [] = True
non_overlapping (x · xs) = (x \

S
set xs = ; ^ non_overlapping xs)

To avoid flushing the TLB, we maintain for most of the execution the ad-
ditional invariant that the TLB is fully consistent for all ASIDs that we might
switch to, and that for each ASID the TLB snapshot agrees with the page table
that we would switch to for that ASID. This means, if there were page table
modifications for a user we are about to switch to, we assume that the cor-
responding flush has already happened. Since the property is not valid for all
ASIDs between page table modifications and flush, we provide a set of ASIDs
as argument to exclude. If this set is empty, we will omit the argument in the
notation.

asids_consistent S s ⌘
8 r a. root_map s r = bac ^ a /2 S [{asid s} �!

(8 v. pt_snpshot s a v = Miss _
pt_snpshot s a v = Hit (pt_walk a (heap s) r v))

This concludes the formalisation of the necessary kernel invariants.

6.1 User Execution

The simplest of the reduction theorems is user-level execution: when the kernel
has switched to user mode, the iset should be empty for the current ASID, and
since the user cannot perform any actions that adds addresses to this set, it
will remain empty. Most actions that have any e↵ect on the iset are explicitly
privileged, i.e. unavailable in user mode. Only assignments could possibly have
an adverse e↵ect.

The following theorem shows that they do not, and that any arbitrary assign-
ment in user mode will preserve not only this property of the iset, but, almost
trivially, also all kernel invariants. In that sense it is a simple demonstration of
the separation that virtual memory achieves between kernel and user processes.

Theorem 3 When the kernel invariants hold, we are in user mode, and the
iset is empty, then these three conditions are preserved, and the heap is updated
as expected. We assume that the address the left-hand side resolves to is mapped.

{|�s. mmu_layout s ^ mode s = User ^
IC s = ; ^ [[lval]] s = bvpc ^ [[rval]] s = bvc ^ Addr vp ,!s p|}

lval ::= rval
{|�s. mmu_layout s ^ mode s = User ^ IC s = ; ^ heap s p = bvc|}

Proof. See lemma user_safe_assignment in [18].

The essence of the rule above is the same as Kolanski’s assignment rule [11]
without TLB. The invariant part of the rule could be moved to the definition of
validity and be hidden from the user completely. Like Kolanski, we still had to
assume that the address vp is mapped, because we do not distinguish between
recoverable page faults and program failure. In the settings we are interested in,
we aim to avoid page faults. In a setting with dynamically mapped pages, e.g. by

13

non_overlapping [] = True
non_overlapping (x · xs) = (x \

S
set xs = ; ^ non_overlapping xs)

To avoid flushing the TLB, we maintain for most of the execution the ad-
ditional invariant that the TLB is fully consistent for all ASIDs that we might
switch to, and that for each ASID the TLB snapshot agrees with the page table
that we would switch to for that ASID. This means, if there were page table
modifications for a user we are about to switch to, we assume that the cor-
responding flush has already happened. Since the property is not valid for all
ASIDs between page table modifications and flush, we provide a set of ASIDs
as argument to exclude. If this set is empty, we will omit the argument in the
notation.

asids_consistent S s ⌘
8 r a. root_map s r = bac ^ a /2 S [{asid s} �!

(8 v. pt_snpshot s a v = Miss _
pt_snpshot s a v = Hit (pt_walk a (heap s) r v))

This concludes the formalisation of the necessary kernel invariants.

6.1 User Execution

The simplest of the reduction theorems is user-level execution: when the kernel
has switched to user mode, the iset should be empty for the current ASID, and
since the user cannot perform any actions that adds addresses to this set, it
will remain empty. Most actions that have any e↵ect on the iset are explicitly
privileged, i.e. unavailable in user mode. Only assignments could possibly have
an adverse e↵ect.

The following theorem shows that they do not, and that any arbitrary assign-
ment in user mode will preserve not only this property of the iset, but, almost
trivially, also all kernel invariants. In that sense it is a simple demonstration of
the separation that virtual memory achieves between kernel and user processes.

Theorem 3 When the kernel invariants hold, we are in user mode, and the
iset is empty, then these three conditions are preserved, and the heap is updated
as expected. We assume that the address the left-hand side resolves to is mapped.

{|�s. mmu_layout s ^ mode s = User ^
IC s = ; ^ [[lval]] s = bvpc ^ [[rval]] s = bvc ^ Addr vp ,!s p|}

lval ::= rval
{|�s. mmu_layout s ^ mode s = User ^ IC s = ; ^ heap s p = bvc|}

Proof. See lemma user_safe_assignment in [18].

The essence of the rule above is the same as Kolanski’s assignment rule [11]
without TLB. The invariant part of the rule could be moved to the definition of
validity and be hidden from the user completely. Like Kolanski, we still had to
assume that the address vp is mapped, because we do not distinguish between
recoverable page faults and program failure. In the settings we are interested in,
we aim to avoid page faults. In a setting with dynamically mapped pages, e.g. by

13

non_overlapping [] = True
non_overlapping (x · xs) = (x \

S
set xs = ; ^ non_overlapping xs)

To avoid flushing the TLB, we maintain for most of the execution the ad-
ditional invariant that the TLB is fully consistent for all ASIDs that we might
switch to, and that for each ASID the TLB snapshot agrees with the page table
that we would switch to for that ASID. This means, if there were page table
modifications for a user we are about to switch to, we assume that the cor-
responding flush has already happened. Since the property is not valid for all
ASIDs between page table modifications and flush, we provide a set of ASIDs
as argument to exclude. If this set is empty, we will omit the argument in the
notation.

asids_consistent S s ⌘
8 r a. root_map s r = bac ^ a /2 S [{asid s} �!

(8 v. pt_snpshot s a v = Miss _
pt_snpshot s a v = Hit (pt_walk a (heap s) r v))

This concludes the formalisation of the necessary kernel invariants.

6.1 User Execution

The simplest of the reduction theorems is user-level execution: when the kernel
has switched to user mode, the iset should be empty for the current ASID, and
since the user cannot perform any actions that adds addresses to this set, it
will remain empty. Most actions that have any e↵ect on the iset are explicitly
privileged, i.e. unavailable in user mode. Only assignments could possibly have
an adverse e↵ect.

The following theorem shows that they do not, and that any arbitrary assign-
ment in user mode will preserve not only this property of the iset, but, almost
trivially, also all kernel invariants. In that sense it is a simple demonstration of
the separation that virtual memory achieves between kernel and user processes.

Theorem 3 When the kernel invariants hold, we are in user mode, and the
iset is empty, then these three conditions are preserved, and the heap is updated
as expected. We assume that the address the left-hand side resolves to is mapped.

{|�s. mmu_layout s ^ mode s = User ^
IC s = ; ^ [[lval]] s = bvpc ^ [[rval]] s = bvc ^ Addr vp ,!s p|}

lval ::= rval
{|�s. mmu_layout s ^ mode s = User ^ IC s = ; ^ heap s p = bvc|}

Proof. See lemma user_safe_assignment in [18].

The essence of the rule above is the same as Kolanski’s assignment rule [11]
without TLB. The invariant part of the rule could be moved to the definition of
validity and be hidden from the user completely. Like Kolanski, we still had to
assume that the address vp is mapped, because we do not distinguish between
recoverable page faults and program failure. In the settings we are interested in,
we aim to avoid page faults. In a setting with dynamically mapped pages, e.g. by

13

non_overlapping [] = True
non_overlapping (x · xs) = (x \

S
set xs = ; ^ non_overlapping xs)

To avoid flushing the TLB, we maintain for most of the execution the ad-
ditional invariant that the TLB is fully consistent for all ASIDs that we might
switch to, and that for each ASID the TLB snapshot agrees with the page table
that we would switch to for that ASID. This means, if there were page table
modifications for a user we are about to switch to, we assume that the cor-
responding flush has already happened. Since the property is not valid for all
ASIDs between page table modifications and flush, we provide a set of ASIDs
as argument to exclude. If this set is empty, we will omit the argument in the
notation.

asids_consistent S s ⌘
8 r a. root_map s r = bac ^ a /2 S [{asid s} �!

(8 v. pt_snpshot s a v = Miss _
pt_snpshot s a v = Hit (pt_walk a (heap s) r v))

This concludes the formalisation of the necessary kernel invariants.

6.1 User Execution

The simplest of the reduction theorems is user-level execution: when the kernel
has switched to user mode, the iset should be empty for the current ASID, and
since the user cannot perform any actions that adds addresses to this set, it
will remain empty. Most actions that have any e↵ect on the iset are explicitly
privileged, i.e. unavailable in user mode. Only assignments could possibly have
an adverse e↵ect.

The following theorem shows that they do not, and that any arbitrary assign-
ment in user mode will preserve not only this property of the iset, but, almost
trivially, also all kernel invariants. In that sense it is a simple demonstration of
the separation that virtual memory achieves between kernel and user processes.

Theorem 3 When the kernel invariants hold, we are in user mode, and the
iset is empty, then these three conditions are preserved, and the heap is updated
as expected. We assume that the address the left-hand side resolves to is mapped.

{|�s. mmu_layout s ^ mode s = User ^
IC s = ; ^ [[lval]] s = bvpc ^ [[rval]] s = bvc ^ Addr vp ,!s p|}

lval ::= rval
{|�s. mmu_layout s ^ mode s = User ^ IC s = ; ^ heap s p = bvc|}

Proof. See lemma user_safe_assignment in [18].

The essence of the rule above is the same as Kolanski’s assignment rule [11]
without TLB. The invariant part of the rule could be moved to the definition of
validity and be hidden from the user completely. Like Kolanski, we still had to
assume that the address vp is mapped, because we do not distinguish between
recoverable page faults and program failure. In the settings we are interested in,
we aim to avoid page faults. In a setting with dynamically mapped pages, e.g. by

13

 Program Verification in the Presence of TLB-Address Translation Hira Syeda

- User-level assignment
- user cannot update page table,

hence cannot affect TLB consistency

23

Reduction Theorems

non_overlapping [] = True
non_overlapping (x · xs) = (x \

S
set xs = ; ^ non_overlapping xs)

To avoid flushing the TLB, we maintain for most of the execution the ad-
ditional invariant that the TLB is fully consistent for all ASIDs that we might
switch to, and that for each ASID the TLB snapshot agrees with the page table
that we would switch to for that ASID. This means, if there were page table
modifications for a user we are about to switch to, we assume that the cor-
responding flush has already happened. Since the property is not valid for all
ASIDs between page table modifications and flush, we provide a set of ASIDs
as argument to exclude. If this set is empty, we will omit the argument in the
notation.

asids_consistent S s ⌘
8 r a. root_map s r = bac ^ a /2 S [{asid s} �!

(8 v. pt_snpshot s a v = Miss _
pt_snpshot s a v = Hit (pt_walk a (heap s) r v))

This concludes the formalisation of the necessary kernel invariants.

6.1 User Execution

The simplest of the reduction theorems is user-level execution: when the kernel
has switched to user mode, the iset should be empty for the current ASID, and
since the user cannot perform any actions that adds addresses to this set, it
will remain empty. Most actions that have any e↵ect on the iset are explicitly
privileged, i.e. unavailable in user mode. Only assignments could possibly have
an adverse e↵ect.

The following theorem shows that they do not, and that any arbitrary assign-
ment in user mode will preserve not only this property of the iset, but, almost
trivially, also all kernel invariants. In that sense it is a simple demonstration of
the separation that virtual memory achieves between kernel and user processes.

Theorem 3 When the kernel invariants hold, we are in user mode, and the
iset is empty, then these three conditions are preserved, and the heap is updated
as expected. We assume that the address the left-hand side resolves to is mapped.

{|�s. mmu_layout s ^ mode s = User ^
IC s = ; ^ [[lval]] s = bvpc ^ [[rval]] s = bvc ^ Addr vp ,!s p|}

lval ::= rval
{|�s. mmu_layout s ^ mode s = User ^ IC s = ; ^ heap s p = bvc|}

Proof. See lemma user_safe_assignment in [18].

The essence of the rule above is the same as Kolanski’s assignment rule [11]
without TLB. The invariant part of the rule could be moved to the definition of
validity and be hidden from the user completely. Like Kolanski, we still had to
assume that the address vp is mapped, because we do not distinguish between
recoverable page faults and program failure. In the settings we are interested in,
we aim to avoid page faults. In a setting with dynamically mapped pages, e.g. by

13

non_overlapping [] = True
non_overlapping (x · xs) = (x \

S
set xs = ; ^ non_overlapping xs)

To avoid flushing the TLB, we maintain for most of the execution the ad-
ditional invariant that the TLB is fully consistent for all ASIDs that we might
switch to, and that for each ASID the TLB snapshot agrees with the page table
that we would switch to for that ASID. This means, if there were page table
modifications for a user we are about to switch to, we assume that the cor-
responding flush has already happened. Since the property is not valid for all
ASIDs between page table modifications and flush, we provide a set of ASIDs
as argument to exclude. If this set is empty, we will omit the argument in the
notation.

asids_consistent S s ⌘
8 r a. root_map s r = bac ^ a /2 S [{asid s} �!

(8 v. pt_snpshot s a v = Miss _
pt_snpshot s a v = Hit (pt_walk a (heap s) r v))

This concludes the formalisation of the necessary kernel invariants.

6.1 User Execution

The simplest of the reduction theorems is user-level execution: when the kernel
has switched to user mode, the iset should be empty for the current ASID, and
since the user cannot perform any actions that adds addresses to this set, it
will remain empty. Most actions that have any e↵ect on the iset are explicitly
privileged, i.e. unavailable in user mode. Only assignments could possibly have
an adverse e↵ect.

The following theorem shows that they do not, and that any arbitrary assign-
ment in user mode will preserve not only this property of the iset, but, almost
trivially, also all kernel invariants. In that sense it is a simple demonstration of
the separation that virtual memory achieves between kernel and user processes.

Theorem 3 When the kernel invariants hold, we are in user mode, and the
iset is empty, then these three conditions are preserved, and the heap is updated
as expected. We assume that the address the left-hand side resolves to is mapped.

{|�s. mmu_layout s ^ mode s = User ^
IC s = ; ^ [[lval]] s = bvpc ^ [[rval]] s = bvc ^ Addr vp ,!s p|}

lval ::= rval
{|�s. mmu_layout s ^ mode s = User ^ IC s = ; ^ heap s p = bvc|}

Proof. See lemma user_safe_assignment in [18].

The essence of the rule above is the same as Kolanski’s assignment rule [11]
without TLB. The invariant part of the rule could be moved to the definition of
validity and be hidden from the user completely. Like Kolanski, we still had to
assume that the address vp is mapped, because we do not distinguish between
recoverable page faults and program failure. In the settings we are interested in,
we aim to avoid page faults. In a setting with dynamically mapped pages, e.g. by

13

non_overlapping [] = True
non_overlapping (x · xs) = (x \

S
set xs = ; ^ non_overlapping xs)

To avoid flushing the TLB, we maintain for most of the execution the ad-
ditional invariant that the TLB is fully consistent for all ASIDs that we might
switch to, and that for each ASID the TLB snapshot agrees with the page table
that we would switch to for that ASID. This means, if there were page table
modifications for a user we are about to switch to, we assume that the cor-
responding flush has already happened. Since the property is not valid for all
ASIDs between page table modifications and flush, we provide a set of ASIDs
as argument to exclude. If this set is empty, we will omit the argument in the
notation.

asids_consistent S s ⌘
8 r a. root_map s r = bac ^ a /2 S [{asid s} �!

(8 v. pt_snpshot s a v = Miss _
pt_snpshot s a v = Hit (pt_walk a (heap s) r v))

This concludes the formalisation of the necessary kernel invariants.

6.1 User Execution

The simplest of the reduction theorems is user-level execution: when the kernel
has switched to user mode, the iset should be empty for the current ASID, and
since the user cannot perform any actions that adds addresses to this set, it
will remain empty. Most actions that have any e↵ect on the iset are explicitly
privileged, i.e. unavailable in user mode. Only assignments could possibly have
an adverse e↵ect.

The following theorem shows that they do not, and that any arbitrary assign-
ment in user mode will preserve not only this property of the iset, but, almost
trivially, also all kernel invariants. In that sense it is a simple demonstration of
the separation that virtual memory achieves between kernel and user processes.

Theorem 3 When the kernel invariants hold, we are in user mode, and the
iset is empty, then these three conditions are preserved, and the heap is updated
as expected. We assume that the address the left-hand side resolves to is mapped.

{|�s. mmu_layout s ^ mode s = User ^
IC s = ; ^ [[lval]] s = bvpc ^ [[rval]] s = bvc ^ Addr vp ,!s p|}

lval ::= rval
{|�s. mmu_layout s ^ mode s = User ^ IC s = ; ^ heap s p = bvc|}

Proof. See lemma user_safe_assignment in [18].

The essence of the rule above is the same as Kolanski’s assignment rule [11]
without TLB. The invariant part of the rule could be moved to the definition of
validity and be hidden from the user completely. Like Kolanski, we still had to
assume that the address vp is mapped, because we do not distinguish between
recoverable page faults and program failure. In the settings we are interested in,
we aim to avoid page faults. In a setting with dynamically mapped pages, e.g. by

13

non_overlapping [] = True
non_overlapping (x · xs) = (x \

S
set xs = ; ^ non_overlapping xs)

To avoid flushing the TLB, we maintain for most of the execution the ad-
ditional invariant that the TLB is fully consistent for all ASIDs that we might
switch to, and that for each ASID the TLB snapshot agrees with the page table
that we would switch to for that ASID. This means, if there were page table
modifications for a user we are about to switch to, we assume that the cor-
responding flush has already happened. Since the property is not valid for all
ASIDs between page table modifications and flush, we provide a set of ASIDs
as argument to exclude. If this set is empty, we will omit the argument in the
notation.

asids_consistent S s ⌘
8 r a. root_map s r = bac ^ a /2 S [{asid s} �!

(8 v. pt_snpshot s a v = Miss _
pt_snpshot s a v = Hit (pt_walk a (heap s) r v))

This concludes the formalisation of the necessary kernel invariants.

6.1 User Execution

The simplest of the reduction theorems is user-level execution: when the kernel
has switched to user mode, the iset should be empty for the current ASID, and
since the user cannot perform any actions that adds addresses to this set, it
will remain empty. Most actions that have any e↵ect on the iset are explicitly
privileged, i.e. unavailable in user mode. Only assignments could possibly have
an adverse e↵ect.

The following theorem shows that they do not, and that any arbitrary assign-
ment in user mode will preserve not only this property of the iset, but, almost
trivially, also all kernel invariants. In that sense it is a simple demonstration of
the separation that virtual memory achieves between kernel and user processes.

Theorem 3 When the kernel invariants hold, we are in user mode, and the
iset is empty, then these three conditions are preserved, and the heap is updated
as expected. We assume that the address the left-hand side resolves to is mapped.

{|�s. mmu_layout s ^ mode s = User ^
IC s = ; ^ [[lval]] s = bvpc ^ [[rval]] s = bvc ^ Addr vp ,!s p|}

lval ::= rval
{|�s. mmu_layout s ^ mode s = User ^ IC s = ; ^ heap s p = bvc|}

Proof. See lemma user_safe_assignment in [18].

The essence of the rule above is the same as Kolanski’s assignment rule [11]
without TLB. The invariant part of the rule could be moved to the definition of
validity and be hidden from the user completely. Like Kolanski, we still had to
assume that the address vp is mapped, because we do not distinguish between
recoverable page faults and program failure. In the settings we are interested in,
we aim to avoid page faults. In a setting with dynamically mapped pages, e.g. by

13

non_overlapping [] = True
non_overlapping (x · xs) = (x \

S
set xs = ; ^ non_overlapping xs)

To avoid flushing the TLB, we maintain for most of the execution the ad-
ditional invariant that the TLB is fully consistent for all ASIDs that we might
switch to, and that for each ASID the TLB snapshot agrees with the page table
that we would switch to for that ASID. This means, if there were page table
modifications for a user we are about to switch to, we assume that the cor-
responding flush has already happened. Since the property is not valid for all
ASIDs between page table modifications and flush, we provide a set of ASIDs
as argument to exclude. If this set is empty, we will omit the argument in the
notation.

asids_consistent S s ⌘
8 r a. root_map s r = bac ^ a /2 S [{asid s} �!

(8 v. pt_snpshot s a v = Miss _
pt_snpshot s a v = Hit (pt_walk a (heap s) r v))

This concludes the formalisation of the necessary kernel invariants.

6.1 User Execution

The simplest of the reduction theorems is user-level execution: when the kernel
has switched to user mode, the iset should be empty for the current ASID, and
since the user cannot perform any actions that adds addresses to this set, it
will remain empty. Most actions that have any e↵ect on the iset are explicitly
privileged, i.e. unavailable in user mode. Only assignments could possibly have
an adverse e↵ect.

The following theorem shows that they do not, and that any arbitrary assign-
ment in user mode will preserve not only this property of the iset, but, almost
trivially, also all kernel invariants. In that sense it is a simple demonstration of
the separation that virtual memory achieves between kernel and user processes.

Theorem 3 When the kernel invariants hold, we are in user mode, and the
iset is empty, then these three conditions are preserved, and the heap is updated
as expected. We assume that the address the left-hand side resolves to is mapped.

{|�s. mmu_layout s ^ mode s = User ^
IC s = ; ^ [[lval]] s = bvpc ^ [[rval]] s = bvc ^ Addr vp ,!s p|}

lval ::= rval
{|�s. mmu_layout s ^ mode s = User ^ IC s = ; ^ heap s p = bvc|}

Proof. See lemma user_safe_assignment in [18].

The essence of the rule above is the same as Kolanski’s assignment rule [11]
without TLB. The invariant part of the rule could be moved to the definition of
validity and be hidden from the user completely. Like Kolanski, we still had to
assume that the address vp is mapped, because we do not distinguish between
recoverable page faults and program failure. In the settings we are interested in,
we aim to avoid page faults. In a setting with dynamically mapped pages, e.g. by

13

 Program Verification in the Presence of TLB-Address Translation Hira Syeda

- User-level assignment
- user cannot update page table,

hence cannot affect TLB consistency

23

Reduction Theorems

non_overlapping [] = True
non_overlapping (x · xs) = (x \

S
set xs = ; ^ non_overlapping xs)

To avoid flushing the TLB, we maintain for most of the execution the ad-
ditional invariant that the TLB is fully consistent for all ASIDs that we might
switch to, and that for each ASID the TLB snapshot agrees with the page table
that we would switch to for that ASID. This means, if there were page table
modifications for a user we are about to switch to, we assume that the cor-
responding flush has already happened. Since the property is not valid for all
ASIDs between page table modifications and flush, we provide a set of ASIDs
as argument to exclude. If this set is empty, we will omit the argument in the
notation.

asids_consistent S s ⌘
8 r a. root_map s r = bac ^ a /2 S [{asid s} �!

(8 v. pt_snpshot s a v = Miss _
pt_snpshot s a v = Hit (pt_walk a (heap s) r v))

This concludes the formalisation of the necessary kernel invariants.

6.1 User Execution

The simplest of the reduction theorems is user-level execution: when the kernel
has switched to user mode, the iset should be empty for the current ASID, and
since the user cannot perform any actions that adds addresses to this set, it
will remain empty. Most actions that have any e↵ect on the iset are explicitly
privileged, i.e. unavailable in user mode. Only assignments could possibly have
an adverse e↵ect.

The following theorem shows that they do not, and that any arbitrary assign-
ment in user mode will preserve not only this property of the iset, but, almost
trivially, also all kernel invariants. In that sense it is a simple demonstration of
the separation that virtual memory achieves between kernel and user processes.

Theorem 3 When the kernel invariants hold, we are in user mode, and the
iset is empty, then these three conditions are preserved, and the heap is updated
as expected. We assume that the address the left-hand side resolves to is mapped.

{|�s. mmu_layout s ^ mode s = User ^
IC s = ; ^ [[lval]] s = bvpc ^ [[rval]] s = bvc ^ Addr vp ,!s p|}

lval ::= rval
{|�s. mmu_layout s ^ mode s = User ^ IC s = ; ^ heap s p = bvc|}

Proof. See lemma user_safe_assignment in [18].

The essence of the rule above is the same as Kolanski’s assignment rule [11]
without TLB. The invariant part of the rule could be moved to the definition of
validity and be hidden from the user completely. Like Kolanski, we still had to
assume that the address vp is mapped, because we do not distinguish between
recoverable page faults and program failure. In the settings we are interested in,
we aim to avoid page faults. In a setting with dynamically mapped pages, e.g. by

13

non_overlapping [] = True
non_overlapping (x · xs) = (x \

S
set xs = ; ^ non_overlapping xs)

To avoid flushing the TLB, we maintain for most of the execution the ad-
ditional invariant that the TLB is fully consistent for all ASIDs that we might
switch to, and that for each ASID the TLB snapshot agrees with the page table
that we would switch to for that ASID. This means, if there were page table
modifications for a user we are about to switch to, we assume that the cor-
responding flush has already happened. Since the property is not valid for all
ASIDs between page table modifications and flush, we provide a set of ASIDs
as argument to exclude. If this set is empty, we will omit the argument in the
notation.

asids_consistent S s ⌘
8 r a. root_map s r = bac ^ a /2 S [{asid s} �!

(8 v. pt_snpshot s a v = Miss _
pt_snpshot s a v = Hit (pt_walk a (heap s) r v))

This concludes the formalisation of the necessary kernel invariants.

6.1 User Execution

The simplest of the reduction theorems is user-level execution: when the kernel
has switched to user mode, the iset should be empty for the current ASID, and
since the user cannot perform any actions that adds addresses to this set, it
will remain empty. Most actions that have any e↵ect on the iset are explicitly
privileged, i.e. unavailable in user mode. Only assignments could possibly have
an adverse e↵ect.

The following theorem shows that they do not, and that any arbitrary assign-
ment in user mode will preserve not only this property of the iset, but, almost
trivially, also all kernel invariants. In that sense it is a simple demonstration of
the separation that virtual memory achieves between kernel and user processes.

Theorem 3 When the kernel invariants hold, we are in user mode, and the
iset is empty, then these three conditions are preserved, and the heap is updated
as expected. We assume that the address the left-hand side resolves to is mapped.

{|�s. mmu_layout s ^ mode s = User ^
IC s = ; ^ [[lval]] s = bvpc ^ [[rval]] s = bvc ^ Addr vp ,!s p|}

lval ::= rval
{|�s. mmu_layout s ^ mode s = User ^ IC s = ; ^ heap s p = bvc|}

Proof. See lemma user_safe_assignment in [18].

The essence of the rule above is the same as Kolanski’s assignment rule [11]
without TLB. The invariant part of the rule could be moved to the definition of
validity and be hidden from the user completely. Like Kolanski, we still had to
assume that the address vp is mapped, because we do not distinguish between
recoverable page faults and program failure. In the settings we are interested in,
we aim to avoid page faults. In a setting with dynamically mapped pages, e.g. by

13

non_overlapping [] = True
non_overlapping (x · xs) = (x \

S
set xs = ; ^ non_overlapping xs)

To avoid flushing the TLB, we maintain for most of the execution the ad-
ditional invariant that the TLB is fully consistent for all ASIDs that we might
switch to, and that for each ASID the TLB snapshot agrees with the page table
that we would switch to for that ASID. This means, if there were page table
modifications for a user we are about to switch to, we assume that the cor-
responding flush has already happened. Since the property is not valid for all
ASIDs between page table modifications and flush, we provide a set of ASIDs
as argument to exclude. If this set is empty, we will omit the argument in the
notation.

asids_consistent S s ⌘
8 r a. root_map s r = bac ^ a /2 S [{asid s} �!

(8 v. pt_snpshot s a v = Miss _
pt_snpshot s a v = Hit (pt_walk a (heap s) r v))

This concludes the formalisation of the necessary kernel invariants.

6.1 User Execution

The simplest of the reduction theorems is user-level execution: when the kernel
has switched to user mode, the iset should be empty for the current ASID, and
since the user cannot perform any actions that adds addresses to this set, it
will remain empty. Most actions that have any e↵ect on the iset are explicitly
privileged, i.e. unavailable in user mode. Only assignments could possibly have
an adverse e↵ect.

The following theorem shows that they do not, and that any arbitrary assign-
ment in user mode will preserve not only this property of the iset, but, almost
trivially, also all kernel invariants. In that sense it is a simple demonstration of
the separation that virtual memory achieves between kernel and user processes.

Theorem 3 When the kernel invariants hold, we are in user mode, and the
iset is empty, then these three conditions are preserved, and the heap is updated
as expected. We assume that the address the left-hand side resolves to is mapped.

{|�s. mmu_layout s ^ mode s = User ^
IC s = ; ^ [[lval]] s = bvpc ^ [[rval]] s = bvc ^ Addr vp ,!s p|}

lval ::= rval
{|�s. mmu_layout s ^ mode s = User ^ IC s = ; ^ heap s p = bvc|}

Proof. See lemma user_safe_assignment in [18].

The essence of the rule above is the same as Kolanski’s assignment rule [11]
without TLB. The invariant part of the rule could be moved to the definition of
validity and be hidden from the user completely. Like Kolanski, we still had to
assume that the address vp is mapped, because we do not distinguish between
recoverable page faults and program failure. In the settings we are interested in,
we aim to avoid page faults. In a setting with dynamically mapped pages, e.g. by

13

non_overlapping [] = True
non_overlapping (x · xs) = (x \

S
set xs = ; ^ non_overlapping xs)

To avoid flushing the TLB, we maintain for most of the execution the ad-
ditional invariant that the TLB is fully consistent for all ASIDs that we might
switch to, and that for each ASID the TLB snapshot agrees with the page table
that we would switch to for that ASID. This means, if there were page table
modifications for a user we are about to switch to, we assume that the cor-
responding flush has already happened. Since the property is not valid for all
ASIDs between page table modifications and flush, we provide a set of ASIDs
as argument to exclude. If this set is empty, we will omit the argument in the
notation.

asids_consistent S s ⌘
8 r a. root_map s r = bac ^ a /2 S [{asid s} �!

(8 v. pt_snpshot s a v = Miss _
pt_snpshot s a v = Hit (pt_walk a (heap s) r v))

This concludes the formalisation of the necessary kernel invariants.

6.1 User Execution

The simplest of the reduction theorems is user-level execution: when the kernel
has switched to user mode, the iset should be empty for the current ASID, and
since the user cannot perform any actions that adds addresses to this set, it
will remain empty. Most actions that have any e↵ect on the iset are explicitly
privileged, i.e. unavailable in user mode. Only assignments could possibly have
an adverse e↵ect.

The following theorem shows that they do not, and that any arbitrary assign-
ment in user mode will preserve not only this property of the iset, but, almost
trivially, also all kernel invariants. In that sense it is a simple demonstration of
the separation that virtual memory achieves between kernel and user processes.

Theorem 3 When the kernel invariants hold, we are in user mode, and the
iset is empty, then these three conditions are preserved, and the heap is updated
as expected. We assume that the address the left-hand side resolves to is mapped.

{|�s. mmu_layout s ^ mode s = User ^
IC s = ; ^ [[lval]] s = bvpc ^ [[rval]] s = bvc ^ Addr vp ,!s p|}

lval ::= rval
{|�s. mmu_layout s ^ mode s = User ^ IC s = ; ^ heap s p = bvc|}

Proof. See lemma user_safe_assignment in [18].

The essence of the rule above is the same as Kolanski’s assignment rule [11]
without TLB. The invariant part of the rule could be moved to the definition of
validity and be hidden from the user completely. Like Kolanski, we still had to
assume that the address vp is mapped, because we do not distinguish between
recoverable page faults and program failure. In the settings we are interested in,
we aim to avoid page faults. In a setting with dynamically mapped pages, e.g. by

13

non_overlapping [] = True
non_overlapping (x · xs) = (x \

S
set xs = ; ^ non_overlapping xs)

To avoid flushing the TLB, we maintain for most of the execution the ad-
ditional invariant that the TLB is fully consistent for all ASIDs that we might
switch to, and that for each ASID the TLB snapshot agrees with the page table
that we would switch to for that ASID. This means, if there were page table
modifications for a user we are about to switch to, we assume that the cor-
responding flush has already happened. Since the property is not valid for all
ASIDs between page table modifications and flush, we provide a set of ASIDs
as argument to exclude. If this set is empty, we will omit the argument in the
notation.

asids_consistent S s ⌘
8 r a. root_map s r = bac ^ a /2 S [{asid s} �!

(8 v. pt_snpshot s a v = Miss _
pt_snpshot s a v = Hit (pt_walk a (heap s) r v))

This concludes the formalisation of the necessary kernel invariants.

6.1 User Execution

The simplest of the reduction theorems is user-level execution: when the kernel
has switched to user mode, the iset should be empty for the current ASID, and
since the user cannot perform any actions that adds addresses to this set, it
will remain empty. Most actions that have any e↵ect on the iset are explicitly
privileged, i.e. unavailable in user mode. Only assignments could possibly have
an adverse e↵ect.

The following theorem shows that they do not, and that any arbitrary assign-
ment in user mode will preserve not only this property of the iset, but, almost
trivially, also all kernel invariants. In that sense it is a simple demonstration of
the separation that virtual memory achieves between kernel and user processes.

Theorem 3 When the kernel invariants hold, we are in user mode, and the
iset is empty, then these three conditions are preserved, and the heap is updated
as expected. We assume that the address the left-hand side resolves to is mapped.

{|�s. mmu_layout s ^ mode s = User ^
IC s = ; ^ [[lval]] s = bvpc ^ [[rval]] s = bvc ^ Addr vp ,!s p|}

lval ::= rval
{|�s. mmu_layout s ^ mode s = User ^ IC s = ; ^ heap s p = bvc|}

Proof. See lemma user_safe_assignment in [18].

The essence of the rule above is the same as Kolanski’s assignment rule [11]
without TLB. The invariant part of the rule could be moved to the definition of
validity and be hidden from the user completely. Like Kolanski, we still had to
assume that the address vp is mapped, because we do not distinguish between
recoverable page faults and program failure. In the settings we are interested in,
we aim to avoid page faults. In a setting with dynamically mapped pages, e.g. by

13

 Program Verification in the Presence of TLB-Address Translation Hira Syeda

- User-level assignment
- user cannot update page table,

hence cannot affect TLB consistency

23

Reduction Theorems

non_overlapping [] = True
non_overlapping (x · xs) = (x \

S
set xs = ; ^ non_overlapping xs)

To avoid flushing the TLB, we maintain for most of the execution the ad-
ditional invariant that the TLB is fully consistent for all ASIDs that we might
switch to, and that for each ASID the TLB snapshot agrees with the page table
that we would switch to for that ASID. This means, if there were page table
modifications for a user we are about to switch to, we assume that the cor-
responding flush has already happened. Since the property is not valid for all
ASIDs between page table modifications and flush, we provide a set of ASIDs
as argument to exclude. If this set is empty, we will omit the argument in the
notation.

asids_consistent S s ⌘
8 r a. root_map s r = bac ^ a /2 S [{asid s} �!

(8 v. pt_snpshot s a v = Miss _
pt_snpshot s a v = Hit (pt_walk a (heap s) r v))

This concludes the formalisation of the necessary kernel invariants.

6.1 User Execution

The simplest of the reduction theorems is user-level execution: when the kernel
has switched to user mode, the iset should be empty for the current ASID, and
since the user cannot perform any actions that adds addresses to this set, it
will remain empty. Most actions that have any e↵ect on the iset are explicitly
privileged, i.e. unavailable in user mode. Only assignments could possibly have
an adverse e↵ect.

The following theorem shows that they do not, and that any arbitrary assign-
ment in user mode will preserve not only this property of the iset, but, almost
trivially, also all kernel invariants. In that sense it is a simple demonstration of
the separation that virtual memory achieves between kernel and user processes.

Theorem 3 When the kernel invariants hold, we are in user mode, and the
iset is empty, then these three conditions are preserved, and the heap is updated
as expected. We assume that the address the left-hand side resolves to is mapped.

{|�s. mmu_layout s ^ mode s = User ^
IC s = ; ^ [[lval]] s = bvpc ^ [[rval]] s = bvc ^ Addr vp ,!s p|}

lval ::= rval
{|�s. mmu_layout s ^ mode s = User ^ IC s = ; ^ heap s p = bvc|}

Proof. See lemma user_safe_assignment in [18].

The essence of the rule above is the same as Kolanski’s assignment rule [11]
without TLB. The invariant part of the rule could be moved to the definition of
validity and be hidden from the user completely. Like Kolanski, we still had to
assume that the address vp is mapped, because we do not distinguish between
recoverable page faults and program failure. In the settings we are interested in,
we aim to avoid page faults. In a setting with dynamically mapped pages, e.g. by

13

non_overlapping [] = True
non_overlapping (x · xs) = (x \

S
set xs = ; ^ non_overlapping xs)

To avoid flushing the TLB, we maintain for most of the execution the ad-
ditional invariant that the TLB is fully consistent for all ASIDs that we might
switch to, and that for each ASID the TLB snapshot agrees with the page table
that we would switch to for that ASID. This means, if there were page table
modifications for a user we are about to switch to, we assume that the cor-
responding flush has already happened. Since the property is not valid for all
ASIDs between page table modifications and flush, we provide a set of ASIDs
as argument to exclude. If this set is empty, we will omit the argument in the
notation.

asids_consistent S s ⌘
8 r a. root_map s r = bac ^ a /2 S [{asid s} �!

(8 v. pt_snpshot s a v = Miss _
pt_snpshot s a v = Hit (pt_walk a (heap s) r v))

This concludes the formalisation of the necessary kernel invariants.

6.1 User Execution

The simplest of the reduction theorems is user-level execution: when the kernel
has switched to user mode, the iset should be empty for the current ASID, and
since the user cannot perform any actions that adds addresses to this set, it
will remain empty. Most actions that have any e↵ect on the iset are explicitly
privileged, i.e. unavailable in user mode. Only assignments could possibly have
an adverse e↵ect.

The following theorem shows that they do not, and that any arbitrary assign-
ment in user mode will preserve not only this property of the iset, but, almost
trivially, also all kernel invariants. In that sense it is a simple demonstration of
the separation that virtual memory achieves between kernel and user processes.

Theorem 3 When the kernel invariants hold, we are in user mode, and the
iset is empty, then these three conditions are preserved, and the heap is updated
as expected. We assume that the address the left-hand side resolves to is mapped.

{|�s. mmu_layout s ^ mode s = User ^
IC s = ; ^ [[lval]] s = bvpc ^ [[rval]] s = bvc ^ Addr vp ,!s p|}

lval ::= rval
{|�s. mmu_layout s ^ mode s = User ^ IC s = ; ^ heap s p = bvc|}

Proof. See lemma user_safe_assignment in [18].

The essence of the rule above is the same as Kolanski’s assignment rule [11]
without TLB. The invariant part of the rule could be moved to the definition of
validity and be hidden from the user completely. Like Kolanski, we still had to
assume that the address vp is mapped, because we do not distinguish between
recoverable page faults and program failure. In the settings we are interested in,
we aim to avoid page faults. In a setting with dynamically mapped pages, e.g. by

13

non_overlapping [] = True
non_overlapping (x · xs) = (x \

S
set xs = ; ^ non_overlapping xs)

To avoid flushing the TLB, we maintain for most of the execution the ad-
ditional invariant that the TLB is fully consistent for all ASIDs that we might
switch to, and that for each ASID the TLB snapshot agrees with the page table
that we would switch to for that ASID. This means, if there were page table
modifications for a user we are about to switch to, we assume that the cor-
responding flush has already happened. Since the property is not valid for all
ASIDs between page table modifications and flush, we provide a set of ASIDs
as argument to exclude. If this set is empty, we will omit the argument in the
notation.

asids_consistent S s ⌘
8 r a. root_map s r = bac ^ a /2 S [{asid s} �!

(8 v. pt_snpshot s a v = Miss _
pt_snpshot s a v = Hit (pt_walk a (heap s) r v))

This concludes the formalisation of the necessary kernel invariants.

6.1 User Execution

The simplest of the reduction theorems is user-level execution: when the kernel
has switched to user mode, the iset should be empty for the current ASID, and
since the user cannot perform any actions that adds addresses to this set, it
will remain empty. Most actions that have any e↵ect on the iset are explicitly
privileged, i.e. unavailable in user mode. Only assignments could possibly have
an adverse e↵ect.

The following theorem shows that they do not, and that any arbitrary assign-
ment in user mode will preserve not only this property of the iset, but, almost
trivially, also all kernel invariants. In that sense it is a simple demonstration of
the separation that virtual memory achieves between kernel and user processes.

Theorem 3 When the kernel invariants hold, we are in user mode, and the
iset is empty, then these three conditions are preserved, and the heap is updated
as expected. We assume that the address the left-hand side resolves to is mapped.

{|�s. mmu_layout s ^ mode s = User ^
IC s = ; ^ [[lval]] s = bvpc ^ [[rval]] s = bvc ^ Addr vp ,!s p|}

lval ::= rval
{|�s. mmu_layout s ^ mode s = User ^ IC s = ; ^ heap s p = bvc|}

Proof. See lemma user_safe_assignment in [18].

The essence of the rule above is the same as Kolanski’s assignment rule [11]
without TLB. The invariant part of the rule could be moved to the definition of
validity and be hidden from the user completely. Like Kolanski, we still had to
assume that the address vp is mapped, because we do not distinguish between
recoverable page faults and program failure. In the settings we are interested in,
we aim to avoid page faults. In a setting with dynamically mapped pages, e.g. by

13

non_overlapping [] = True
non_overlapping (x · xs) = (x \

S
set xs = ; ^ non_overlapping xs)

To avoid flushing the TLB, we maintain for most of the execution the ad-
ditional invariant that the TLB is fully consistent for all ASIDs that we might
switch to, and that for each ASID the TLB snapshot agrees with the page table
that we would switch to for that ASID. This means, if there were page table
modifications for a user we are about to switch to, we assume that the cor-
responding flush has already happened. Since the property is not valid for all
ASIDs between page table modifications and flush, we provide a set of ASIDs
as argument to exclude. If this set is empty, we will omit the argument in the
notation.

asids_consistent S s ⌘
8 r a. root_map s r = bac ^ a /2 S [{asid s} �!

(8 v. pt_snpshot s a v = Miss _
pt_snpshot s a v = Hit (pt_walk a (heap s) r v))

This concludes the formalisation of the necessary kernel invariants.

6.1 User Execution

The simplest of the reduction theorems is user-level execution: when the kernel
has switched to user mode, the iset should be empty for the current ASID, and
since the user cannot perform any actions that adds addresses to this set, it
will remain empty. Most actions that have any e↵ect on the iset are explicitly
privileged, i.e. unavailable in user mode. Only assignments could possibly have
an adverse e↵ect.

The following theorem shows that they do not, and that any arbitrary assign-
ment in user mode will preserve not only this property of the iset, but, almost
trivially, also all kernel invariants. In that sense it is a simple demonstration of
the separation that virtual memory achieves between kernel and user processes.

Theorem 3 When the kernel invariants hold, we are in user mode, and the
iset is empty, then these three conditions are preserved, and the heap is updated
as expected. We assume that the address the left-hand side resolves to is mapped.

{|�s. mmu_layout s ^ mode s = User ^
IC s = ; ^ [[lval]] s = bvpc ^ [[rval]] s = bvc ^ Addr vp ,!s p|}

lval ::= rval
{|�s. mmu_layout s ^ mode s = User ^ IC s = ; ^ heap s p = bvc|}

Proof. See lemma user_safe_assignment in [18].

The essence of the rule above is the same as Kolanski’s assignment rule [11]
without TLB. The invariant part of the rule could be moved to the definition of
validity and be hidden from the user completely. Like Kolanski, we still had to
assume that the address vp is mapped, because we do not distinguish between
recoverable page faults and program failure. In the settings we are interested in,
we aim to avoid page faults. In a setting with dynamically mapped pages, e.g. by

13

non_overlapping [] = True
non_overlapping (x · xs) = (x \

S
set xs = ; ^ non_overlapping xs)

To avoid flushing the TLB, we maintain for most of the execution the ad-
ditional invariant that the TLB is fully consistent for all ASIDs that we might
switch to, and that for each ASID the TLB snapshot agrees with the page table
that we would switch to for that ASID. This means, if there were page table
modifications for a user we are about to switch to, we assume that the cor-
responding flush has already happened. Since the property is not valid for all
ASIDs between page table modifications and flush, we provide a set of ASIDs
as argument to exclude. If this set is empty, we will omit the argument in the
notation.

asids_consistent S s ⌘
8 r a. root_map s r = bac ^ a /2 S [{asid s} �!

(8 v. pt_snpshot s a v = Miss _
pt_snpshot s a v = Hit (pt_walk a (heap s) r v))

This concludes the formalisation of the necessary kernel invariants.

6.1 User Execution

The simplest of the reduction theorems is user-level execution: when the kernel
has switched to user mode, the iset should be empty for the current ASID, and
since the user cannot perform any actions that adds addresses to this set, it
will remain empty. Most actions that have any e↵ect on the iset are explicitly
privileged, i.e. unavailable in user mode. Only assignments could possibly have
an adverse e↵ect.

The following theorem shows that they do not, and that any arbitrary assign-
ment in user mode will preserve not only this property of the iset, but, almost
trivially, also all kernel invariants. In that sense it is a simple demonstration of
the separation that virtual memory achieves between kernel and user processes.

Theorem 3 When the kernel invariants hold, we are in user mode, and the
iset is empty, then these three conditions are preserved, and the heap is updated
as expected. We assume that the address the left-hand side resolves to is mapped.

{|�s. mmu_layout s ^ mode s = User ^
IC s = ; ^ [[lval]] s = bvpc ^ [[rval]] s = bvc ^ Addr vp ,!s p|}

lval ::= rval
{|�s. mmu_layout s ^ mode s = User ^ IC s = ; ^ heap s p = bvc|}

Proof. See lemma user_safe_assignment in [18].

The essence of the rule above is the same as Kolanski’s assignment rule [11]
without TLB. The invariant part of the rule could be moved to the definition of
validity and be hidden from the user completely. Like Kolanski, we still had to
assume that the address vp is mapped, because we do not distinguish between
recoverable page faults and program failure. In the settings we are interested in,
we aim to avoid page faults. In a setting with dynamically mapped pages, e.g. by

13

 Program Verification in the Presence of TLB-Address Translation Hira Syeda

- User-level assignment
- user cannot update page table,

hence cannot affect TLB consistency

23

Reduction Theorems

non_overlapping [] = True
non_overlapping (x · xs) = (x \

S
set xs = ; ^ non_overlapping xs)

To avoid flushing the TLB, we maintain for most of the execution the ad-
ditional invariant that the TLB is fully consistent for all ASIDs that we might
switch to, and that for each ASID the TLB snapshot agrees with the page table
that we would switch to for that ASID. This means, if there were page table
modifications for a user we are about to switch to, we assume that the cor-
responding flush has already happened. Since the property is not valid for all
ASIDs between page table modifications and flush, we provide a set of ASIDs
as argument to exclude. If this set is empty, we will omit the argument in the
notation.

asids_consistent S s ⌘
8 r a. root_map s r = bac ^ a /2 S [{asid s} �!

(8 v. pt_snpshot s a v = Miss _
pt_snpshot s a v = Hit (pt_walk a (heap s) r v))

This concludes the formalisation of the necessary kernel invariants.

6.1 User Execution

The simplest of the reduction theorems is user-level execution: when the kernel
has switched to user mode, the iset should be empty for the current ASID, and
since the user cannot perform any actions that adds addresses to this set, it
will remain empty. Most actions that have any e↵ect on the iset are explicitly
privileged, i.e. unavailable in user mode. Only assignments could possibly have
an adverse e↵ect.

The following theorem shows that they do not, and that any arbitrary assign-
ment in user mode will preserve not only this property of the iset, but, almost
trivially, also all kernel invariants. In that sense it is a simple demonstration of
the separation that virtual memory achieves between kernel and user processes.

Theorem 3 When the kernel invariants hold, we are in user mode, and the
iset is empty, then these three conditions are preserved, and the heap is updated
as expected. We assume that the address the left-hand side resolves to is mapped.

{|�s. mmu_layout s ^ mode s = User ^
IC s = ; ^ [[lval]] s = bvpc ^ [[rval]] s = bvc ^ Addr vp ,!s p|}

lval ::= rval
{|�s. mmu_layout s ^ mode s = User ^ IC s = ; ^ heap s p = bvc|}

Proof. See lemma user_safe_assignment in [18].

The essence of the rule above is the same as Kolanski’s assignment rule [11]
without TLB. The invariant part of the rule could be moved to the definition of
validity and be hidden from the user completely. Like Kolanski, we still had to
assume that the address vp is mapped, because we do not distinguish between
recoverable page faults and program failure. In the settings we are interested in,
we aim to avoid page faults. In a setting with dynamically mapped pages, e.g. by

13

non_overlapping [] = True
non_overlapping (x · xs) = (x \

S
set xs = ; ^ non_overlapping xs)

To avoid flushing the TLB, we maintain for most of the execution the ad-
ditional invariant that the TLB is fully consistent for all ASIDs that we might
switch to, and that for each ASID the TLB snapshot agrees with the page table
that we would switch to for that ASID. This means, if there were page table
modifications for a user we are about to switch to, we assume that the cor-
responding flush has already happened. Since the property is not valid for all
ASIDs between page table modifications and flush, we provide a set of ASIDs
as argument to exclude. If this set is empty, we will omit the argument in the
notation.

asids_consistent S s ⌘
8 r a. root_map s r = bac ^ a /2 S [{asid s} �!

(8 v. pt_snpshot s a v = Miss _
pt_snpshot s a v = Hit (pt_walk a (heap s) r v))

This concludes the formalisation of the necessary kernel invariants.

6.1 User Execution

The simplest of the reduction theorems is user-level execution: when the kernel
has switched to user mode, the iset should be empty for the current ASID, and
since the user cannot perform any actions that adds addresses to this set, it
will remain empty. Most actions that have any e↵ect on the iset are explicitly
privileged, i.e. unavailable in user mode. Only assignments could possibly have
an adverse e↵ect.

The following theorem shows that they do not, and that any arbitrary assign-
ment in user mode will preserve not only this property of the iset, but, almost
trivially, also all kernel invariants. In that sense it is a simple demonstration of
the separation that virtual memory achieves between kernel and user processes.

Theorem 3 When the kernel invariants hold, we are in user mode, and the
iset is empty, then these three conditions are preserved, and the heap is updated
as expected. We assume that the address the left-hand side resolves to is mapped.

{|�s. mmu_layout s ^ mode s = User ^
IC s = ; ^ [[lval]] s = bvpc ^ [[rval]] s = bvc ^ Addr vp ,!s p|}

lval ::= rval
{|�s. mmu_layout s ^ mode s = User ^ IC s = ; ^ heap s p = bvc|}

Proof. See lemma user_safe_assignment in [18].

The essence of the rule above is the same as Kolanski’s assignment rule [11]
without TLB. The invariant part of the rule could be moved to the definition of
validity and be hidden from the user completely. Like Kolanski, we still had to
assume that the address vp is mapped, because we do not distinguish between
recoverable page faults and program failure. In the settings we are interested in,
we aim to avoid page faults. In a setting with dynamically mapped pages, e.g. by

13

non_overlapping [] = True
non_overlapping (x · xs) = (x \

S
set xs = ; ^ non_overlapping xs)

To avoid flushing the TLB, we maintain for most of the execution the ad-
ditional invariant that the TLB is fully consistent for all ASIDs that we might
switch to, and that for each ASID the TLB snapshot agrees with the page table
that we would switch to for that ASID. This means, if there were page table
modifications for a user we are about to switch to, we assume that the cor-
responding flush has already happened. Since the property is not valid for all
ASIDs between page table modifications and flush, we provide a set of ASIDs
as argument to exclude. If this set is empty, we will omit the argument in the
notation.

asids_consistent S s ⌘
8 r a. root_map s r = bac ^ a /2 S [{asid s} �!

(8 v. pt_snpshot s a v = Miss _
pt_snpshot s a v = Hit (pt_walk a (heap s) r v))

This concludes the formalisation of the necessary kernel invariants.

6.1 User Execution

The simplest of the reduction theorems is user-level execution: when the kernel
has switched to user mode, the iset should be empty for the current ASID, and
since the user cannot perform any actions that adds addresses to this set, it
will remain empty. Most actions that have any e↵ect on the iset are explicitly
privileged, i.e. unavailable in user mode. Only assignments could possibly have
an adverse e↵ect.

The following theorem shows that they do not, and that any arbitrary assign-
ment in user mode will preserve not only this property of the iset, but, almost
trivially, also all kernel invariants. In that sense it is a simple demonstration of
the separation that virtual memory achieves between kernel and user processes.

Theorem 3 When the kernel invariants hold, we are in user mode, and the
iset is empty, then these three conditions are preserved, and the heap is updated
as expected. We assume that the address the left-hand side resolves to is mapped.

{|�s. mmu_layout s ^ mode s = User ^
IC s = ; ^ [[lval]] s = bvpc ^ [[rval]] s = bvc ^ Addr vp ,!s p|}

lval ::= rval
{|�s. mmu_layout s ^ mode s = User ^ IC s = ; ^ heap s p = bvc|}

Proof. See lemma user_safe_assignment in [18].

The essence of the rule above is the same as Kolanski’s assignment rule [11]
without TLB. The invariant part of the rule could be moved to the definition of
validity and be hidden from the user completely. Like Kolanski, we still had to
assume that the address vp is mapped, because we do not distinguish between
recoverable page faults and program failure. In the settings we are interested in,
we aim to avoid page faults. In a setting with dynamically mapped pages, e.g. by

13

non_overlapping [] = True
non_overlapping (x · xs) = (x \

S
set xs = ; ^ non_overlapping xs)

To avoid flushing the TLB, we maintain for most of the execution the ad-
ditional invariant that the TLB is fully consistent for all ASIDs that we might
switch to, and that for each ASID the TLB snapshot agrees with the page table
that we would switch to for that ASID. This means, if there were page table
modifications for a user we are about to switch to, we assume that the cor-
responding flush has already happened. Since the property is not valid for all
ASIDs between page table modifications and flush, we provide a set of ASIDs
as argument to exclude. If this set is empty, we will omit the argument in the
notation.

asids_consistent S s ⌘
8 r a. root_map s r = bac ^ a /2 S [{asid s} �!

(8 v. pt_snpshot s a v = Miss _
pt_snpshot s a v = Hit (pt_walk a (heap s) r v))

This concludes the formalisation of the necessary kernel invariants.

6.1 User Execution

The simplest of the reduction theorems is user-level execution: when the kernel
has switched to user mode, the iset should be empty for the current ASID, and
since the user cannot perform any actions that adds addresses to this set, it
will remain empty. Most actions that have any e↵ect on the iset are explicitly
privileged, i.e. unavailable in user mode. Only assignments could possibly have
an adverse e↵ect.

The following theorem shows that they do not, and that any arbitrary assign-
ment in user mode will preserve not only this property of the iset, but, almost
trivially, also all kernel invariants. In that sense it is a simple demonstration of
the separation that virtual memory achieves between kernel and user processes.

Theorem 3 When the kernel invariants hold, we are in user mode, and the
iset is empty, then these three conditions are preserved, and the heap is updated
as expected. We assume that the address the left-hand side resolves to is mapped.

{|�s. mmu_layout s ^ mode s = User ^
IC s = ; ^ [[lval]] s = bvpc ^ [[rval]] s = bvc ^ Addr vp ,!s p|}

lval ::= rval
{|�s. mmu_layout s ^ mode s = User ^ IC s = ; ^ heap s p = bvc|}

Proof. See lemma user_safe_assignment in [18].

The essence of the rule above is the same as Kolanski’s assignment rule [11]
without TLB. The invariant part of the rule could be moved to the definition of
validity and be hidden from the user completely. Like Kolanski, we still had to
assume that the address vp is mapped, because we do not distinguish between
recoverable page faults and program failure. In the settings we are interested in,
we aim to avoid page faults. In a setting with dynamically mapped pages, e.g. by

13

non_overlapping [] = True
non_overlapping (x · xs) = (x \

S
set xs = ; ^ non_overlapping xs)

To avoid flushing the TLB, we maintain for most of the execution the ad-
ditional invariant that the TLB is fully consistent for all ASIDs that we might
switch to, and that for each ASID the TLB snapshot agrees with the page table
that we would switch to for that ASID. This means, if there were page table
modifications for a user we are about to switch to, we assume that the cor-
responding flush has already happened. Since the property is not valid for all
ASIDs between page table modifications and flush, we provide a set of ASIDs
as argument to exclude. If this set is empty, we will omit the argument in the
notation.

asids_consistent S s ⌘
8 r a. root_map s r = bac ^ a /2 S [{asid s} �!

(8 v. pt_snpshot s a v = Miss _
pt_snpshot s a v = Hit (pt_walk a (heap s) r v))

This concludes the formalisation of the necessary kernel invariants.

6.1 User Execution

The simplest of the reduction theorems is user-level execution: when the kernel
has switched to user mode, the iset should be empty for the current ASID, and
since the user cannot perform any actions that adds addresses to this set, it
will remain empty. Most actions that have any e↵ect on the iset are explicitly
privileged, i.e. unavailable in user mode. Only assignments could possibly have
an adverse e↵ect.

The following theorem shows that they do not, and that any arbitrary assign-
ment in user mode will preserve not only this property of the iset, but, almost
trivially, also all kernel invariants. In that sense it is a simple demonstration of
the separation that virtual memory achieves between kernel and user processes.

Theorem 3 When the kernel invariants hold, we are in user mode, and the
iset is empty, then these three conditions are preserved, and the heap is updated
as expected. We assume that the address the left-hand side resolves to is mapped.

{|�s. mmu_layout s ^ mode s = User ^
IC s = ; ^ [[lval]] s = bvpc ^ [[rval]] s = bvc ^ Addr vp ,!s p|}

lval ::= rval
{|�s. mmu_layout s ^ mode s = User ^ IC s = ; ^ heap s p = bvc|}

Proof. See lemma user_safe_assignment in [18].

The essence of the rule above is the same as Kolanski’s assignment rule [11]
without TLB. The invariant part of the rule could be moved to the definition of
validity and be hidden from the user completely. Like Kolanski, we still had to
assume that the address vp is mapped, because we do not distinguish between
recoverable page faults and program failure. In the settings we are interested in,
we aim to avoid page faults. In a setting with dynamically mapped pages, e.g. by

13

user-level reasoning has been reduced to
standard Hoare logic rule with address translation

 Program Verification in the Presence of TLB-Address Translation Hira Syeda

- Kernel-level assignment
- that doesn't modify page table

24

Reduction Theorems

0

max

paddr space

kernel data
including page tables

vaddr space

-1

0

user
addrs

kernel
window

 Program Verification in the Presence of TLB-Address Translation Hira Syeda

- Kernel-level assignment
- that doesn't modify page table

24

Reduction Theorems

0

max

paddr space

kernel data
including page tables

vaddr space

-1

0

user
addrs

kernel
window

✓TLB remains consistent
✓reduction to

standard Hoare logic

 Program Verification in the Presence of TLB-Address Translation Hira Syeda

- Kernel-level assignment
- that does modify page table

25

Reduction Theorems

0

max

paddr space

kernel data
including page tables

vaddr space

-1

0

user
addrs

kernel
window

 Program Verification in the Presence of TLB-Address Translation Hira Syeda

- Kernel-level assignment
- that does modify page table

25

Reduction Theorems

0

max

paddr space

kernel data
including page tables

vaddr space

-1

0

user
addrs

kernel
window

✓TLB consistency is regained by
flushing the entries
✓logic correctly identifies when

the flush is due

 Program Verification in the Presence of TLB-Address Translation Hira Syeda26

- TLB-aware program logic in Isabelle/HOL
- sound abstraction of ARMv7-style MMU

- language with TLB management primitives

- TLB-aware Hoare logic rules

Contributions

- Reduction theorems for program verification at
- user- and kernel-level execution

- context switch

 Program Verification in the Presence of TLB-Address Translation Hira Syeda27

- Operations — updating the
- root register, then updating the
- ASID register

Context Switch

 Program Verification in the Presence of TLB-Address Translation Hira Syeda27

- Operations — updating the
- root register, then updating the
- ASID register

- ARM’s recommended sequence to avoid TLB flush

Context Switch

0

active
ASID

active
root

r a

active
ASID

user

mode

kernel

mode

 Program Verification in the Presence of TLB-Address Translation Hira Syeda27

- Operations — updating the
- root register, then updating the
- ASID register

- ARM’s recommended sequence to avoid TLB flush

Context Switch

logic can prove that
assigned ASIDs remain consistent

0

active
ASID

active
root

r a

active
ASID

user

mode

kernel

mode

 Program Verification in the Presence of TLB-Address Translation Hira Syeda28

Taken Together

 Program Verification in the Presence of TLB-Address Translation Hira Syeda28

Taken Together

• simplicity of the logic and memory model
• reduction to Hoare logic for most use-cases

 Program Verification in the Presence of TLB-Address Translation Hira Syeda28

Taken Together

• simplicity of the logic and memory model
• reduction to Hoare logic for most use-cases

more in the paper:
details of the reduction theorems

 Program Verification in the Presence of TLB-Address Translation Hira Syeda28

Taken Together

• simplicity of the logic and memory model
• reduction to Hoare logic for most use-cases

theories available on github:
SEL4PROJ/tlb

more in the paper:
details of the reduction theorems

 Program Verification in the Presence of TLB-Address Translation Hira Syeda28

Taken Together

• simplicity of the logic and memory model
• reduction to Hoare logic for most use-cases

theories available on github:
SEL4PROJ/tlb

Questions

more in the paper:
details of the reduction theorems

 Program Verification in the Presence of TLB-Address Translation Hira Syeda

- Kernel-level assignment
- that doesn't modify page table

29

Reduction Theorems

 Program Verification in the Presence of TLB-Address Translation Hira Syeda

- Kernel-level assignment
- that doesn't modify page table

29

Reduction Theorems

a page fault handler, the logic can be extended to take this conditional execution
into account, for instance using an exception mechanism or a conditional jump.
In that case, the condition that addresses are mapped can be dropped, and we
arrive at a standard Hoare logic assignment rule.

6.2 Kernel Execution

User execution boils down to standard reasoning. We can show that kernel exe-
cution without virtual memory modifications do as well.

As mentioned in Sect. 5, the safe set for kernel execution is the entire kernel
window, i.e. the virtual addresses that are mapped by the global mappings,
minus the addresses of the page table entries that encode these global mappings.
Since we will need to re-establish this set every time we switch to a di↵erent
page table, and it is always safe to reduce the safe set, we not only remove the
kernel window encoding in the current page table, but also that of of all other
page tables the kernel might switch to and call this set kernel_safe.

Since we fixed the global mappings in mmu_layout, we can give a short,
closed form of translation for addresses in kernel_safe: k_phy_ad vp = Addr vp -

offset. With these, we can formulate a theorem for assignments in kernel mode
that do not touch any of the virtual memory data structures, i.e. when the write
does not take place in any of the addresses covered by kernel_data.

Theorem 4 If the mmu_layout invariants hold, we are in kernel mode, and we
are performing a write in the kernel safe set that does not touch any MMU-
relevant data structures, then the mmu_layout invariants are preserved and the
e↵ect is a simple heap update with known constant address translation.

{|�s. mmu_layout s ^ mode s = Kernel ^ safe_set (kernel_safe s) s ^
asids_consistent s ^ [[lval]] s = bvpc ^ [[rval]] s = bvc ^
Addr vp 2 kernel_safe s ^ k_phy_ad vp /2 kernel_data_area s|}

lval ::= rval
{|�s. mmu_layout s ^ mode s = Kernel ^ safe_set (kernel_safe s) s ^

asids_consistent s ^ heap s (k_phy_ad vp) = bvc|}

Proof. See lemma kernel_safe_assignemnt in [18].

This lemma covers kernel code that is uninteresting for the purposes of the
MMU and TLB, which is the majority of code in a normal kernel. The Isabelle
theories [18] also contain examples for page table modifications. The main dif-
ference to this theorem is that, while the write still happens in the safe set, and
the safe set is preserved, there are now inconsistent addresses that need to be
flushed before we return to user mode. These could be for the active page table,
but also for an inactive page table, where the need for flushing is observed in
the asids_consistent invariant.

6.3 Context Switch

We have so far shown reduction theorems for simpler reasoning when nothing
interesting happens to the TLB. This section is the opposite: context switching.

14

a page fault handler, the logic can be extended to take this conditional execution
into account, for instance using an exception mechanism or a conditional jump.
In that case, the condition that addresses are mapped can be dropped, and we
arrive at a standard Hoare logic assignment rule.

6.2 Kernel Execution

User execution boils down to standard reasoning. We can show that kernel exe-
cution without virtual memory modifications do as well.

As mentioned in Sect. 5, the safe set for kernel execution is the entire kernel
window, i.e. the virtual addresses that are mapped by the global mappings,
minus the addresses of the page table entries that encode these global mappings.
Since we will need to re-establish this set every time we switch to a di↵erent
page table, and it is always safe to reduce the safe set, we not only remove the
kernel window encoding in the current page table, but also that of of all other
page tables the kernel might switch to and call this set kernel_safe.

Since we fixed the global mappings in mmu_layout, we can give a short,
closed form of translation for addresses in kernel_safe: k_phy_ad vp = Addr vp -

offset. With these, we can formulate a theorem for assignments in kernel mode
that do not touch any of the virtual memory data structures, i.e. when the write
does not take place in any of the addresses covered by kernel_data.

Theorem 4 If the mmu_layout invariants hold, we are in kernel mode, and we
are performing a write in the kernel safe set that does not touch any MMU-
relevant data structures, then the mmu_layout invariants are preserved and the
e↵ect is a simple heap update with known constant address translation.

{|�s. mmu_layout s ^ mode s = Kernel ^ safe_set (kernel_safe s) s ^
asids_consistent s ^ [[lval]] s = bvpc ^ [[rval]] s = bvc ^
Addr vp 2 kernel_safe s ^ k_phy_ad vp /2 kernel_data_area s|}

lval ::= rval
{|�s. mmu_layout s ^ mode s = Kernel ^ safe_set (kernel_safe s) s ^

asids_consistent s ^ heap s (k_phy_ad vp) = bvc|}

Proof. See lemma kernel_safe_assignemnt in [18].

This lemma covers kernel code that is uninteresting for the purposes of the
MMU and TLB, which is the majority of code in a normal kernel. The Isabelle
theories [18] also contain examples for page table modifications. The main dif-
ference to this theorem is that, while the write still happens in the safe set, and
the safe set is preserved, there are now inconsistent addresses that need to be
flushed before we return to user mode. These could be for the active page table,
but also for an inactive page table, where the need for flushing is observed in
the asids_consistent invariant.

6.3 Context Switch

We have so far shown reduction theorems for simpler reasoning when nothing
interesting happens to the TLB. This section is the opposite: context switching.

14

a page fault handler, the logic can be extended to take this conditional execution
into account, for instance using an exception mechanism or a conditional jump.
In that case, the condition that addresses are mapped can be dropped, and we
arrive at a standard Hoare logic assignment rule.

6.2 Kernel Execution

User execution boils down to standard reasoning. We can show that kernel exe-
cution without virtual memory modifications do as well.

As mentioned in Sect. 5, the safe set for kernel execution is the entire kernel
window, i.e. the virtual addresses that are mapped by the global mappings,
minus the addresses of the page table entries that encode these global mappings.
Since we will need to re-establish this set every time we switch to a di↵erent
page table, and it is always safe to reduce the safe set, we not only remove the
kernel window encoding in the current page table, but also that of of all other
page tables the kernel might switch to and call this set kernel_safe.

Since we fixed the global mappings in mmu_layout, we can give a short,
closed form of translation for addresses in kernel_safe: k_phy_ad vp = Addr vp -

offset. With these, we can formulate a theorem for assignments in kernel mode
that do not touch any of the virtual memory data structures, i.e. when the write
does not take place in any of the addresses covered by kernel_data.

Theorem 4 If the mmu_layout invariants hold, we are in kernel mode, and we
are performing a write in the kernel safe set that does not touch any MMU-
relevant data structures, then the mmu_layout invariants are preserved and the
e↵ect is a simple heap update with known constant address translation.

{|�s. mmu_layout s ^ mode s = Kernel ^ safe_set (kernel_safe s) s ^
asids_consistent s ^ [[lval]] s = bvpc ^ [[rval]] s = bvc ^
Addr vp 2 kernel_safe s ^ k_phy_ad vp /2 kernel_data_area s|}

lval ::= rval
{|�s. mmu_layout s ^ mode s = Kernel ^ safe_set (kernel_safe s) s ^

asids_consistent s ^ heap s (k_phy_ad vp) = bvc|}

Proof. See lemma kernel_safe_assignemnt in [18].

This lemma covers kernel code that is uninteresting for the purposes of the
MMU and TLB, which is the majority of code in a normal kernel. The Isabelle
theories [18] also contain examples for page table modifications. The main dif-
ference to this theorem is that, while the write still happens in the safe set, and
the safe set is preserved, there are now inconsistent addresses that need to be
flushed before we return to user mode. These could be for the active page table,
but also for an inactive page table, where the need for flushing is observed in
the asids_consistent invariant.

6.3 Context Switch

We have so far shown reduction theorems for simpler reasoning when nothing
interesting happens to the TLB. This section is the opposite: context switching.

14

a page fault handler, the logic can be extended to take this conditional execution
into account, for instance using an exception mechanism or a conditional jump.
In that case, the condition that addresses are mapped can be dropped, and we
arrive at a standard Hoare logic assignment rule.

6.2 Kernel Execution

User execution boils down to standard reasoning. We can show that kernel exe-
cution without virtual memory modifications do as well.

As mentioned in Sect. 5, the safe set for kernel execution is the entire kernel
window, i.e. the virtual addresses that are mapped by the global mappings,
minus the addresses of the page table entries that encode these global mappings.
Since we will need to re-establish this set every time we switch to a di↵erent
page table, and it is always safe to reduce the safe set, we not only remove the
kernel window encoding in the current page table, but also that of of all other
page tables the kernel might switch to and call this set kernel_safe.

Since we fixed the global mappings in mmu_layout, we can give a short,
closed form of translation for addresses in kernel_safe: k_phy_ad vp = Addr vp -

offset. With these, we can formulate a theorem for assignments in kernel mode
that do not touch any of the virtual memory data structures, i.e. when the write
does not take place in any of the addresses covered by kernel_data.

Theorem 4 If the mmu_layout invariants hold, we are in kernel mode, and we
are performing a write in the kernel safe set that does not touch any MMU-
relevant data structures, then the mmu_layout invariants are preserved and the
e↵ect is a simple heap update with known constant address translation.

{|�s. mmu_layout s ^ mode s = Kernel ^ safe_set (kernel_safe s) s ^
asids_consistent s ^ [[lval]] s = bvpc ^ [[rval]] s = bvc ^
Addr vp 2 kernel_safe s ^ k_phy_ad vp /2 kernel_data_area s|}

lval ::= rval
{|�s. mmu_layout s ^ mode s = Kernel ^ safe_set (kernel_safe s) s ^

asids_consistent s ^ heap s (k_phy_ad vp) = bvc|}

Proof. See lemma kernel_safe_assignemnt in [18].

This lemma covers kernel code that is uninteresting for the purposes of the
MMU and TLB, which is the majority of code in a normal kernel. The Isabelle
theories [18] also contain examples for page table modifications. The main dif-
ference to this theorem is that, while the write still happens in the safe set, and
the safe set is preserved, there are now inconsistent addresses that need to be
flushed before we return to user mode. These could be for the active page table,
but also for an inactive page table, where the need for flushing is observed in
the asids_consistent invariant.

6.3 Context Switch

We have so far shown reduction theorems for simpler reasoning when nothing
interesting happens to the TLB. This section is the opposite: context switching.

14

a page fault handler, the logic can be extended to take this conditional execution
into account, for instance using an exception mechanism or a conditional jump.
In that case, the condition that addresses are mapped can be dropped, and we
arrive at a standard Hoare logic assignment rule.

6.2 Kernel Execution

User execution boils down to standard reasoning. We can show that kernel exe-
cution without virtual memory modifications do as well.

As mentioned in Sect. 5, the safe set for kernel execution is the entire kernel
window, i.e. the virtual addresses that are mapped by the global mappings,
minus the addresses of the page table entries that encode these global mappings.
Since we will need to re-establish this set every time we switch to a di↵erent
page table, and it is always safe to reduce the safe set, we not only remove the
kernel window encoding in the current page table, but also that of of all other
page tables the kernel might switch to and call this set kernel_safe.

Since we fixed the global mappings in mmu_layout, we can give a short,
closed form of translation for addresses in kernel_safe: k_phy_ad vp = Addr vp -

offset. With these, we can formulate a theorem for assignments in kernel mode
that do not touch any of the virtual memory data structures, i.e. when the write
does not take place in any of the addresses covered by kernel_data.

Theorem 4 If the mmu_layout invariants hold, we are in kernel mode, and we
are performing a write in the kernel safe set that does not touch any MMU-
relevant data structures, then the mmu_layout invariants are preserved and the
e↵ect is a simple heap update with known constant address translation.

{|�s. mmu_layout s ^ mode s = Kernel ^ safe_set (kernel_safe s) s ^
asids_consistent s ^ [[lval]] s = bvpc ^ [[rval]] s = bvc ^
Addr vp 2 kernel_safe s ^ k_phy_ad vp /2 kernel_data_area s|}

lval ::= rval
{|�s. mmu_layout s ^ mode s = Kernel ^ safe_set (kernel_safe s) s ^

asids_consistent s ^ heap s (k_phy_ad vp) = bvc|}

Proof. See lemma kernel_safe_assignemnt in [18].

This lemma covers kernel code that is uninteresting for the purposes of the
MMU and TLB, which is the majority of code in a normal kernel. The Isabelle
theories [18] also contain examples for page table modifications. The main dif-
ference to this theorem is that, while the write still happens in the safe set, and
the safe set is preserved, there are now inconsistent addresses that need to be
flushed before we return to user mode. These could be for the active page table,
but also for an inactive page table, where the need for flushing is observed in
the asids_consistent invariant.

6.3 Context Switch

We have so far shown reduction theorems for simpler reasoning when nothing
interesting happens to the TLB. This section is the opposite: context switching.

14

a page fault handler, the logic can be extended to take this conditional execution
into account, for instance using an exception mechanism or a conditional jump.
In that case, the condition that addresses are mapped can be dropped, and we
arrive at a standard Hoare logic assignment rule.

6.2 Kernel Execution

User execution boils down to standard reasoning. We can show that kernel exe-
cution without virtual memory modifications do as well.

As mentioned in Sect. 5, the safe set for kernel execution is the entire kernel
window, i.e. the virtual addresses that are mapped by the global mappings,
minus the addresses of the page table entries that encode these global mappings.
Since we will need to re-establish this set every time we switch to a di↵erent
page table, and it is always safe to reduce the safe set, we not only remove the
kernel window encoding in the current page table, but also that of of all other
page tables the kernel might switch to and call this set kernel_safe.

Since we fixed the global mappings in mmu_layout, we can give a short,
closed form of translation for addresses in kernel_safe: k_phy_ad vp = Addr vp -

offset. With these, we can formulate a theorem for assignments in kernel mode
that do not touch any of the virtual memory data structures, i.e. when the write
does not take place in any of the addresses covered by kernel_data.

Theorem 4 If the mmu_layout invariants hold, we are in kernel mode, and we
are performing a write in the kernel safe set that does not touch any MMU-
relevant data structures, then the mmu_layout invariants are preserved and the
e↵ect is a simple heap update with known constant address translation.

{|�s. mmu_layout s ^ mode s = Kernel ^ safe_set (kernel_safe s) s ^
asids_consistent s ^ [[lval]] s = bvpc ^ [[rval]] s = bvc ^
Addr vp 2 kernel_safe s ^ k_phy_ad vp /2 kernel_data_area s|}

lval ::= rval
{|�s. mmu_layout s ^ mode s = Kernel ^ safe_set (kernel_safe s) s ^

asids_consistent s ^ heap s (k_phy_ad vp) = bvc|}

Proof. See lemma kernel_safe_assignemnt in [18].

This lemma covers kernel code that is uninteresting for the purposes of the
MMU and TLB, which is the majority of code in a normal kernel. The Isabelle
theories [18] also contain examples for page table modifications. The main dif-
ference to this theorem is that, while the write still happens in the safe set, and
the safe set is preserved, there are now inconsistent addresses that need to be
flushed before we return to user mode. These could be for the active page table,
but also for an inactive page table, where the need for flushing is observed in
the asids_consistent invariant.

6.3 Context Switch

We have so far shown reduction theorems for simpler reasoning when nothing
interesting happens to the TLB. This section is the opposite: context switching.

14

a page fault handler, the logic can be extended to take this conditional execution
into account, for instance using an exception mechanism or a conditional jump.
In that case, the condition that addresses are mapped can be dropped, and we
arrive at a standard Hoare logic assignment rule.

6.2 Kernel Execution

User execution boils down to standard reasoning. We can show that kernel exe-
cution without virtual memory modifications do as well.

As mentioned in Sect. 5, the safe set for kernel execution is the entire kernel
window, i.e. the virtual addresses that are mapped by the global mappings,
minus the addresses of the page table entries that encode these global mappings.
Since we will need to re-establish this set every time we switch to a di↵erent
page table, and it is always safe to reduce the safe set, we not only remove the
kernel window encoding in the current page table, but also that of of all other
page tables the kernel might switch to and call this set kernel_safe.

Since we fixed the global mappings in mmu_layout, we can give a short,
closed form of translation for addresses in kernel_safe: k_phy_ad vp = Addr vp -

offset. With these, we can formulate a theorem for assignments in kernel mode
that do not touch any of the virtual memory data structures, i.e. when the write
does not take place in any of the addresses covered by kernel_data.

Theorem 4 If the mmu_layout invariants hold, we are in kernel mode, and we
are performing a write in the kernel safe set that does not touch any MMU-
relevant data structures, then the mmu_layout invariants are preserved and the
e↵ect is a simple heap update with known constant address translation.

{|�s. mmu_layout s ^ mode s = Kernel ^ safe_set (kernel_safe s) s ^
asids_consistent s ^ [[lval]] s = bvpc ^ [[rval]] s = bvc ^
Addr vp 2 kernel_safe s ^ k_phy_ad vp /2 kernel_data_area s|}

lval ::= rval
{|�s. mmu_layout s ^ mode s = Kernel ^ safe_set (kernel_safe s) s ^

asids_consistent s ^ heap s (k_phy_ad vp) = bvc|}

Proof. See lemma kernel_safe_assignemnt in [18].

This lemma covers kernel code that is uninteresting for the purposes of the
MMU and TLB, which is the majority of code in a normal kernel. The Isabelle
theories [18] also contain examples for page table modifications. The main dif-
ference to this theorem is that, while the write still happens in the safe set, and
the safe set is preserved, there are now inconsistent addresses that need to be
flushed before we return to user mode. These could be for the active page table,
but also for an inactive page table, where the need for flushing is observed in
the asids_consistent invariant.

6.3 Context Switch

We have so far shown reduction theorems for simpler reasoning when nothing
interesting happens to the TLB. This section is the opposite: context switching.

14

a page fault handler, the logic can be extended to take this conditional execution
into account, for instance using an exception mechanism or a conditional jump.
In that case, the condition that addresses are mapped can be dropped, and we
arrive at a standard Hoare logic assignment rule.

6.2 Kernel Execution

User execution boils down to standard reasoning. We can show that kernel exe-
cution without virtual memory modifications do as well.

As mentioned in Sect. 5, the safe set for kernel execution is the entire kernel
window, i.e. the virtual addresses that are mapped by the global mappings,
minus the addresses of the page table entries that encode these global mappings.
Since we will need to re-establish this set every time we switch to a di↵erent
page table, and it is always safe to reduce the safe set, we not only remove the
kernel window encoding in the current page table, but also that of of all other
page tables the kernel might switch to and call this set kernel_safe.

Since we fixed the global mappings in mmu_layout, we can give a short,
closed form of translation for addresses in kernel_safe: k_phy_ad vp = Addr vp -

offset. With these, we can formulate a theorem for assignments in kernel mode
that do not touch any of the virtual memory data structures, i.e. when the write
does not take place in any of the addresses covered by kernel_data.

Theorem 4 If the mmu_layout invariants hold, we are in kernel mode, and we
are performing a write in the kernel safe set that does not touch any MMU-
relevant data structures, then the mmu_layout invariants are preserved and the
e↵ect is a simple heap update with known constant address translation.

{|�s. mmu_layout s ^ mode s = Kernel ^ safe_set (kernel_safe s) s ^
asids_consistent s ^ [[lval]] s = bvpc ^ [[rval]] s = bvc ^
Addr vp 2 kernel_safe s ^ k_phy_ad vp /2 kernel_data_area s|}

lval ::= rval
{|�s. mmu_layout s ^ mode s = Kernel ^ safe_set (kernel_safe s) s ^

asids_consistent s ^ heap s (k_phy_ad vp) = bvc|}

Proof. See lemma kernel_safe_assignemnt in [18].

This lemma covers kernel code that is uninteresting for the purposes of the
MMU and TLB, which is the majority of code in a normal kernel. The Isabelle
theories [18] also contain examples for page table modifications. The main dif-
ference to this theorem is that, while the write still happens in the safe set, and
the safe set is preserved, there are now inconsistent addresses that need to be
flushed before we return to user mode. These could be for the active page table,
but also for an inactive page table, where the need for flushing is observed in
the asids_consistent invariant.

6.3 Context Switch

We have so far shown reduction theorems for simpler reasoning when nothing
interesting happens to the TLB. This section is the opposite: context switching.

14

 Program Verification in the Presence of TLB-Address Translation Hira Syeda

a page fault handler, the logic can be extended to take this conditional execution
into account, for instance using an exception mechanism or a conditional jump.
In that case, the condition that addresses are mapped can be dropped, and we
arrive at a standard Hoare logic assignment rule.

6.2 Kernel Execution

User execution boils down to standard reasoning. We can show that kernel exe-
cution without virtual memory modifications do as well.

As mentioned in Sect. 5, the safe set for kernel execution is the entire kernel
window, i.e. the virtual addresses that are mapped by the global mappings,
minus the addresses of the page table entries that encode these global mappings.
Since we will need to re-establish this set every time we switch to a di↵erent
page table, and it is always safe to reduce the safe set, we not only remove the
kernel window encoding in the current page table, but also that of of all other
page tables the kernel might switch to and call this set kernel_safe.

Since we fixed the global mappings in mmu_layout, we can give a short,
closed form of translation for addresses in kernel_safe: k_phy_ad vp = Addr vp -

offset. With these, we can formulate a theorem for assignments in kernel mode
that do not touch any of the virtual memory data structures, i.e. when the write
does not take place in any of the addresses covered by kernel_data.

Theorem 4 If the mmu_layout invariants hold, we are in kernel mode, and we
are performing a write in the kernel safe set that does not touch any MMU-
relevant data structures, then the mmu_layout invariants are preserved and the
e↵ect is a simple heap update with known constant address translation.

{|�s. mmu_layout s ^ mode s = Kernel ^ safe_set (kernel_safe s) s ^
asids_consistent s ^ [[lval]] s = bvpc ^ [[rval]] s = bvc ^
Addr vp 2 kernel_safe s ^ k_phy_ad vp /2 kernel_data_area s|}

lval ::= rval
{|�s. mmu_layout s ^ mode s = Kernel ^ safe_set (kernel_safe s) s ^

asids_consistent s ^ heap s (k_phy_ad vp) = bvc|}

Proof. See lemma kernel_safe_assignemnt in [18].

This lemma covers kernel code that is uninteresting for the purposes of the
MMU and TLB, which is the majority of code in a normal kernel. The Isabelle
theories [18] also contain examples for page table modifications. The main dif-
ference to this theorem is that, while the write still happens in the safe set, and
the safe set is preserved, there are now inconsistent addresses that need to be
flushed before we return to user mode. These could be for the active page table,
but also for an inactive page table, where the need for flushing is observed in
the asids_consistent invariant.

6.3 Context Switch

We have so far shown reduction theorems for simpler reasoning when nothing
interesting happens to the TLB. This section is the opposite: context switching.

14

- Kernel-level assignment
- that doesn't modify page table

29

Reduction Theorems

a page fault handler, the logic can be extended to take this conditional execution
into account, for instance using an exception mechanism or a conditional jump.
In that case, the condition that addresses are mapped can be dropped, and we
arrive at a standard Hoare logic assignment rule.

6.2 Kernel Execution

User execution boils down to standard reasoning. We can show that kernel exe-
cution without virtual memory modifications do as well.

As mentioned in Sect. 5, the safe set for kernel execution is the entire kernel
window, i.e. the virtual addresses that are mapped by the global mappings,
minus the addresses of the page table entries that encode these global mappings.
Since we will need to re-establish this set every time we switch to a di↵erent
page table, and it is always safe to reduce the safe set, we not only remove the
kernel window encoding in the current page table, but also that of of all other
page tables the kernel might switch to and call this set kernel_safe.

Since we fixed the global mappings in mmu_layout, we can give a short,
closed form of translation for addresses in kernel_safe: k_phy_ad vp = Addr vp -

offset. With these, we can formulate a theorem for assignments in kernel mode
that do not touch any of the virtual memory data structures, i.e. when the write
does not take place in any of the addresses covered by kernel_data.

Theorem 4 If the mmu_layout invariants hold, we are in kernel mode, and we
are performing a write in the kernel safe set that does not touch any MMU-
relevant data structures, then the mmu_layout invariants are preserved and the
e↵ect is a simple heap update with known constant address translation.

{|�s. mmu_layout s ^ mode s = Kernel ^ safe_set (kernel_safe s) s ^
asids_consistent s ^ [[lval]] s = bvpc ^ [[rval]] s = bvc ^
Addr vp 2 kernel_safe s ^ k_phy_ad vp /2 kernel_data_area s|}

lval ::= rval
{|�s. mmu_layout s ^ mode s = Kernel ^ safe_set (kernel_safe s) s ^

asids_consistent s ^ heap s (k_phy_ad vp) = bvc|}

Proof. See lemma kernel_safe_assignemnt in [18].

This lemma covers kernel code that is uninteresting for the purposes of the
MMU and TLB, which is the majority of code in a normal kernel. The Isabelle
theories [18] also contain examples for page table modifications. The main dif-
ference to this theorem is that, while the write still happens in the safe set, and
the safe set is preserved, there are now inconsistent addresses that need to be
flushed before we return to user mode. These could be for the active page table,
but also for an inactive page table, where the need for flushing is observed in
the asids_consistent invariant.

6.3 Context Switch

We have so far shown reduction theorems for simpler reasoning when nothing
interesting happens to the TLB. This section is the opposite: context switching.

14

a page fault handler, the logic can be extended to take this conditional execution
into account, for instance using an exception mechanism or a conditional jump.
In that case, the condition that addresses are mapped can be dropped, and we
arrive at a standard Hoare logic assignment rule.

6.2 Kernel Execution

User execution boils down to standard reasoning. We can show that kernel exe-
cution without virtual memory modifications do as well.

As mentioned in Sect. 5, the safe set for kernel execution is the entire kernel
window, i.e. the virtual addresses that are mapped by the global mappings,
minus the addresses of the page table entries that encode these global mappings.
Since we will need to re-establish this set every time we switch to a di↵erent
page table, and it is always safe to reduce the safe set, we not only remove the
kernel window encoding in the current page table, but also that of of all other
page tables the kernel might switch to and call this set kernel_safe.

Since we fixed the global mappings in mmu_layout, we can give a short,
closed form of translation for addresses in kernel_safe: k_phy_ad vp = Addr vp -

offset. With these, we can formulate a theorem for assignments in kernel mode
that do not touch any of the virtual memory data structures, i.e. when the write
does not take place in any of the addresses covered by kernel_data.

Theorem 4 If the mmu_layout invariants hold, we are in kernel mode, and we
are performing a write in the kernel safe set that does not touch any MMU-
relevant data structures, then the mmu_layout invariants are preserved and the
e↵ect is a simple heap update with known constant address translation.

{|�s. mmu_layout s ^ mode s = Kernel ^ safe_set (kernel_safe s) s ^
asids_consistent s ^ [[lval]] s = bvpc ^ [[rval]] s = bvc ^
Addr vp 2 kernel_safe s ^ k_phy_ad vp /2 kernel_data_area s|}

lval ::= rval
{|�s. mmu_layout s ^ mode s = Kernel ^ safe_set (kernel_safe s) s ^

asids_consistent s ^ heap s (k_phy_ad vp) = bvc|}

Proof. See lemma kernel_safe_assignemnt in [18].

This lemma covers kernel code that is uninteresting for the purposes of the
MMU and TLB, which is the majority of code in a normal kernel. The Isabelle
theories [18] also contain examples for page table modifications. The main dif-
ference to this theorem is that, while the write still happens in the safe set, and
the safe set is preserved, there are now inconsistent addresses that need to be
flushed before we return to user mode. These could be for the active page table,
but also for an inactive page table, where the need for flushing is observed in
the asids_consistent invariant.

6.3 Context Switch

We have so far shown reduction theorems for simpler reasoning when nothing
interesting happens to the TLB. This section is the opposite: context switching.

14

a page fault handler, the logic can be extended to take this conditional execution
into account, for instance using an exception mechanism or a conditional jump.
In that case, the condition that addresses are mapped can be dropped, and we
arrive at a standard Hoare logic assignment rule.

6.2 Kernel Execution

User execution boils down to standard reasoning. We can show that kernel exe-
cution without virtual memory modifications do as well.

As mentioned in Sect. 5, the safe set for kernel execution is the entire kernel
window, i.e. the virtual addresses that are mapped by the global mappings,
minus the addresses of the page table entries that encode these global mappings.
Since we will need to re-establish this set every time we switch to a di↵erent
page table, and it is always safe to reduce the safe set, we not only remove the
kernel window encoding in the current page table, but also that of of all other
page tables the kernel might switch to and call this set kernel_safe.

Since we fixed the global mappings in mmu_layout, we can give a short,
closed form of translation for addresses in kernel_safe: k_phy_ad vp = Addr vp -

offset. With these, we can formulate a theorem for assignments in kernel mode
that do not touch any of the virtual memory data structures, i.e. when the write
does not take place in any of the addresses covered by kernel_data.

Theorem 4 If the mmu_layout invariants hold, we are in kernel mode, and we
are performing a write in the kernel safe set that does not touch any MMU-
relevant data structures, then the mmu_layout invariants are preserved and the
e↵ect is a simple heap update with known constant address translation.

{|�s. mmu_layout s ^ mode s = Kernel ^ safe_set (kernel_safe s) s ^
asids_consistent s ^ [[lval]] s = bvpc ^ [[rval]] s = bvc ^
Addr vp 2 kernel_safe s ^ k_phy_ad vp /2 kernel_data_area s|}

lval ::= rval
{|�s. mmu_layout s ^ mode s = Kernel ^ safe_set (kernel_safe s) s ^

asids_consistent s ^ heap s (k_phy_ad vp) = bvc|}

Proof. See lemma kernel_safe_assignemnt in [18].

This lemma covers kernel code that is uninteresting for the purposes of the
MMU and TLB, which is the majority of code in a normal kernel. The Isabelle
theories [18] also contain examples for page table modifications. The main dif-
ference to this theorem is that, while the write still happens in the safe set, and
the safe set is preserved, there are now inconsistent addresses that need to be
flushed before we return to user mode. These could be for the active page table,
but also for an inactive page table, where the need for flushing is observed in
the asids_consistent invariant.

6.3 Context Switch

We have so far shown reduction theorems for simpler reasoning when nothing
interesting happens to the TLB. This section is the opposite: context switching.

14

a page fault handler, the logic can be extended to take this conditional execution
into account, for instance using an exception mechanism or a conditional jump.
In that case, the condition that addresses are mapped can be dropped, and we
arrive at a standard Hoare logic assignment rule.

6.2 Kernel Execution

User execution boils down to standard reasoning. We can show that kernel exe-
cution without virtual memory modifications do as well.

As mentioned in Sect. 5, the safe set for kernel execution is the entire kernel
window, i.e. the virtual addresses that are mapped by the global mappings,
minus the addresses of the page table entries that encode these global mappings.
Since we will need to re-establish this set every time we switch to a di↵erent
page table, and it is always safe to reduce the safe set, we not only remove the
kernel window encoding in the current page table, but also that of of all other
page tables the kernel might switch to and call this set kernel_safe.

Since we fixed the global mappings in mmu_layout, we can give a short,
closed form of translation for addresses in kernel_safe: k_phy_ad vp = Addr vp -

offset. With these, we can formulate a theorem for assignments in kernel mode
that do not touch any of the virtual memory data structures, i.e. when the write
does not take place in any of the addresses covered by kernel_data.

Theorem 4 If the mmu_layout invariants hold, we are in kernel mode, and we
are performing a write in the kernel safe set that does not touch any MMU-
relevant data structures, then the mmu_layout invariants are preserved and the
e↵ect is a simple heap update with known constant address translation.

{|�s. mmu_layout s ^ mode s = Kernel ^ safe_set (kernel_safe s) s ^
asids_consistent s ^ [[lval]] s = bvpc ^ [[rval]] s = bvc ^
Addr vp 2 kernel_safe s ^ k_phy_ad vp /2 kernel_data_area s|}

lval ::= rval
{|�s. mmu_layout s ^ mode s = Kernel ^ safe_set (kernel_safe s) s ^

asids_consistent s ^ heap s (k_phy_ad vp) = bvc|}

Proof. See lemma kernel_safe_assignemnt in [18].

This lemma covers kernel code that is uninteresting for the purposes of the
MMU and TLB, which is the majority of code in a normal kernel. The Isabelle
theories [18] also contain examples for page table modifications. The main dif-
ference to this theorem is that, while the write still happens in the safe set, and
the safe set is preserved, there are now inconsistent addresses that need to be
flushed before we return to user mode. These could be for the active page table,
but also for an inactive page table, where the need for flushing is observed in
the asids_consistent invariant.

6.3 Context Switch

We have so far shown reduction theorems for simpler reasoning when nothing
interesting happens to the TLB. This section is the opposite: context switching.

14

a page fault handler, the logic can be extended to take this conditional execution
into account, for instance using an exception mechanism or a conditional jump.
In that case, the condition that addresses are mapped can be dropped, and we
arrive at a standard Hoare logic assignment rule.

6.2 Kernel Execution

User execution boils down to standard reasoning. We can show that kernel exe-
cution without virtual memory modifications do as well.

As mentioned in Sect. 5, the safe set for kernel execution is the entire kernel
window, i.e. the virtual addresses that are mapped by the global mappings,
minus the addresses of the page table entries that encode these global mappings.
Since we will need to re-establish this set every time we switch to a di↵erent
page table, and it is always safe to reduce the safe set, we not only remove the
kernel window encoding in the current page table, but also that of of all other
page tables the kernel might switch to and call this set kernel_safe.

Since we fixed the global mappings in mmu_layout, we can give a short,
closed form of translation for addresses in kernel_safe: k_phy_ad vp = Addr vp -

offset. With these, we can formulate a theorem for assignments in kernel mode
that do not touch any of the virtual memory data structures, i.e. when the write
does not take place in any of the addresses covered by kernel_data.

Theorem 4 If the mmu_layout invariants hold, we are in kernel mode, and we
are performing a write in the kernel safe set that does not touch any MMU-
relevant data structures, then the mmu_layout invariants are preserved and the
e↵ect is a simple heap update with known constant address translation.

{|�s. mmu_layout s ^ mode s = Kernel ^ safe_set (kernel_safe s) s ^
asids_consistent s ^ [[lval]] s = bvpc ^ [[rval]] s = bvc ^
Addr vp 2 kernel_safe s ^ k_phy_ad vp /2 kernel_data_area s|}

lval ::= rval
{|�s. mmu_layout s ^ mode s = Kernel ^ safe_set (kernel_safe s) s ^

asids_consistent s ^ heap s (k_phy_ad vp) = bvc|}

Proof. See lemma kernel_safe_assignemnt in [18].

This lemma covers kernel code that is uninteresting for the purposes of the
MMU and TLB, which is the majority of code in a normal kernel. The Isabelle
theories [18] also contain examples for page table modifications. The main dif-
ference to this theorem is that, while the write still happens in the safe set, and
the safe set is preserved, there are now inconsistent addresses that need to be
flushed before we return to user mode. These could be for the active page table,
but also for an inactive page table, where the need for flushing is observed in
the asids_consistent invariant.

6.3 Context Switch

We have so far shown reduction theorems for simpler reasoning when nothing
interesting happens to the TLB. This section is the opposite: context switching.

14

a page fault handler, the logic can be extended to take this conditional execution
into account, for instance using an exception mechanism or a conditional jump.
In that case, the condition that addresses are mapped can be dropped, and we
arrive at a standard Hoare logic assignment rule.

6.2 Kernel Execution

User execution boils down to standard reasoning. We can show that kernel exe-
cution without virtual memory modifications do as well.

As mentioned in Sect. 5, the safe set for kernel execution is the entire kernel
window, i.e. the virtual addresses that are mapped by the global mappings,
minus the addresses of the page table entries that encode these global mappings.
Since we will need to re-establish this set every time we switch to a di↵erent
page table, and it is always safe to reduce the safe set, we not only remove the
kernel window encoding in the current page table, but also that of of all other
page tables the kernel might switch to and call this set kernel_safe.

Since we fixed the global mappings in mmu_layout, we can give a short,
closed form of translation for addresses in kernel_safe: k_phy_ad vp = Addr vp -

offset. With these, we can formulate a theorem for assignments in kernel mode
that do not touch any of the virtual memory data structures, i.e. when the write
does not take place in any of the addresses covered by kernel_data.

Theorem 4 If the mmu_layout invariants hold, we are in kernel mode, and we
are performing a write in the kernel safe set that does not touch any MMU-
relevant data structures, then the mmu_layout invariants are preserved and the
e↵ect is a simple heap update with known constant address translation.

{|�s. mmu_layout s ^ mode s = Kernel ^ safe_set (kernel_safe s) s ^
asids_consistent s ^ [[lval]] s = bvpc ^ [[rval]] s = bvc ^
Addr vp 2 kernel_safe s ^ k_phy_ad vp /2 kernel_data_area s|}

lval ::= rval
{|�s. mmu_layout s ^ mode s = Kernel ^ safe_set (kernel_safe s) s ^

asids_consistent s ^ heap s (k_phy_ad vp) = bvc|}

Proof. See lemma kernel_safe_assignemnt in [18].

This lemma covers kernel code that is uninteresting for the purposes of the
MMU and TLB, which is the majority of code in a normal kernel. The Isabelle
theories [18] also contain examples for page table modifications. The main dif-
ference to this theorem is that, while the write still happens in the safe set, and
the safe set is preserved, there are now inconsistent addresses that need to be
flushed before we return to user mode. These could be for the active page table,
but also for an inactive page table, where the need for flushing is observed in
the asids_consistent invariant.

6.3 Context Switch

We have so far shown reduction theorems for simpler reasoning when nothing
interesting happens to the TLB. This section is the opposite: context switching.

14

a page fault handler, the logic can be extended to take this conditional execution
into account, for instance using an exception mechanism or a conditional jump.
In that case, the condition that addresses are mapped can be dropped, and we
arrive at a standard Hoare logic assignment rule.

6.2 Kernel Execution

User execution boils down to standard reasoning. We can show that kernel exe-
cution without virtual memory modifications do as well.

As mentioned in Sect. 5, the safe set for kernel execution is the entire kernel
window, i.e. the virtual addresses that are mapped by the global mappings,
minus the addresses of the page table entries that encode these global mappings.
Since we will need to re-establish this set every time we switch to a di↵erent
page table, and it is always safe to reduce the safe set, we not only remove the
kernel window encoding in the current page table, but also that of of all other
page tables the kernel might switch to and call this set kernel_safe.

Since we fixed the global mappings in mmu_layout, we can give a short,
closed form of translation for addresses in kernel_safe: k_phy_ad vp = Addr vp -

offset. With these, we can formulate a theorem for assignments in kernel mode
that do not touch any of the virtual memory data structures, i.e. when the write
does not take place in any of the addresses covered by kernel_data.

Theorem 4 If the mmu_layout invariants hold, we are in kernel mode, and we
are performing a write in the kernel safe set that does not touch any MMU-
relevant data structures, then the mmu_layout invariants are preserved and the
e↵ect is a simple heap update with known constant address translation.

{|�s. mmu_layout s ^ mode s = Kernel ^ safe_set (kernel_safe s) s ^
asids_consistent s ^ [[lval]] s = bvpc ^ [[rval]] s = bvc ^
Addr vp 2 kernel_safe s ^ k_phy_ad vp /2 kernel_data_area s|}

lval ::= rval
{|�s. mmu_layout s ^ mode s = Kernel ^ safe_set (kernel_safe s) s ^

asids_consistent s ^ heap s (k_phy_ad vp) = bvc|}

Proof. See lemma kernel_safe_assignemnt in [18].

This lemma covers kernel code that is uninteresting for the purposes of the
MMU and TLB, which is the majority of code in a normal kernel. The Isabelle
theories [18] also contain examples for page table modifications. The main dif-
ference to this theorem is that, while the write still happens in the safe set, and
the safe set is preserved, there are now inconsistent addresses that need to be
flushed before we return to user mode. These could be for the active page table,
but also for an inactive page table, where the need for flushing is observed in
the asids_consistent invariant.

6.3 Context Switch

We have so far shown reduction theorems for simpler reasoning when nothing
interesting happens to the TLB. This section is the opposite: context switching.

14

a page fault handler, the logic can be extended to take this conditional execution
into account, for instance using an exception mechanism or a conditional jump.
In that case, the condition that addresses are mapped can be dropped, and we
arrive at a standard Hoare logic assignment rule.

6.2 Kernel Execution

User execution boils down to standard reasoning. We can show that kernel exe-
cution without virtual memory modifications do as well.

As mentioned in Sect. 5, the safe set for kernel execution is the entire kernel
window, i.e. the virtual addresses that are mapped by the global mappings,
minus the addresses of the page table entries that encode these global mappings.
Since we will need to re-establish this set every time we switch to a di↵erent
page table, and it is always safe to reduce the safe set, we not only remove the
kernel window encoding in the current page table, but also that of of all other
page tables the kernel might switch to and call this set kernel_safe.

Since we fixed the global mappings in mmu_layout, we can give a short,
closed form of translation for addresses in kernel_safe: k_phy_ad vp = Addr vp -

offset. With these, we can formulate a theorem for assignments in kernel mode
that do not touch any of the virtual memory data structures, i.e. when the write
does not take place in any of the addresses covered by kernel_data.

Theorem 4 If the mmu_layout invariants hold, we are in kernel mode, and we
are performing a write in the kernel safe set that does not touch any MMU-
relevant data structures, then the mmu_layout invariants are preserved and the
e↵ect is a simple heap update with known constant address translation.

{|�s. mmu_layout s ^ mode s = Kernel ^ safe_set (kernel_safe s) s ^
asids_consistent s ^ [[lval]] s = bvpc ^ [[rval]] s = bvc ^
Addr vp 2 kernel_safe s ^ k_phy_ad vp /2 kernel_data_area s|}

lval ::= rval
{|�s. mmu_layout s ^ mode s = Kernel ^ safe_set (kernel_safe s) s ^

asids_consistent s ^ heap s (k_phy_ad vp) = bvc|}

Proof. See lemma kernel_safe_assignemnt in [18].

This lemma covers kernel code that is uninteresting for the purposes of the
MMU and TLB, which is the majority of code in a normal kernel. The Isabelle
theories [18] also contain examples for page table modifications. The main dif-
ference to this theorem is that, while the write still happens in the safe set, and
the safe set is preserved, there are now inconsistent addresses that need to be
flushed before we return to user mode. These could be for the active page table,
but also for an inactive page table, where the need for flushing is observed in
the asids_consistent invariant.

6.3 Context Switch

We have so far shown reduction theorems for simpler reasoning when nothing
interesting happens to the TLB. This section is the opposite: context switching.

14

 Program Verification in the Presence of TLB-Address Translation Hira Syeda

a page fault handler, the logic can be extended to take this conditional execution
into account, for instance using an exception mechanism or a conditional jump.
In that case, the condition that addresses are mapped can be dropped, and we
arrive at a standard Hoare logic assignment rule.

6.2 Kernel Execution

User execution boils down to standard reasoning. We can show that kernel exe-
cution without virtual memory modifications do as well.

As mentioned in Sect. 5, the safe set for kernel execution is the entire kernel
window, i.e. the virtual addresses that are mapped by the global mappings,
minus the addresses of the page table entries that encode these global mappings.
Since we will need to re-establish this set every time we switch to a di↵erent
page table, and it is always safe to reduce the safe set, we not only remove the
kernel window encoding in the current page table, but also that of of all other
page tables the kernel might switch to and call this set kernel_safe.

Since we fixed the global mappings in mmu_layout, we can give a short,
closed form of translation for addresses in kernel_safe: k_phy_ad vp = Addr vp -

offset. With these, we can formulate a theorem for assignments in kernel mode
that do not touch any of the virtual memory data structures, i.e. when the write
does not take place in any of the addresses covered by kernel_data.

Theorem 4 If the mmu_layout invariants hold, we are in kernel mode, and we
are performing a write in the kernel safe set that does not touch any MMU-
relevant data structures, then the mmu_layout invariants are preserved and the
e↵ect is a simple heap update with known constant address translation.

{|�s. mmu_layout s ^ mode s = Kernel ^ safe_set (kernel_safe s) s ^
asids_consistent s ^ [[lval]] s = bvpc ^ [[rval]] s = bvc ^
Addr vp 2 kernel_safe s ^ k_phy_ad vp /2 kernel_data_area s|}

lval ::= rval
{|�s. mmu_layout s ^ mode s = Kernel ^ safe_set (kernel_safe s) s ^

asids_consistent s ^ heap s (k_phy_ad vp) = bvc|}

Proof. See lemma kernel_safe_assignemnt in [18].

This lemma covers kernel code that is uninteresting for the purposes of the
MMU and TLB, which is the majority of code in a normal kernel. The Isabelle
theories [18] also contain examples for page table modifications. The main dif-
ference to this theorem is that, while the write still happens in the safe set, and
the safe set is preserved, there are now inconsistent addresses that need to be
flushed before we return to user mode. These could be for the active page table,
but also for an inactive page table, where the need for flushing is observed in
the asids_consistent invariant.

6.3 Context Switch

We have so far shown reduction theorems for simpler reasoning when nothing
interesting happens to the TLB. This section is the opposite: context switching.

14

- Kernel-level assignment
- that doesn't modify page table

29

Reduction Theorems

a page fault handler, the logic can be extended to take this conditional execution
into account, for instance using an exception mechanism or a conditional jump.
In that case, the condition that addresses are mapped can be dropped, and we
arrive at a standard Hoare logic assignment rule.

6.2 Kernel Execution

User execution boils down to standard reasoning. We can show that kernel exe-
cution without virtual memory modifications do as well.

As mentioned in Sect. 5, the safe set for kernel execution is the entire kernel
window, i.e. the virtual addresses that are mapped by the global mappings,
minus the addresses of the page table entries that encode these global mappings.
Since we will need to re-establish this set every time we switch to a di↵erent
page table, and it is always safe to reduce the safe set, we not only remove the
kernel window encoding in the current page table, but also that of of all other
page tables the kernel might switch to and call this set kernel_safe.

Since we fixed the global mappings in mmu_layout, we can give a short,
closed form of translation for addresses in kernel_safe: k_phy_ad vp = Addr vp -

offset. With these, we can formulate a theorem for assignments in kernel mode
that do not touch any of the virtual memory data structures, i.e. when the write
does not take place in any of the addresses covered by kernel_data.

Theorem 4 If the mmu_layout invariants hold, we are in kernel mode, and we
are performing a write in the kernel safe set that does not touch any MMU-
relevant data structures, then the mmu_layout invariants are preserved and the
e↵ect is a simple heap update with known constant address translation.

{|�s. mmu_layout s ^ mode s = Kernel ^ safe_set (kernel_safe s) s ^
asids_consistent s ^ [[lval]] s = bvpc ^ [[rval]] s = bvc ^
Addr vp 2 kernel_safe s ^ k_phy_ad vp /2 kernel_data_area s|}

lval ::= rval
{|�s. mmu_layout s ^ mode s = Kernel ^ safe_set (kernel_safe s) s ^

asids_consistent s ^ heap s (k_phy_ad vp) = bvc|}

Proof. See lemma kernel_safe_assignemnt in [18].

This lemma covers kernel code that is uninteresting for the purposes of the
MMU and TLB, which is the majority of code in a normal kernel. The Isabelle
theories [18] also contain examples for page table modifications. The main dif-
ference to this theorem is that, while the write still happens in the safe set, and
the safe set is preserved, there are now inconsistent addresses that need to be
flushed before we return to user mode. These could be for the active page table,
but also for an inactive page table, where the need for flushing is observed in
the asids_consistent invariant.

6.3 Context Switch

We have so far shown reduction theorems for simpler reasoning when nothing
interesting happens to the TLB. This section is the opposite: context switching.

14

a page fault handler, the logic can be extended to take this conditional execution
into account, for instance using an exception mechanism or a conditional jump.
In that case, the condition that addresses are mapped can be dropped, and we
arrive at a standard Hoare logic assignment rule.

6.2 Kernel Execution

User execution boils down to standard reasoning. We can show that kernel exe-
cution without virtual memory modifications do as well.

As mentioned in Sect. 5, the safe set for kernel execution is the entire kernel
window, i.e. the virtual addresses that are mapped by the global mappings,
minus the addresses of the page table entries that encode these global mappings.
Since we will need to re-establish this set every time we switch to a di↵erent
page table, and it is always safe to reduce the safe set, we not only remove the
kernel window encoding in the current page table, but also that of of all other
page tables the kernel might switch to and call this set kernel_safe.

Since we fixed the global mappings in mmu_layout, we can give a short,
closed form of translation for addresses in kernel_safe: k_phy_ad vp = Addr vp -

offset. With these, we can formulate a theorem for assignments in kernel mode
that do not touch any of the virtual memory data structures, i.e. when the write
does not take place in any of the addresses covered by kernel_data.

Theorem 4 If the mmu_layout invariants hold, we are in kernel mode, and we
are performing a write in the kernel safe set that does not touch any MMU-
relevant data structures, then the mmu_layout invariants are preserved and the
e↵ect is a simple heap update with known constant address translation.

{|�s. mmu_layout s ^ mode s = Kernel ^ safe_set (kernel_safe s) s ^
asids_consistent s ^ [[lval]] s = bvpc ^ [[rval]] s = bvc ^
Addr vp 2 kernel_safe s ^ k_phy_ad vp /2 kernel_data_area s|}

lval ::= rval
{|�s. mmu_layout s ^ mode s = Kernel ^ safe_set (kernel_safe s) s ^

asids_consistent s ^ heap s (k_phy_ad vp) = bvc|}

Proof. See lemma kernel_safe_assignemnt in [18].

This lemma covers kernel code that is uninteresting for the purposes of the
MMU and TLB, which is the majority of code in a normal kernel. The Isabelle
theories [18] also contain examples for page table modifications. The main dif-
ference to this theorem is that, while the write still happens in the safe set, and
the safe set is preserved, there are now inconsistent addresses that need to be
flushed before we return to user mode. These could be for the active page table,
but also for an inactive page table, where the need for flushing is observed in
the asids_consistent invariant.

6.3 Context Switch

We have so far shown reduction theorems for simpler reasoning when nothing
interesting happens to the TLB. This section is the opposite: context switching.

14

a page fault handler, the logic can be extended to take this conditional execution
into account, for instance using an exception mechanism or a conditional jump.
In that case, the condition that addresses are mapped can be dropped, and we
arrive at a standard Hoare logic assignment rule.

6.2 Kernel Execution

User execution boils down to standard reasoning. We can show that kernel exe-
cution without virtual memory modifications do as well.

As mentioned in Sect. 5, the safe set for kernel execution is the entire kernel
window, i.e. the virtual addresses that are mapped by the global mappings,
minus the addresses of the page table entries that encode these global mappings.
Since we will need to re-establish this set every time we switch to a di↵erent
page table, and it is always safe to reduce the safe set, we not only remove the
kernel window encoding in the current page table, but also that of of all other
page tables the kernel might switch to and call this set kernel_safe.

Since we fixed the global mappings in mmu_layout, we can give a short,
closed form of translation for addresses in kernel_safe: k_phy_ad vp = Addr vp -

offset. With these, we can formulate a theorem for assignments in kernel mode
that do not touch any of the virtual memory data structures, i.e. when the write
does not take place in any of the addresses covered by kernel_data.

Theorem 4 If the mmu_layout invariants hold, we are in kernel mode, and we
are performing a write in the kernel safe set that does not touch any MMU-
relevant data structures, then the mmu_layout invariants are preserved and the
e↵ect is a simple heap update with known constant address translation.

{|�s. mmu_layout s ^ mode s = Kernel ^ safe_set (kernel_safe s) s ^
asids_consistent s ^ [[lval]] s = bvpc ^ [[rval]] s = bvc ^
Addr vp 2 kernel_safe s ^ k_phy_ad vp /2 kernel_data_area s|}

lval ::= rval
{|�s. mmu_layout s ^ mode s = Kernel ^ safe_set (kernel_safe s) s ^

asids_consistent s ^ heap s (k_phy_ad vp) = bvc|}

Proof. See lemma kernel_safe_assignemnt in [18].

This lemma covers kernel code that is uninteresting for the purposes of the
MMU and TLB, which is the majority of code in a normal kernel. The Isabelle
theories [18] also contain examples for page table modifications. The main dif-
ference to this theorem is that, while the write still happens in the safe set, and
the safe set is preserved, there are now inconsistent addresses that need to be
flushed before we return to user mode. These could be for the active page table,
but also for an inactive page table, where the need for flushing is observed in
the asids_consistent invariant.

6.3 Context Switch

We have so far shown reduction theorems for simpler reasoning when nothing
interesting happens to the TLB. This section is the opposite: context switching.

14

a page fault handler, the logic can be extended to take this conditional execution
into account, for instance using an exception mechanism or a conditional jump.
In that case, the condition that addresses are mapped can be dropped, and we
arrive at a standard Hoare logic assignment rule.

6.2 Kernel Execution

User execution boils down to standard reasoning. We can show that kernel exe-
cution without virtual memory modifications do as well.

As mentioned in Sect. 5, the safe set for kernel execution is the entire kernel
window, i.e. the virtual addresses that are mapped by the global mappings,
minus the addresses of the page table entries that encode these global mappings.
Since we will need to re-establish this set every time we switch to a di↵erent
page table, and it is always safe to reduce the safe set, we not only remove the
kernel window encoding in the current page table, but also that of of all other
page tables the kernel might switch to and call this set kernel_safe.

Since we fixed the global mappings in mmu_layout, we can give a short,
closed form of translation for addresses in kernel_safe: k_phy_ad vp = Addr vp -

offset. With these, we can formulate a theorem for assignments in kernel mode
that do not touch any of the virtual memory data structures, i.e. when the write
does not take place in any of the addresses covered by kernel_data.

Theorem 4 If the mmu_layout invariants hold, we are in kernel mode, and we
are performing a write in the kernel safe set that does not touch any MMU-
relevant data structures, then the mmu_layout invariants are preserved and the
e↵ect is a simple heap update with known constant address translation.

{|�s. mmu_layout s ^ mode s = Kernel ^ safe_set (kernel_safe s) s ^
asids_consistent s ^ [[lval]] s = bvpc ^ [[rval]] s = bvc ^
Addr vp 2 kernel_safe s ^ k_phy_ad vp /2 kernel_data_area s|}

lval ::= rval
{|�s. mmu_layout s ^ mode s = Kernel ^ safe_set (kernel_safe s) s ^

asids_consistent s ^ heap s (k_phy_ad vp) = bvc|}

Proof. See lemma kernel_safe_assignemnt in [18].

This lemma covers kernel code that is uninteresting for the purposes of the
MMU and TLB, which is the majority of code in a normal kernel. The Isabelle
theories [18] also contain examples for page table modifications. The main dif-
ference to this theorem is that, while the write still happens in the safe set, and
the safe set is preserved, there are now inconsistent addresses that need to be
flushed before we return to user mode. These could be for the active page table,
but also for an inactive page table, where the need for flushing is observed in
the asids_consistent invariant.

6.3 Context Switch

We have so far shown reduction theorems for simpler reasoning when nothing
interesting happens to the TLB. This section is the opposite: context switching.

14

a page fault handler, the logic can be extended to take this conditional execution
into account, for instance using an exception mechanism or a conditional jump.
In that case, the condition that addresses are mapped can be dropped, and we
arrive at a standard Hoare logic assignment rule.

6.2 Kernel Execution

User execution boils down to standard reasoning. We can show that kernel exe-
cution without virtual memory modifications do as well.

As mentioned in Sect. 5, the safe set for kernel execution is the entire kernel
window, i.e. the virtual addresses that are mapped by the global mappings,
minus the addresses of the page table entries that encode these global mappings.
Since we will need to re-establish this set every time we switch to a di↵erent
page table, and it is always safe to reduce the safe set, we not only remove the
kernel window encoding in the current page table, but also that of of all other
page tables the kernel might switch to and call this set kernel_safe.

Since we fixed the global mappings in mmu_layout, we can give a short,
closed form of translation for addresses in kernel_safe: k_phy_ad vp = Addr vp -

offset. With these, we can formulate a theorem for assignments in kernel mode
that do not touch any of the virtual memory data structures, i.e. when the write
does not take place in any of the addresses covered by kernel_data.

Theorem 4 If the mmu_layout invariants hold, we are in kernel mode, and we
are performing a write in the kernel safe set that does not touch any MMU-
relevant data structures, then the mmu_layout invariants are preserved and the
e↵ect is a simple heap update with known constant address translation.

{|�s. mmu_layout s ^ mode s = Kernel ^ safe_set (kernel_safe s) s ^
asids_consistent s ^ [[lval]] s = bvpc ^ [[rval]] s = bvc ^
Addr vp 2 kernel_safe s ^ k_phy_ad vp /2 kernel_data_area s|}

lval ::= rval
{|�s. mmu_layout s ^ mode s = Kernel ^ safe_set (kernel_safe s) s ^

asids_consistent s ^ heap s (k_phy_ad vp) = bvc|}

Proof. See lemma kernel_safe_assignemnt in [18].

This lemma covers kernel code that is uninteresting for the purposes of the
MMU and TLB, which is the majority of code in a normal kernel. The Isabelle
theories [18] also contain examples for page table modifications. The main dif-
ference to this theorem is that, while the write still happens in the safe set, and
the safe set is preserved, there are now inconsistent addresses that need to be
flushed before we return to user mode. These could be for the active page table,
but also for an inactive page table, where the need for flushing is observed in
the asids_consistent invariant.

6.3 Context Switch

We have so far shown reduction theorems for simpler reasoning when nothing
interesting happens to the TLB. This section is the opposite: context switching.

14

a page fault handler, the logic can be extended to take this conditional execution
into account, for instance using an exception mechanism or a conditional jump.
In that case, the condition that addresses are mapped can be dropped, and we
arrive at a standard Hoare logic assignment rule.

6.2 Kernel Execution

User execution boils down to standard reasoning. We can show that kernel exe-
cution without virtual memory modifications do as well.

As mentioned in Sect. 5, the safe set for kernel execution is the entire kernel
window, i.e. the virtual addresses that are mapped by the global mappings,
minus the addresses of the page table entries that encode these global mappings.
Since we will need to re-establish this set every time we switch to a di↵erent
page table, and it is always safe to reduce the safe set, we not only remove the
kernel window encoding in the current page table, but also that of of all other
page tables the kernel might switch to and call this set kernel_safe.

Since we fixed the global mappings in mmu_layout, we can give a short,
closed form of translation for addresses in kernel_safe: k_phy_ad vp = Addr vp -

offset. With these, we can formulate a theorem for assignments in kernel mode
that do not touch any of the virtual memory data structures, i.e. when the write
does not take place in any of the addresses covered by kernel_data.

Theorem 4 If the mmu_layout invariants hold, we are in kernel mode, and we
are performing a write in the kernel safe set that does not touch any MMU-
relevant data structures, then the mmu_layout invariants are preserved and the
e↵ect is a simple heap update with known constant address translation.

{|�s. mmu_layout s ^ mode s = Kernel ^ safe_set (kernel_safe s) s ^
asids_consistent s ^ [[lval]] s = bvpc ^ [[rval]] s = bvc ^
Addr vp 2 kernel_safe s ^ k_phy_ad vp /2 kernel_data_area s|}

lval ::= rval
{|�s. mmu_layout s ^ mode s = Kernel ^ safe_set (kernel_safe s) s ^

asids_consistent s ^ heap s (k_phy_ad vp) = bvc|}

Proof. See lemma kernel_safe_assignemnt in [18].

This lemma covers kernel code that is uninteresting for the purposes of the
MMU and TLB, which is the majority of code in a normal kernel. The Isabelle
theories [18] also contain examples for page table modifications. The main dif-
ference to this theorem is that, while the write still happens in the safe set, and
the safe set is preserved, there are now inconsistent addresses that need to be
flushed before we return to user mode. These could be for the active page table,
but also for an inactive page table, where the need for flushing is observed in
the asids_consistent invariant.

6.3 Context Switch

We have so far shown reduction theorems for simpler reasoning when nothing
interesting happens to the TLB. This section is the opposite: context switching.

14

a page fault handler, the logic can be extended to take this conditional execution
into account, for instance using an exception mechanism or a conditional jump.
In that case, the condition that addresses are mapped can be dropped, and we
arrive at a standard Hoare logic assignment rule.

6.2 Kernel Execution

User execution boils down to standard reasoning. We can show that kernel exe-
cution without virtual memory modifications do as well.

As mentioned in Sect. 5, the safe set for kernel execution is the entire kernel
window, i.e. the virtual addresses that are mapped by the global mappings,
minus the addresses of the page table entries that encode these global mappings.
Since we will need to re-establish this set every time we switch to a di↵erent
page table, and it is always safe to reduce the safe set, we not only remove the
kernel window encoding in the current page table, but also that of of all other
page tables the kernel might switch to and call this set kernel_safe.

Since we fixed the global mappings in mmu_layout, we can give a short,
closed form of translation for addresses in kernel_safe: k_phy_ad vp = Addr vp -

offset. With these, we can formulate a theorem for assignments in kernel mode
that do not touch any of the virtual memory data structures, i.e. when the write
does not take place in any of the addresses covered by kernel_data.

Theorem 4 If the mmu_layout invariants hold, we are in kernel mode, and we
are performing a write in the kernel safe set that does not touch any MMU-
relevant data structures, then the mmu_layout invariants are preserved and the
e↵ect is a simple heap update with known constant address translation.

{|�s. mmu_layout s ^ mode s = Kernel ^ safe_set (kernel_safe s) s ^
asids_consistent s ^ [[lval]] s = bvpc ^ [[rval]] s = bvc ^
Addr vp 2 kernel_safe s ^ k_phy_ad vp /2 kernel_data_area s|}

lval ::= rval
{|�s. mmu_layout s ^ mode s = Kernel ^ safe_set (kernel_safe s) s ^

asids_consistent s ^ heap s (k_phy_ad vp) = bvc|}

Proof. See lemma kernel_safe_assignemnt in [18].

This lemma covers kernel code that is uninteresting for the purposes of the
MMU and TLB, which is the majority of code in a normal kernel. The Isabelle
theories [18] also contain examples for page table modifications. The main dif-
ference to this theorem is that, while the write still happens in the safe set, and
the safe set is preserved, there are now inconsistent addresses that need to be
flushed before we return to user mode. These could be for the active page table,
but also for an inactive page table, where the need for flushing is observed in
the asids_consistent invariant.

6.3 Context Switch

We have so far shown reduction theorems for simpler reasoning when nothing
interesting happens to the TLB. This section is the opposite: context switching.

14

a page fault handler, the logic can be extended to take this conditional execution
into account, for instance using an exception mechanism or a conditional jump.
In that case, the condition that addresses are mapped can be dropped, and we
arrive at a standard Hoare logic assignment rule.

6.2 Kernel Execution

User execution boils down to standard reasoning. We can show that kernel exe-
cution without virtual memory modifications do as well.

As mentioned in Sect. 5, the safe set for kernel execution is the entire kernel
window, i.e. the virtual addresses that are mapped by the global mappings,
minus the addresses of the page table entries that encode these global mappings.
Since we will need to re-establish this set every time we switch to a di↵erent
page table, and it is always safe to reduce the safe set, we not only remove the
kernel window encoding in the current page table, but also that of of all other
page tables the kernel might switch to and call this set kernel_safe.

Since we fixed the global mappings in mmu_layout, we can give a short,
closed form of translation for addresses in kernel_safe: k_phy_ad vp = Addr vp -

offset. With these, we can formulate a theorem for assignments in kernel mode
that do not touch any of the virtual memory data structures, i.e. when the write
does not take place in any of the addresses covered by kernel_data.

Theorem 4 If the mmu_layout invariants hold, we are in kernel mode, and we
are performing a write in the kernel safe set that does not touch any MMU-
relevant data structures, then the mmu_layout invariants are preserved and the
e↵ect is a simple heap update with known constant address translation.

{|�s. mmu_layout s ^ mode s = Kernel ^ safe_set (kernel_safe s) s ^
asids_consistent s ^ [[lval]] s = bvpc ^ [[rval]] s = bvc ^
Addr vp 2 kernel_safe s ^ k_phy_ad vp /2 kernel_data_area s|}

lval ::= rval
{|�s. mmu_layout s ^ mode s = Kernel ^ safe_set (kernel_safe s) s ^

asids_consistent s ^ heap s (k_phy_ad vp) = bvc|}

Proof. See lemma kernel_safe_assignemnt in [18].

This lemma covers kernel code that is uninteresting for the purposes of the
MMU and TLB, which is the majority of code in a normal kernel. The Isabelle
theories [18] also contain examples for page table modifications. The main dif-
ference to this theorem is that, while the write still happens in the safe set, and
the safe set is preserved, there are now inconsistent addresses that need to be
flushed before we return to user mode. These could be for the active page table,
but also for an inactive page table, where the need for flushing is observed in
the asids_consistent invariant.

6.3 Context Switch

We have so far shown reduction theorems for simpler reasoning when nothing
interesting happens to the TLB. This section is the opposite: context switching.

14

 Program Verification in the Presence of TLB-Address Translation Hira Syeda

a page fault handler, the logic can be extended to take this conditional execution
into account, for instance using an exception mechanism or a conditional jump.
In that case, the condition that addresses are mapped can be dropped, and we
arrive at a standard Hoare logic assignment rule.

6.2 Kernel Execution

User execution boils down to standard reasoning. We can show that kernel exe-
cution without virtual memory modifications do as well.

As mentioned in Sect. 5, the safe set for kernel execution is the entire kernel
window, i.e. the virtual addresses that are mapped by the global mappings,
minus the addresses of the page table entries that encode these global mappings.
Since we will need to re-establish this set every time we switch to a di↵erent
page table, and it is always safe to reduce the safe set, we not only remove the
kernel window encoding in the current page table, but also that of of all other
page tables the kernel might switch to and call this set kernel_safe.

Since we fixed the global mappings in mmu_layout, we can give a short,
closed form of translation for addresses in kernel_safe: k_phy_ad vp = Addr vp -

offset. With these, we can formulate a theorem for assignments in kernel mode
that do not touch any of the virtual memory data structures, i.e. when the write
does not take place in any of the addresses covered by kernel_data.

Theorem 4 If the mmu_layout invariants hold, we are in kernel mode, and we
are performing a write in the kernel safe set that does not touch any MMU-
relevant data structures, then the mmu_layout invariants are preserved and the
e↵ect is a simple heap update with known constant address translation.

{|�s. mmu_layout s ^ mode s = Kernel ^ safe_set (kernel_safe s) s ^
asids_consistent s ^ [[lval]] s = bvpc ^ [[rval]] s = bvc ^
Addr vp 2 kernel_safe s ^ k_phy_ad vp /2 kernel_data_area s|}

lval ::= rval
{|�s. mmu_layout s ^ mode s = Kernel ^ safe_set (kernel_safe s) s ^

asids_consistent s ^ heap s (k_phy_ad vp) = bvc|}

Proof. See lemma kernel_safe_assignemnt in [18].

This lemma covers kernel code that is uninteresting for the purposes of the
MMU and TLB, which is the majority of code in a normal kernel. The Isabelle
theories [18] also contain examples for page table modifications. The main dif-
ference to this theorem is that, while the write still happens in the safe set, and
the safe set is preserved, there are now inconsistent addresses that need to be
flushed before we return to user mode. These could be for the active page table,
but also for an inactive page table, where the need for flushing is observed in
the asids_consistent invariant.

6.3 Context Switch

We have so far shown reduction theorems for simpler reasoning when nothing
interesting happens to the TLB. This section is the opposite: context switching.

14

- Kernel-level assignment
- that doesn't modify page table

29

Reduction Theorems

a page fault handler, the logic can be extended to take this conditional execution
into account, for instance using an exception mechanism or a conditional jump.
In that case, the condition that addresses are mapped can be dropped, and we
arrive at a standard Hoare logic assignment rule.

6.2 Kernel Execution

User execution boils down to standard reasoning. We can show that kernel exe-
cution without virtual memory modifications do as well.

As mentioned in Sect. 5, the safe set for kernel execution is the entire kernel
window, i.e. the virtual addresses that are mapped by the global mappings,
minus the addresses of the page table entries that encode these global mappings.
Since we will need to re-establish this set every time we switch to a di↵erent
page table, and it is always safe to reduce the safe set, we not only remove the
kernel window encoding in the current page table, but also that of of all other
page tables the kernel might switch to and call this set kernel_safe.

Since we fixed the global mappings in mmu_layout, we can give a short,
closed form of translation for addresses in kernel_safe: k_phy_ad vp = Addr vp -

offset. With these, we can formulate a theorem for assignments in kernel mode
that do not touch any of the virtual memory data structures, i.e. when the write
does not take place in any of the addresses covered by kernel_data.

Theorem 4 If the mmu_layout invariants hold, we are in kernel mode, and we
are performing a write in the kernel safe set that does not touch any MMU-
relevant data structures, then the mmu_layout invariants are preserved and the
e↵ect is a simple heap update with known constant address translation.

{|�s. mmu_layout s ^ mode s = Kernel ^ safe_set (kernel_safe s) s ^
asids_consistent s ^ [[lval]] s = bvpc ^ [[rval]] s = bvc ^
Addr vp 2 kernel_safe s ^ k_phy_ad vp /2 kernel_data_area s|}

lval ::= rval
{|�s. mmu_layout s ^ mode s = Kernel ^ safe_set (kernel_safe s) s ^

asids_consistent s ^ heap s (k_phy_ad vp) = bvc|}

Proof. See lemma kernel_safe_assignemnt in [18].

This lemma covers kernel code that is uninteresting for the purposes of the
MMU and TLB, which is the majority of code in a normal kernel. The Isabelle
theories [18] also contain examples for page table modifications. The main dif-
ference to this theorem is that, while the write still happens in the safe set, and
the safe set is preserved, there are now inconsistent addresses that need to be
flushed before we return to user mode. These could be for the active page table,
but also for an inactive page table, where the need for flushing is observed in
the asids_consistent invariant.

6.3 Context Switch

We have so far shown reduction theorems for simpler reasoning when nothing
interesting happens to the TLB. This section is the opposite: context switching.

14

a page fault handler, the logic can be extended to take this conditional execution
into account, for instance using an exception mechanism or a conditional jump.
In that case, the condition that addresses are mapped can be dropped, and we
arrive at a standard Hoare logic assignment rule.

6.2 Kernel Execution

User execution boils down to standard reasoning. We can show that kernel exe-
cution without virtual memory modifications do as well.

As mentioned in Sect. 5, the safe set for kernel execution is the entire kernel
window, i.e. the virtual addresses that are mapped by the global mappings,
minus the addresses of the page table entries that encode these global mappings.
Since we will need to re-establish this set every time we switch to a di↵erent
page table, and it is always safe to reduce the safe set, we not only remove the
kernel window encoding in the current page table, but also that of of all other
page tables the kernel might switch to and call this set kernel_safe.

Since we fixed the global mappings in mmu_layout, we can give a short,
closed form of translation for addresses in kernel_safe: k_phy_ad vp = Addr vp -

offset. With these, we can formulate a theorem for assignments in kernel mode
that do not touch any of the virtual memory data structures, i.e. when the write
does not take place in any of the addresses covered by kernel_data.

Theorem 4 If the mmu_layout invariants hold, we are in kernel mode, and we
are performing a write in the kernel safe set that does not touch any MMU-
relevant data structures, then the mmu_layout invariants are preserved and the
e↵ect is a simple heap update with known constant address translation.

{|�s. mmu_layout s ^ mode s = Kernel ^ safe_set (kernel_safe s) s ^
asids_consistent s ^ [[lval]] s = bvpc ^ [[rval]] s = bvc ^
Addr vp 2 kernel_safe s ^ k_phy_ad vp /2 kernel_data_area s|}

lval ::= rval
{|�s. mmu_layout s ^ mode s = Kernel ^ safe_set (kernel_safe s) s ^

asids_consistent s ^ heap s (k_phy_ad vp) = bvc|}

Proof. See lemma kernel_safe_assignemnt in [18].

This lemma covers kernel code that is uninteresting for the purposes of the
MMU and TLB, which is the majority of code in a normal kernel. The Isabelle
theories [18] also contain examples for page table modifications. The main dif-
ference to this theorem is that, while the write still happens in the safe set, and
the safe set is preserved, there are now inconsistent addresses that need to be
flushed before we return to user mode. These could be for the active page table,
but also for an inactive page table, where the need for flushing is observed in
the asids_consistent invariant.

6.3 Context Switch

We have so far shown reduction theorems for simpler reasoning when nothing
interesting happens to the TLB. This section is the opposite: context switching.

14

a page fault handler, the logic can be extended to take this conditional execution
into account, for instance using an exception mechanism or a conditional jump.
In that case, the condition that addresses are mapped can be dropped, and we
arrive at a standard Hoare logic assignment rule.

6.2 Kernel Execution

User execution boils down to standard reasoning. We can show that kernel exe-
cution without virtual memory modifications do as well.

As mentioned in Sect. 5, the safe set for kernel execution is the entire kernel
window, i.e. the virtual addresses that are mapped by the global mappings,
minus the addresses of the page table entries that encode these global mappings.
Since we will need to re-establish this set every time we switch to a di↵erent
page table, and it is always safe to reduce the safe set, we not only remove the
kernel window encoding in the current page table, but also that of of all other
page tables the kernel might switch to and call this set kernel_safe.

Since we fixed the global mappings in mmu_layout, we can give a short,
closed form of translation for addresses in kernel_safe: k_phy_ad vp = Addr vp -

offset. With these, we can formulate a theorem for assignments in kernel mode
that do not touch any of the virtual memory data structures, i.e. when the write
does not take place in any of the addresses covered by kernel_data.

Theorem 4 If the mmu_layout invariants hold, we are in kernel mode, and we
are performing a write in the kernel safe set that does not touch any MMU-
relevant data structures, then the mmu_layout invariants are preserved and the
e↵ect is a simple heap update with known constant address translation.

{|�s. mmu_layout s ^ mode s = Kernel ^ safe_set (kernel_safe s) s ^
asids_consistent s ^ [[lval]] s = bvpc ^ [[rval]] s = bvc ^
Addr vp 2 kernel_safe s ^ k_phy_ad vp /2 kernel_data_area s|}

lval ::= rval
{|�s. mmu_layout s ^ mode s = Kernel ^ safe_set (kernel_safe s) s ^

asids_consistent s ^ heap s (k_phy_ad vp) = bvc|}

Proof. See lemma kernel_safe_assignemnt in [18].

This lemma covers kernel code that is uninteresting for the purposes of the
MMU and TLB, which is the majority of code in a normal kernel. The Isabelle
theories [18] also contain examples for page table modifications. The main dif-
ference to this theorem is that, while the write still happens in the safe set, and
the safe set is preserved, there are now inconsistent addresses that need to be
flushed before we return to user mode. These could be for the active page table,
but also for an inactive page table, where the need for flushing is observed in
the asids_consistent invariant.

6.3 Context Switch

We have so far shown reduction theorems for simpler reasoning when nothing
interesting happens to the TLB. This section is the opposite: context switching.

14

a page fault handler, the logic can be extended to take this conditional execution
into account, for instance using an exception mechanism or a conditional jump.
In that case, the condition that addresses are mapped can be dropped, and we
arrive at a standard Hoare logic assignment rule.

6.2 Kernel Execution

User execution boils down to standard reasoning. We can show that kernel exe-
cution without virtual memory modifications do as well.

As mentioned in Sect. 5, the safe set for kernel execution is the entire kernel
window, i.e. the virtual addresses that are mapped by the global mappings,
minus the addresses of the page table entries that encode these global mappings.
Since we will need to re-establish this set every time we switch to a di↵erent
page table, and it is always safe to reduce the safe set, we not only remove the
kernel window encoding in the current page table, but also that of of all other
page tables the kernel might switch to and call this set kernel_safe.

Since we fixed the global mappings in mmu_layout, we can give a short,
closed form of translation for addresses in kernel_safe: k_phy_ad vp = Addr vp -

offset. With these, we can formulate a theorem for assignments in kernel mode
that do not touch any of the virtual memory data structures, i.e. when the write
does not take place in any of the addresses covered by kernel_data.

Theorem 4 If the mmu_layout invariants hold, we are in kernel mode, and we
are performing a write in the kernel safe set that does not touch any MMU-
relevant data structures, then the mmu_layout invariants are preserved and the
e↵ect is a simple heap update with known constant address translation.

{|�s. mmu_layout s ^ mode s = Kernel ^ safe_set (kernel_safe s) s ^
asids_consistent s ^ [[lval]] s = bvpc ^ [[rval]] s = bvc ^
Addr vp 2 kernel_safe s ^ k_phy_ad vp /2 kernel_data_area s|}

lval ::= rval
{|�s. mmu_layout s ^ mode s = Kernel ^ safe_set (kernel_safe s) s ^

asids_consistent s ^ heap s (k_phy_ad vp) = bvc|}

Proof. See lemma kernel_safe_assignemnt in [18].

This lemma covers kernel code that is uninteresting for the purposes of the
MMU and TLB, which is the majority of code in a normal kernel. The Isabelle
theories [18] also contain examples for page table modifications. The main dif-
ference to this theorem is that, while the write still happens in the safe set, and
the safe set is preserved, there are now inconsistent addresses that need to be
flushed before we return to user mode. These could be for the active page table,
but also for an inactive page table, where the need for flushing is observed in
the asids_consistent invariant.

6.3 Context Switch

We have so far shown reduction theorems for simpler reasoning when nothing
interesting happens to the TLB. This section is the opposite: context switching.

14

a page fault handler, the logic can be extended to take this conditional execution
into account, for instance using an exception mechanism or a conditional jump.
In that case, the condition that addresses are mapped can be dropped, and we
arrive at a standard Hoare logic assignment rule.

6.2 Kernel Execution

User execution boils down to standard reasoning. We can show that kernel exe-
cution without virtual memory modifications do as well.

As mentioned in Sect. 5, the safe set for kernel execution is the entire kernel
window, i.e. the virtual addresses that are mapped by the global mappings,
minus the addresses of the page table entries that encode these global mappings.
Since we will need to re-establish this set every time we switch to a di↵erent
page table, and it is always safe to reduce the safe set, we not only remove the
kernel window encoding in the current page table, but also that of of all other
page tables the kernel might switch to and call this set kernel_safe.

Since we fixed the global mappings in mmu_layout, we can give a short,
closed form of translation for addresses in kernel_safe: k_phy_ad vp = Addr vp -

offset. With these, we can formulate a theorem for assignments in kernel mode
that do not touch any of the virtual memory data structures, i.e. when the write
does not take place in any of the addresses covered by kernel_data.

Theorem 4 If the mmu_layout invariants hold, we are in kernel mode, and we
are performing a write in the kernel safe set that does not touch any MMU-
relevant data structures, then the mmu_layout invariants are preserved and the
e↵ect is a simple heap update with known constant address translation.

{|�s. mmu_layout s ^ mode s = Kernel ^ safe_set (kernel_safe s) s ^
asids_consistent s ^ [[lval]] s = bvpc ^ [[rval]] s = bvc ^
Addr vp 2 kernel_safe s ^ k_phy_ad vp /2 kernel_data_area s|}

lval ::= rval
{|�s. mmu_layout s ^ mode s = Kernel ^ safe_set (kernel_safe s) s ^

asids_consistent s ^ heap s (k_phy_ad vp) = bvc|}

Proof. See lemma kernel_safe_assignemnt in [18].

This lemma covers kernel code that is uninteresting for the purposes of the
MMU and TLB, which is the majority of code in a normal kernel. The Isabelle
theories [18] also contain examples for page table modifications. The main dif-
ference to this theorem is that, while the write still happens in the safe set, and
the safe set is preserved, there are now inconsistent addresses that need to be
flushed before we return to user mode. These could be for the active page table,
but also for an inactive page table, where the need for flushing is observed in
the asids_consistent invariant.

6.3 Context Switch

We have so far shown reduction theorems for simpler reasoning when nothing
interesting happens to the TLB. This section is the opposite: context switching.

14

a page fault handler, the logic can be extended to take this conditional execution
into account, for instance using an exception mechanism or a conditional jump.
In that case, the condition that addresses are mapped can be dropped, and we
arrive at a standard Hoare logic assignment rule.

6.2 Kernel Execution

User execution boils down to standard reasoning. We can show that kernel exe-
cution without virtual memory modifications do as well.

As mentioned in Sect. 5, the safe set for kernel execution is the entire kernel
window, i.e. the virtual addresses that are mapped by the global mappings,
minus the addresses of the page table entries that encode these global mappings.
Since we will need to re-establish this set every time we switch to a di↵erent
page table, and it is always safe to reduce the safe set, we not only remove the
kernel window encoding in the current page table, but also that of of all other
page tables the kernel might switch to and call this set kernel_safe.

Since we fixed the global mappings in mmu_layout, we can give a short,
closed form of translation for addresses in kernel_safe: k_phy_ad vp = Addr vp -

offset. With these, we can formulate a theorem for assignments in kernel mode
that do not touch any of the virtual memory data structures, i.e. when the write
does not take place in any of the addresses covered by kernel_data.

Theorem 4 If the mmu_layout invariants hold, we are in kernel mode, and we
are performing a write in the kernel safe set that does not touch any MMU-
relevant data structures, then the mmu_layout invariants are preserved and the
e↵ect is a simple heap update with known constant address translation.

{|�s. mmu_layout s ^ mode s = Kernel ^ safe_set (kernel_safe s) s ^
asids_consistent s ^ [[lval]] s = bvpc ^ [[rval]] s = bvc ^
Addr vp 2 kernel_safe s ^ k_phy_ad vp /2 kernel_data_area s|}

lval ::= rval
{|�s. mmu_layout s ^ mode s = Kernel ^ safe_set (kernel_safe s) s ^

asids_consistent s ^ heap s (k_phy_ad vp) = bvc|}

Proof. See lemma kernel_safe_assignemnt in [18].

This lemma covers kernel code that is uninteresting for the purposes of the
MMU and TLB, which is the majority of code in a normal kernel. The Isabelle
theories [18] also contain examples for page table modifications. The main dif-
ference to this theorem is that, while the write still happens in the safe set, and
the safe set is preserved, there are now inconsistent addresses that need to be
flushed before we return to user mode. These could be for the active page table,
but also for an inactive page table, where the need for flushing is observed in
the asids_consistent invariant.

6.3 Context Switch

We have so far shown reduction theorems for simpler reasoning when nothing
interesting happens to the TLB. This section is the opposite: context switching.

14

a page fault handler, the logic can be extended to take this conditional execution
into account, for instance using an exception mechanism or a conditional jump.
In that case, the condition that addresses are mapped can be dropped, and we
arrive at a standard Hoare logic assignment rule.

6.2 Kernel Execution

User execution boils down to standard reasoning. We can show that kernel exe-
cution without virtual memory modifications do as well.

As mentioned in Sect. 5, the safe set for kernel execution is the entire kernel
window, i.e. the virtual addresses that are mapped by the global mappings,
minus the addresses of the page table entries that encode these global mappings.
Since we will need to re-establish this set every time we switch to a di↵erent
page table, and it is always safe to reduce the safe set, we not only remove the
kernel window encoding in the current page table, but also that of of all other
page tables the kernel might switch to and call this set kernel_safe.

Since we fixed the global mappings in mmu_layout, we can give a short,
closed form of translation for addresses in kernel_safe: k_phy_ad vp = Addr vp -

offset. With these, we can formulate a theorem for assignments in kernel mode
that do not touch any of the virtual memory data structures, i.e. when the write
does not take place in any of the addresses covered by kernel_data.

Theorem 4 If the mmu_layout invariants hold, we are in kernel mode, and we
are performing a write in the kernel safe set that does not touch any MMU-
relevant data structures, then the mmu_layout invariants are preserved and the
e↵ect is a simple heap update with known constant address translation.

{|�s. mmu_layout s ^ mode s = Kernel ^ safe_set (kernel_safe s) s ^
asids_consistent s ^ [[lval]] s = bvpc ^ [[rval]] s = bvc ^
Addr vp 2 kernel_safe s ^ k_phy_ad vp /2 kernel_data_area s|}

lval ::= rval
{|�s. mmu_layout s ^ mode s = Kernel ^ safe_set (kernel_safe s) s ^

asids_consistent s ^ heap s (k_phy_ad vp) = bvc|}

Proof. See lemma kernel_safe_assignemnt in [18].

This lemma covers kernel code that is uninteresting for the purposes of the
MMU and TLB, which is the majority of code in a normal kernel. The Isabelle
theories [18] also contain examples for page table modifications. The main dif-
ference to this theorem is that, while the write still happens in the safe set, and
the safe set is preserved, there are now inconsistent addresses that need to be
flushed before we return to user mode. These could be for the active page table,
but also for an inactive page table, where the need for flushing is observed in
the asids_consistent invariant.

6.3 Context Switch

We have so far shown reduction theorems for simpler reasoning when nothing
interesting happens to the TLB. This section is the opposite: context switching.

14

a page fault handler, the logic can be extended to take this conditional execution
into account, for instance using an exception mechanism or a conditional jump.
In that case, the condition that addresses are mapped can be dropped, and we
arrive at a standard Hoare logic assignment rule.

6.2 Kernel Execution

User execution boils down to standard reasoning. We can show that kernel exe-
cution without virtual memory modifications do as well.

As mentioned in Sect. 5, the safe set for kernel execution is the entire kernel
window, i.e. the virtual addresses that are mapped by the global mappings,
minus the addresses of the page table entries that encode these global mappings.
Since we will need to re-establish this set every time we switch to a di↵erent
page table, and it is always safe to reduce the safe set, we not only remove the
kernel window encoding in the current page table, but also that of of all other
page tables the kernel might switch to and call this set kernel_safe.

Since we fixed the global mappings in mmu_layout, we can give a short,
closed form of translation for addresses in kernel_safe: k_phy_ad vp = Addr vp -

offset. With these, we can formulate a theorem for assignments in kernel mode
that do not touch any of the virtual memory data structures, i.e. when the write
does not take place in any of the addresses covered by kernel_data.

Theorem 4 If the mmu_layout invariants hold, we are in kernel mode, and we
are performing a write in the kernel safe set that does not touch any MMU-
relevant data structures, then the mmu_layout invariants are preserved and the
e↵ect is a simple heap update with known constant address translation.

{|�s. mmu_layout s ^ mode s = Kernel ^ safe_set (kernel_safe s) s ^
asids_consistent s ^ [[lval]] s = bvpc ^ [[rval]] s = bvc ^
Addr vp 2 kernel_safe s ^ k_phy_ad vp /2 kernel_data_area s|}

lval ::= rval
{|�s. mmu_layout s ^ mode s = Kernel ^ safe_set (kernel_safe s) s ^

asids_consistent s ^ heap s (k_phy_ad vp) = bvc|}

Proof. See lemma kernel_safe_assignemnt in [18].

This lemma covers kernel code that is uninteresting for the purposes of the
MMU and TLB, which is the majority of code in a normal kernel. The Isabelle
theories [18] also contain examples for page table modifications. The main dif-
ference to this theorem is that, while the write still happens in the safe set, and
the safe set is preserved, there are now inconsistent addresses that need to be
flushed before we return to user mode. These could be for the active page table,
but also for an inactive page table, where the need for flushing is observed in
the asids_consistent invariant.

6.3 Context Switch

We have so far shown reduction theorems for simpler reasoning when nothing
interesting happens to the TLB. This section is the opposite: context switching.

14

 Program Verification in the Presence of TLB-Address Translation Hira Syeda

a page fault handler, the logic can be extended to take this conditional execution
into account, for instance using an exception mechanism or a conditional jump.
In that case, the condition that addresses are mapped can be dropped, and we
arrive at a standard Hoare logic assignment rule.

6.2 Kernel Execution

User execution boils down to standard reasoning. We can show that kernel exe-
cution without virtual memory modifications do as well.

As mentioned in Sect. 5, the safe set for kernel execution is the entire kernel
window, i.e. the virtual addresses that are mapped by the global mappings,
minus the addresses of the page table entries that encode these global mappings.
Since we will need to re-establish this set every time we switch to a di↵erent
page table, and it is always safe to reduce the safe set, we not only remove the
kernel window encoding in the current page table, but also that of of all other
page tables the kernel might switch to and call this set kernel_safe.

Since we fixed the global mappings in mmu_layout, we can give a short,
closed form of translation for addresses in kernel_safe: k_phy_ad vp = Addr vp -

offset. With these, we can formulate a theorem for assignments in kernel mode
that do not touch any of the virtual memory data structures, i.e. when the write
does not take place in any of the addresses covered by kernel_data.

Theorem 4 If the mmu_layout invariants hold, we are in kernel mode, and we
are performing a write in the kernel safe set that does not touch any MMU-
relevant data structures, then the mmu_layout invariants are preserved and the
e↵ect is a simple heap update with known constant address translation.

{|�s. mmu_layout s ^ mode s = Kernel ^ safe_set (kernel_safe s) s ^
asids_consistent s ^ [[lval]] s = bvpc ^ [[rval]] s = bvc ^
Addr vp 2 kernel_safe s ^ k_phy_ad vp /2 kernel_data_area s|}

lval ::= rval
{|�s. mmu_layout s ^ mode s = Kernel ^ safe_set (kernel_safe s) s ^

asids_consistent s ^ heap s (k_phy_ad vp) = bvc|}

Proof. See lemma kernel_safe_assignemnt in [18].

This lemma covers kernel code that is uninteresting for the purposes of the
MMU and TLB, which is the majority of code in a normal kernel. The Isabelle
theories [18] also contain examples for page table modifications. The main dif-
ference to this theorem is that, while the write still happens in the safe set, and
the safe set is preserved, there are now inconsistent addresses that need to be
flushed before we return to user mode. These could be for the active page table,
but also for an inactive page table, where the need for flushing is observed in
the asids_consistent invariant.

6.3 Context Switch

We have so far shown reduction theorems for simpler reasoning when nothing
interesting happens to the TLB. This section is the opposite: context switching.

14

- Kernel-level assignment
- that doesn't modify page table

29

Reduction Theorems

a page fault handler, the logic can be extended to take this conditional execution
into account, for instance using an exception mechanism or a conditional jump.
In that case, the condition that addresses are mapped can be dropped, and we
arrive at a standard Hoare logic assignment rule.

6.2 Kernel Execution

User execution boils down to standard reasoning. We can show that kernel exe-
cution without virtual memory modifications do as well.

As mentioned in Sect. 5, the safe set for kernel execution is the entire kernel
window, i.e. the virtual addresses that are mapped by the global mappings,
minus the addresses of the page table entries that encode these global mappings.
Since we will need to re-establish this set every time we switch to a di↵erent
page table, and it is always safe to reduce the safe set, we not only remove the
kernel window encoding in the current page table, but also that of of all other
page tables the kernel might switch to and call this set kernel_safe.

Since we fixed the global mappings in mmu_layout, we can give a short,
closed form of translation for addresses in kernel_safe: k_phy_ad vp = Addr vp -

offset. With these, we can formulate a theorem for assignments in kernel mode
that do not touch any of the virtual memory data structures, i.e. when the write
does not take place in any of the addresses covered by kernel_data.

Theorem 4 If the mmu_layout invariants hold, we are in kernel mode, and we
are performing a write in the kernel safe set that does not touch any MMU-
relevant data structures, then the mmu_layout invariants are preserved and the
e↵ect is a simple heap update with known constant address translation.

{|�s. mmu_layout s ^ mode s = Kernel ^ safe_set (kernel_safe s) s ^
asids_consistent s ^ [[lval]] s = bvpc ^ [[rval]] s = bvc ^
Addr vp 2 kernel_safe s ^ k_phy_ad vp /2 kernel_data_area s|}

lval ::= rval
{|�s. mmu_layout s ^ mode s = Kernel ^ safe_set (kernel_safe s) s ^

asids_consistent s ^ heap s (k_phy_ad vp) = bvc|}

Proof. See lemma kernel_safe_assignemnt in [18].

This lemma covers kernel code that is uninteresting for the purposes of the
MMU and TLB, which is the majority of code in a normal kernel. The Isabelle
theories [18] also contain examples for page table modifications. The main dif-
ference to this theorem is that, while the write still happens in the safe set, and
the safe set is preserved, there are now inconsistent addresses that need to be
flushed before we return to user mode. These could be for the active page table,
but also for an inactive page table, where the need for flushing is observed in
the asids_consistent invariant.

6.3 Context Switch

We have so far shown reduction theorems for simpler reasoning when nothing
interesting happens to the TLB. This section is the opposite: context switching.

14

a page fault handler, the logic can be extended to take this conditional execution
into account, for instance using an exception mechanism or a conditional jump.
In that case, the condition that addresses are mapped can be dropped, and we
arrive at a standard Hoare logic assignment rule.

6.2 Kernel Execution

User execution boils down to standard reasoning. We can show that kernel exe-
cution without virtual memory modifications do as well.

As mentioned in Sect. 5, the safe set for kernel execution is the entire kernel
window, i.e. the virtual addresses that are mapped by the global mappings,
minus the addresses of the page table entries that encode these global mappings.
Since we will need to re-establish this set every time we switch to a di↵erent
page table, and it is always safe to reduce the safe set, we not only remove the
kernel window encoding in the current page table, but also that of of all other
page tables the kernel might switch to and call this set kernel_safe.

Since we fixed the global mappings in mmu_layout, we can give a short,
closed form of translation for addresses in kernel_safe: k_phy_ad vp = Addr vp -

offset. With these, we can formulate a theorem for assignments in kernel mode
that do not touch any of the virtual memory data structures, i.e. when the write
does not take place in any of the addresses covered by kernel_data.

Theorem 4 If the mmu_layout invariants hold, we are in kernel mode, and we
are performing a write in the kernel safe set that does not touch any MMU-
relevant data structures, then the mmu_layout invariants are preserved and the
e↵ect is a simple heap update with known constant address translation.

{|�s. mmu_layout s ^ mode s = Kernel ^ safe_set (kernel_safe s) s ^
asids_consistent s ^ [[lval]] s = bvpc ^ [[rval]] s = bvc ^
Addr vp 2 kernel_safe s ^ k_phy_ad vp /2 kernel_data_area s|}

lval ::= rval
{|�s. mmu_layout s ^ mode s = Kernel ^ safe_set (kernel_safe s) s ^

asids_consistent s ^ heap s (k_phy_ad vp) = bvc|}

Proof. See lemma kernel_safe_assignemnt in [18].

This lemma covers kernel code that is uninteresting for the purposes of the
MMU and TLB, which is the majority of code in a normal kernel. The Isabelle
theories [18] also contain examples for page table modifications. The main dif-
ference to this theorem is that, while the write still happens in the safe set, and
the safe set is preserved, there are now inconsistent addresses that need to be
flushed before we return to user mode. These could be for the active page table,
but also for an inactive page table, where the need for flushing is observed in
the asids_consistent invariant.

6.3 Context Switch

We have so far shown reduction theorems for simpler reasoning when nothing
interesting happens to the TLB. This section is the opposite: context switching.

14

a page fault handler, the logic can be extended to take this conditional execution
into account, for instance using an exception mechanism or a conditional jump.
In that case, the condition that addresses are mapped can be dropped, and we
arrive at a standard Hoare logic assignment rule.

6.2 Kernel Execution

User execution boils down to standard reasoning. We can show that kernel exe-
cution without virtual memory modifications do as well.

As mentioned in Sect. 5, the safe set for kernel execution is the entire kernel
window, i.e. the virtual addresses that are mapped by the global mappings,
minus the addresses of the page table entries that encode these global mappings.
Since we will need to re-establish this set every time we switch to a di↵erent
page table, and it is always safe to reduce the safe set, we not only remove the
kernel window encoding in the current page table, but also that of of all other
page tables the kernel might switch to and call this set kernel_safe.

Since we fixed the global mappings in mmu_layout, we can give a short,
closed form of translation for addresses in kernel_safe: k_phy_ad vp = Addr vp -

offset. With these, we can formulate a theorem for assignments in kernel mode
that do not touch any of the virtual memory data structures, i.e. when the write
does not take place in any of the addresses covered by kernel_data.

Theorem 4 If the mmu_layout invariants hold, we are in kernel mode, and we
are performing a write in the kernel safe set that does not touch any MMU-
relevant data structures, then the mmu_layout invariants are preserved and the
e↵ect is a simple heap update with known constant address translation.

{|�s. mmu_layout s ^ mode s = Kernel ^ safe_set (kernel_safe s) s ^
asids_consistent s ^ [[lval]] s = bvpc ^ [[rval]] s = bvc ^
Addr vp 2 kernel_safe s ^ k_phy_ad vp /2 kernel_data_area s|}

lval ::= rval
{|�s. mmu_layout s ^ mode s = Kernel ^ safe_set (kernel_safe s) s ^

asids_consistent s ^ heap s (k_phy_ad vp) = bvc|}

Proof. See lemma kernel_safe_assignemnt in [18].

This lemma covers kernel code that is uninteresting for the purposes of the
MMU and TLB, which is the majority of code in a normal kernel. The Isabelle
theories [18] also contain examples for page table modifications. The main dif-
ference to this theorem is that, while the write still happens in the safe set, and
the safe set is preserved, there are now inconsistent addresses that need to be
flushed before we return to user mode. These could be for the active page table,
but also for an inactive page table, where the need for flushing is observed in
the asids_consistent invariant.

6.3 Context Switch

We have so far shown reduction theorems for simpler reasoning when nothing
interesting happens to the TLB. This section is the opposite: context switching.

14

a page fault handler, the logic can be extended to take this conditional execution
into account, for instance using an exception mechanism or a conditional jump.
In that case, the condition that addresses are mapped can be dropped, and we
arrive at a standard Hoare logic assignment rule.

6.2 Kernel Execution

User execution boils down to standard reasoning. We can show that kernel exe-
cution without virtual memory modifications do as well.

As mentioned in Sect. 5, the safe set for kernel execution is the entire kernel
window, i.e. the virtual addresses that are mapped by the global mappings,
minus the addresses of the page table entries that encode these global mappings.
Since we will need to re-establish this set every time we switch to a di↵erent
page table, and it is always safe to reduce the safe set, we not only remove the
kernel window encoding in the current page table, but also that of of all other
page tables the kernel might switch to and call this set kernel_safe.

Since we fixed the global mappings in mmu_layout, we can give a short,
closed form of translation for addresses in kernel_safe: k_phy_ad vp = Addr vp -

offset. With these, we can formulate a theorem for assignments in kernel mode
that do not touch any of the virtual memory data structures, i.e. when the write
does not take place in any of the addresses covered by kernel_data.

Theorem 4 If the mmu_layout invariants hold, we are in kernel mode, and we
are performing a write in the kernel safe set that does not touch any MMU-
relevant data structures, then the mmu_layout invariants are preserved and the
e↵ect is a simple heap update with known constant address translation.

{|�s. mmu_layout s ^ mode s = Kernel ^ safe_set (kernel_safe s) s ^
asids_consistent s ^ [[lval]] s = bvpc ^ [[rval]] s = bvc ^
Addr vp 2 kernel_safe s ^ k_phy_ad vp /2 kernel_data_area s|}

lval ::= rval
{|�s. mmu_layout s ^ mode s = Kernel ^ safe_set (kernel_safe s) s ^

asids_consistent s ^ heap s (k_phy_ad vp) = bvc|}

Proof. See lemma kernel_safe_assignemnt in [18].

This lemma covers kernel code that is uninteresting for the purposes of the
MMU and TLB, which is the majority of code in a normal kernel. The Isabelle
theories [18] also contain examples for page table modifications. The main dif-
ference to this theorem is that, while the write still happens in the safe set, and
the safe set is preserved, there are now inconsistent addresses that need to be
flushed before we return to user mode. These could be for the active page table,
but also for an inactive page table, where the need for flushing is observed in
the asids_consistent invariant.

6.3 Context Switch

We have so far shown reduction theorems for simpler reasoning when nothing
interesting happens to the TLB. This section is the opposite: context switching.

14

a page fault handler, the logic can be extended to take this conditional execution
into account, for instance using an exception mechanism or a conditional jump.
In that case, the condition that addresses are mapped can be dropped, and we
arrive at a standard Hoare logic assignment rule.

6.2 Kernel Execution

User execution boils down to standard reasoning. We can show that kernel exe-
cution without virtual memory modifications do as well.

As mentioned in Sect. 5, the safe set for kernel execution is the entire kernel
window, i.e. the virtual addresses that are mapped by the global mappings,
minus the addresses of the page table entries that encode these global mappings.
Since we will need to re-establish this set every time we switch to a di↵erent
page table, and it is always safe to reduce the safe set, we not only remove the
kernel window encoding in the current page table, but also that of of all other
page tables the kernel might switch to and call this set kernel_safe.

Since we fixed the global mappings in mmu_layout, we can give a short,
closed form of translation for addresses in kernel_safe: k_phy_ad vp = Addr vp -

offset. With these, we can formulate a theorem for assignments in kernel mode
that do not touch any of the virtual memory data structures, i.e. when the write
does not take place in any of the addresses covered by kernel_data.

Theorem 4 If the mmu_layout invariants hold, we are in kernel mode, and we
are performing a write in the kernel safe set that does not touch any MMU-
relevant data structures, then the mmu_layout invariants are preserved and the
e↵ect is a simple heap update with known constant address translation.

{|�s. mmu_layout s ^ mode s = Kernel ^ safe_set (kernel_safe s) s ^
asids_consistent s ^ [[lval]] s = bvpc ^ [[rval]] s = bvc ^
Addr vp 2 kernel_safe s ^ k_phy_ad vp /2 kernel_data_area s|}

lval ::= rval
{|�s. mmu_layout s ^ mode s = Kernel ^ safe_set (kernel_safe s) s ^

asids_consistent s ^ heap s (k_phy_ad vp) = bvc|}

Proof. See lemma kernel_safe_assignemnt in [18].

This lemma covers kernel code that is uninteresting for the purposes of the
MMU and TLB, which is the majority of code in a normal kernel. The Isabelle
theories [18] also contain examples for page table modifications. The main dif-
ference to this theorem is that, while the write still happens in the safe set, and
the safe set is preserved, there are now inconsistent addresses that need to be
flushed before we return to user mode. These could be for the active page table,
but also for an inactive page table, where the need for flushing is observed in
the asids_consistent invariant.

6.3 Context Switch

We have so far shown reduction theorems for simpler reasoning when nothing
interesting happens to the TLB. This section is the opposite: context switching.

14

a page fault handler, the logic can be extended to take this conditional execution
into account, for instance using an exception mechanism or a conditional jump.
In that case, the condition that addresses are mapped can be dropped, and we
arrive at a standard Hoare logic assignment rule.

6.2 Kernel Execution

User execution boils down to standard reasoning. We can show that kernel exe-
cution without virtual memory modifications do as well.

As mentioned in Sect. 5, the safe set for kernel execution is the entire kernel
window, i.e. the virtual addresses that are mapped by the global mappings,
minus the addresses of the page table entries that encode these global mappings.
Since we will need to re-establish this set every time we switch to a di↵erent
page table, and it is always safe to reduce the safe set, we not only remove the
kernel window encoding in the current page table, but also that of of all other
page tables the kernel might switch to and call this set kernel_safe.

Since we fixed the global mappings in mmu_layout, we can give a short,
closed form of translation for addresses in kernel_safe: k_phy_ad vp = Addr vp -

offset. With these, we can formulate a theorem for assignments in kernel mode
that do not touch any of the virtual memory data structures, i.e. when the write
does not take place in any of the addresses covered by kernel_data.

Theorem 4 If the mmu_layout invariants hold, we are in kernel mode, and we
are performing a write in the kernel safe set that does not touch any MMU-
relevant data structures, then the mmu_layout invariants are preserved and the
e↵ect is a simple heap update with known constant address translation.

{|�s. mmu_layout s ^ mode s = Kernel ^ safe_set (kernel_safe s) s ^
asids_consistent s ^ [[lval]] s = bvpc ^ [[rval]] s = bvc ^
Addr vp 2 kernel_safe s ^ k_phy_ad vp /2 kernel_data_area s|}

lval ::= rval
{|�s. mmu_layout s ^ mode s = Kernel ^ safe_set (kernel_safe s) s ^

asids_consistent s ^ heap s (k_phy_ad vp) = bvc|}

Proof. See lemma kernel_safe_assignemnt in [18].

This lemma covers kernel code that is uninteresting for the purposes of the
MMU and TLB, which is the majority of code in a normal kernel. The Isabelle
theories [18] also contain examples for page table modifications. The main dif-
ference to this theorem is that, while the write still happens in the safe set, and
the safe set is preserved, there are now inconsistent addresses that need to be
flushed before we return to user mode. These could be for the active page table,
but also for an inactive page table, where the need for flushing is observed in
the asids_consistent invariant.

6.3 Context Switch

We have so far shown reduction theorems for simpler reasoning when nothing
interesting happens to the TLB. This section is the opposite: context switching.

14

a page fault handler, the logic can be extended to take this conditional execution
into account, for instance using an exception mechanism or a conditional jump.
In that case, the condition that addresses are mapped can be dropped, and we
arrive at a standard Hoare logic assignment rule.

6.2 Kernel Execution

User execution boils down to standard reasoning. We can show that kernel exe-
cution without virtual memory modifications do as well.

As mentioned in Sect. 5, the safe set for kernel execution is the entire kernel
window, i.e. the virtual addresses that are mapped by the global mappings,
minus the addresses of the page table entries that encode these global mappings.
Since we will need to re-establish this set every time we switch to a di↵erent
page table, and it is always safe to reduce the safe set, we not only remove the
kernel window encoding in the current page table, but also that of of all other
page tables the kernel might switch to and call this set kernel_safe.

Since we fixed the global mappings in mmu_layout, we can give a short,
closed form of translation for addresses in kernel_safe: k_phy_ad vp = Addr vp -

offset. With these, we can formulate a theorem for assignments in kernel mode
that do not touch any of the virtual memory data structures, i.e. when the write
does not take place in any of the addresses covered by kernel_data.

Theorem 4 If the mmu_layout invariants hold, we are in kernel mode, and we
are performing a write in the kernel safe set that does not touch any MMU-
relevant data structures, then the mmu_layout invariants are preserved and the
e↵ect is a simple heap update with known constant address translation.

{|�s. mmu_layout s ^ mode s = Kernel ^ safe_set (kernel_safe s) s ^
asids_consistent s ^ [[lval]] s = bvpc ^ [[rval]] s = bvc ^
Addr vp 2 kernel_safe s ^ k_phy_ad vp /2 kernel_data_area s|}

lval ::= rval
{|�s. mmu_layout s ^ mode s = Kernel ^ safe_set (kernel_safe s) s ^

asids_consistent s ^ heap s (k_phy_ad vp) = bvc|}

Proof. See lemma kernel_safe_assignemnt in [18].

This lemma covers kernel code that is uninteresting for the purposes of the
MMU and TLB, which is the majority of code in a normal kernel. The Isabelle
theories [18] also contain examples for page table modifications. The main dif-
ference to this theorem is that, while the write still happens in the safe set, and
the safe set is preserved, there are now inconsistent addresses that need to be
flushed before we return to user mode. These could be for the active page table,
but also for an inactive page table, where the need for flushing is observed in
the asids_consistent invariant.

6.3 Context Switch

We have so far shown reduction theorems for simpler reasoning when nothing
interesting happens to the TLB. This section is the opposite: context switching.

14

a page fault handler, the logic can be extended to take this conditional execution
into account, for instance using an exception mechanism or a conditional jump.
In that case, the condition that addresses are mapped can be dropped, and we
arrive at a standard Hoare logic assignment rule.

6.2 Kernel Execution

User execution boils down to standard reasoning. We can show that kernel exe-
cution without virtual memory modifications do as well.

As mentioned in Sect. 5, the safe set for kernel execution is the entire kernel
window, i.e. the virtual addresses that are mapped by the global mappings,
minus the addresses of the page table entries that encode these global mappings.
Since we will need to re-establish this set every time we switch to a di↵erent
page table, and it is always safe to reduce the safe set, we not only remove the
kernel window encoding in the current page table, but also that of of all other
page tables the kernel might switch to and call this set kernel_safe.

Since we fixed the global mappings in mmu_layout, we can give a short,
closed form of translation for addresses in kernel_safe: k_phy_ad vp = Addr vp -

offset. With these, we can formulate a theorem for assignments in kernel mode
that do not touch any of the virtual memory data structures, i.e. when the write
does not take place in any of the addresses covered by kernel_data.

Theorem 4 If the mmu_layout invariants hold, we are in kernel mode, and we
are performing a write in the kernel safe set that does not touch any MMU-
relevant data structures, then the mmu_layout invariants are preserved and the
e↵ect is a simple heap update with known constant address translation.

{|�s. mmu_layout s ^ mode s = Kernel ^ safe_set (kernel_safe s) s ^
asids_consistent s ^ [[lval]] s = bvpc ^ [[rval]] s = bvc ^
Addr vp 2 kernel_safe s ^ k_phy_ad vp /2 kernel_data_area s|}

lval ::= rval
{|�s. mmu_layout s ^ mode s = Kernel ^ safe_set (kernel_safe s) s ^

asids_consistent s ^ heap s (k_phy_ad vp) = bvc|}

Proof. See lemma kernel_safe_assignemnt in [18].

This lemma covers kernel code that is uninteresting for the purposes of the
MMU and TLB, which is the majority of code in a normal kernel. The Isabelle
theories [18] also contain examples for page table modifications. The main dif-
ference to this theorem is that, while the write still happens in the safe set, and
the safe set is preserved, there are now inconsistent addresses that need to be
flushed before we return to user mode. These could be for the active page table,
but also for an inactive page table, where the need for flushing is observed in
the asids_consistent invariant.

6.3 Context Switch

We have so far shown reduction theorems for simpler reasoning when nothing
interesting happens to the TLB. This section is the opposite: context switching.

14

 Program Verification in the Presence of TLB-Address Translation Hira Syeda30

- Operations —
- update root register to root r, then
- update ASID register to ASID a

Context Switch

 Program Verification in the Presence of TLB-Address Translation Hira Syeda30

- Operations —
- update root register to root r, then
- update ASID register to ASID a

- ARMv7-A manual’s recommended sequence

Context Switch

There are many ways for the OS to implement context switching — our example
shows one where we change to a new address space, i.e. a new page table and
ASID, without flushing the TLB, establishing the conditions of Theorem 3 for
user-level reasoning.

Switching page table roots without flushing is non-trivial, and the ARM
architecture manual [2, Chapter B3.10] even gives a specific sequence of in-
structions to achieve this. The manual uses this sequence, because speculative
execution might otherwise contaminate the new ASID with mappings from the
old page table, i.e. the TLB might still contain entries from the previous user.
Theorem 5 shows that our model is conservative for speculative execution, but
precise enough so we can reason about this sequence and see why it is safe.

The recommended sequence switches to a new user-level page table and ASID
by using a reserved ASID (in this case 0). It first switches to this reserved ASID,
then sets the new page table root, then switches to the ASID for that root, before
it switches to user mode. A real kernel would at this point also restore registers,
which we omit.

Theorem 5 The context switch sequence to a new ASID a and new page table
root r preserves the mmu_layout and ASID snapshot consistency invariants and
establishes the conditions for user-level reasoning, provided that the TLB has no
inconsistent addresses at this point, that the reserved ASID 0 is not used for any
user page table, and that that r is a known page table associated with ASID a.

{|�s. mmu_layout s ^ asids_consistent s ^ mode s = Kernel ^
IC s = ; ^ 0 /2 ran (root_map s) ^ root_map s (Addr r) = bac|}

UpdateASID 0;; UpdateTTBR0 (Const r);; UpdateASID a;; SetMode User
{|�s. mmu_layout s ^ IC s = ; ^ mode s = User ^ asids_consistent s|}

Proof. See lemma context_switch_invariants in [18].

Our previous ISA-level model [17] without ASID page table snapshots was not
strong enough to admit this theorem without flushing the TLB. In particular,
the fact that the TLB does not contain entries for the ASID we are switching to
that are inconsistent with the current page table at that point would either be
lost (making it unsound) or over-approximated (requiring a flush).

For compiler correctness, we would additionally need to know that ASID 0
does not have inconsistent entries for the code and data areas of the kernel,
which is maintained if ASID 0 is used only in the way above. To make this more
explicit, we could add a static set to the program logic for code and data that
must always be consistency, and the condition asids_consistent would maintain
that at least the global kernel mappings are consistent in ASID 0.

This concludes the case study examples for our logic. We have seen that we
can reason about user code, ‘uninteresting’ kernel code, and kernel code that
manipulates paging structures, each at their appropriate level of abstraction.

15

{|�s. [[l]] s = bvpc ^ [[r]] s = bvc ^ vp /2 IC s ^ Addr vp ,!s pp ^
P (heap_iset_updates (pp 7! v))|}

l ::= r {|P|}

{|�s. kernel s ^ [[rte]] s = brtc ^ P (root_iset_updates Addr rt)|}
UpdateTTBR0 rte {|P|}

{|�s. kernel s ^ P (asid_pt_snpshot_updates a)|} UpdateASID a {|P|}

{|�s. kernel s ^ P (iset_pt_snpshot_updates f)|} Flush f {|P|}

{|�s. kernel s ^ P (s(|mode := flg|))|} SetMode flg {|P|}

Fig. 4. Hoare Logic rules for commands with TLB e↵ects.

The rule for the command UpdateTTBR0, only available in kernel mode, up-
dates the current page table root to the value of the expression rte. The e↵ect
is modelled by root_iset_update defined in Sect. 4.2.

The UpdateASID command, also only available in kernel mode, sets the new
ASID a, increases the iset using snp_incon, and records a page table snapshot
for the old ASID using new_snp.

Finally, Flush is the instruction that the makes the iset smaller, and removes
mappings in the snapshots of inactive ASIDs, using iset_asid_map_update from
Sect. 4.2.

4.4 Discussion

Our previous work [17] motivated an abstract TLB model that we have extended
and refined here. The program logic uses the (morally) same model, but there
is still a break in logic: the TLB abstraction is on a machine-level ISA model;
the program logic is for a higher-level language with explicit memory access,
intended for languages such as C. The bridge between the two worlds would
be a compiler correctness statement that takes the TLB into account. This may
initially not sound straightforward: the high-level language makes fewer memory
accesses visible than the low-level machine performs. In particular, a compiler
will usually implement a stack for local variables, and memory areas for global
variables, as well as for the code itself. These memory accesses are under address
translation and might be relevant for TLB reasoning.

Sect. 5 and 6 will show that we can ignore the TLB for kernel-level code, if we
can assume that these memory areas (code, stack, globals) are statically known
and that the compiler will not generate additional memory accesses outside these
static areas. This is a reasonable assumption — otherwise kernel code could
never be sure that privileged memory areas such as memory-mapped devices are
not randomly overwritten by compiler-generated accesses. We will then have to
prove that we never remove or change active mappings for these areas (adding
new mappings for e.g. the stack would be fine). For user-level code, we will see
that the issue becomes irrelevant.

9

{|�s. [[l]] s = bvpc ^ [[r]] s = bvc ^ vp /2 IC s ^ Addr vp ,!s pp ^
P (heap_iset_updates (pp 7! v))|}

l ::= r {|P|}

{|�s. kernel s ^ [[rte]] s = brtc ^ P (root_iset_updates Addr rt)|}
UpdateTTBR0 rte {|P|}

{|�s. kernel s ^ P (asid_pt_snpshot_updates a)|} UpdateASID a {|P|}

{|�s. kernel s ^ P (iset_pt_snpshot_updates f)|} Flush f {|P|}

{|�s. kernel s ^ P (s(|mode := flg|))|} SetMode flg {|P|}

Fig. 4. Hoare Logic rules for commands with TLB e↵ects.

The rule for the command UpdateTTBR0, only available in kernel mode, up-
dates the current page table root to the value of the expression rte. The e↵ect
is modelled by root_iset_update defined in Sect. 4.2.

The UpdateASID command, also only available in kernel mode, sets the new
ASID a, increases the iset using snp_incon, and records a page table snapshot
for the old ASID using new_snp.

Finally, Flush is the instruction that the makes the iset smaller, and removes
mappings in the snapshots of inactive ASIDs, using iset_asid_map_update from
Sect. 4.2.

4.4 Discussion

Our previous work [17] motivated an abstract TLB model that we have extended
and refined here. The program logic uses the (morally) same model, but there
is still a break in logic: the TLB abstraction is on a machine-level ISA model;
the program logic is for a higher-level language with explicit memory access,
intended for languages such as C. The bridge between the two worlds would
be a compiler correctness statement that takes the TLB into account. This may
initially not sound straightforward: the high-level language makes fewer memory
accesses visible than the low-level machine performs. In particular, a compiler
will usually implement a stack for local variables, and memory areas for global
variables, as well as for the code itself. These memory accesses are under address
translation and might be relevant for TLB reasoning.

Sect. 5 and 6 will show that we can ignore the TLB for kernel-level code, if we
can assume that these memory areas (code, stack, globals) are statically known
and that the compiler will not generate additional memory accesses outside these
static areas. This is a reasonable assumption — otherwise kernel code could
never be sure that privileged memory areas such as memory-mapped devices are
not randomly overwritten by compiler-generated accesses. We will then have to
prove that we never remove or change active mappings for these areas (adding
new mappings for e.g. the stack would be fine). For user-level code, we will see
that the issue becomes irrelevant.

9

{|�s. [[l]] s = bvpc ^ [[r]] s = bvc ^ vp /2 IC s ^ Addr vp ,!s pp ^
P (heap_iset_updates (pp 7! v))|}

l ::= r {|P|}

{|�s. kernel s ^ [[rte]] s = brtc ^ P (root_iset_updates Addr rt)|}
UpdateTTBR0 rte {|P|}

{|�s. kernel s ^ P (asid_pt_snpshot_updates a)|} UpdateASID a {|P|}

{|�s. kernel s ^ P (iset_pt_snpshot_updates f)|} Flush f {|P|}

{|�s. kernel s ^ P (s(|mode := flg|))|} SetMode flg {|P|}

Fig. 4. Hoare Logic rules for commands with TLB e↵ects.

The rule for the command UpdateTTBR0, only available in kernel mode, up-
dates the current page table root to the value of the expression rte. The e↵ect
is modelled by root_iset_update defined in Sect. 4.2.

The UpdateASID command, also only available in kernel mode, sets the new
ASID a, increases the iset using snp_incon, and records a page table snapshot
for the old ASID using new_snp.

Finally, Flush is the instruction that the makes the iset smaller, and removes
mappings in the snapshots of inactive ASIDs, using iset_asid_map_update from
Sect. 4.2.

4.4 Discussion

Our previous work [17] motivated an abstract TLB model that we have extended
and refined here. The program logic uses the (morally) same model, but there
is still a break in logic: the TLB abstraction is on a machine-level ISA model;
the program logic is for a higher-level language with explicit memory access,
intended for languages such as C. The bridge between the two worlds would
be a compiler correctness statement that takes the TLB into account. This may
initially not sound straightforward: the high-level language makes fewer memory
accesses visible than the low-level machine performs. In particular, a compiler
will usually implement a stack for local variables, and memory areas for global
variables, as well as for the code itself. These memory accesses are under address
translation and might be relevant for TLB reasoning.

Sect. 5 and 6 will show that we can ignore the TLB for kernel-level code, if we
can assume that these memory areas (code, stack, globals) are statically known
and that the compiler will not generate additional memory accesses outside these
static areas. This is a reasonable assumption — otherwise kernel code could
never be sure that privileged memory areas such as memory-mapped devices are
not randomly overwritten by compiler-generated accesses. We will then have to
prove that we never remove or change active mappings for these areas (adding
new mappings for e.g. the stack would be fine). For user-level code, we will see
that the issue becomes irrelevant.

9

{|�s. [[l]] s = bvpc ^ [[r]] s = bvc ^ vp /2 IC s ^ Addr vp ,!s pp ^
P (heap_iset_updates (pp 7! v))|}

l ::= r {|P|}

{|�s. kernel s ^ [[rte]] s = brtc ^ P (root_iset_updates Addr rt)|}
UpdateTTBR0 rte {|P|}

{|�s. kernel s ^ P (asid_pt_snpshot_updates a)|} UpdateASID a {|P|}

{|�s. kernel s ^ P (iset_pt_snpshot_updates f)|} Flush f {|P|}

{|�s. kernel s ^ P (s(|mode := flg|))|} SetMode flg {|P|}

Fig. 4. Hoare Logic rules for commands with TLB e↵ects.

The rule for the command UpdateTTBR0, only available in kernel mode, up-
dates the current page table root to the value of the expression rte. The e↵ect
is modelled by root_iset_update defined in Sect. 4.2.

The UpdateASID command, also only available in kernel mode, sets the new
ASID a, increases the iset using snp_incon, and records a page table snapshot
for the old ASID using new_snp.

Finally, Flush is the instruction that the makes the iset smaller, and removes
mappings in the snapshots of inactive ASIDs, using iset_asid_map_update from
Sect. 4.2.

4.4 Discussion

Our previous work [17] motivated an abstract TLB model that we have extended
and refined here. The program logic uses the (morally) same model, but there
is still a break in logic: the TLB abstraction is on a machine-level ISA model;
the program logic is for a higher-level language with explicit memory access,
intended for languages such as C. The bridge between the two worlds would
be a compiler correctness statement that takes the TLB into account. This may
initially not sound straightforward: the high-level language makes fewer memory
accesses visible than the low-level machine performs. In particular, a compiler
will usually implement a stack for local variables, and memory areas for global
variables, as well as for the code itself. These memory accesses are under address
translation and might be relevant for TLB reasoning.

Sect. 5 and 6 will show that we can ignore the TLB for kernel-level code, if we
can assume that these memory areas (code, stack, globals) are statically known
and that the compiler will not generate additional memory accesses outside these
static areas. This is a reasonable assumption — otherwise kernel code could
never be sure that privileged memory areas such as memory-mapped devices are
not randomly overwritten by compiler-generated accesses. We will then have to
prove that we never remove or change active mappings for these areas (adding
new mappings for e.g. the stack would be fine). For user-level code, we will see
that the issue becomes irrelevant.

9

 Program Verification in the Presence of TLB-Address Translation Hira Syeda30

- Operations —
- update root register to root r, then
- update ASID register to ASID a

- ARMv7-A manual’s recommended sequence

Context Switch

There are many ways for the OS to implement context switching — our example
shows one where we change to a new address space, i.e. a new page table and
ASID, without flushing the TLB, establishing the conditions of Theorem 3 for
user-level reasoning.

Switching page table roots without flushing is non-trivial, and the ARM
architecture manual [2, Chapter B3.10] even gives a specific sequence of in-
structions to achieve this. The manual uses this sequence, because speculative
execution might otherwise contaminate the new ASID with mappings from the
old page table, i.e. the TLB might still contain entries from the previous user.
Theorem 5 shows that our model is conservative for speculative execution, but
precise enough so we can reason about this sequence and see why it is safe.

The recommended sequence switches to a new user-level page table and ASID
by using a reserved ASID (in this case 0). It first switches to this reserved ASID,
then sets the new page table root, then switches to the ASID for that root, before
it switches to user mode. A real kernel would at this point also restore registers,
which we omit.

Theorem 5 The context switch sequence to a new ASID a and new page table
root r preserves the mmu_layout and ASID snapshot consistency invariants and
establishes the conditions for user-level reasoning, provided that the TLB has no
inconsistent addresses at this point, that the reserved ASID 0 is not used for any
user page table, and that that r is a known page table associated with ASID a.

{|�s. mmu_layout s ^ asids_consistent s ^ mode s = Kernel ^
IC s = ; ^ 0 /2 ran (root_map s) ^ root_map s (Addr r) = bac|}

UpdateASID 0;; UpdateTTBR0 (Const r);; UpdateASID a;; SetMode User
{|�s. mmu_layout s ^ IC s = ; ^ mode s = User ^ asids_consistent s|}

Proof. See lemma context_switch_invariants in [18].

Our previous ISA-level model [17] without ASID page table snapshots was not
strong enough to admit this theorem without flushing the TLB. In particular,
the fact that the TLB does not contain entries for the ASID we are switching to
that are inconsistent with the current page table at that point would either be
lost (making it unsound) or over-approximated (requiring a flush).

For compiler correctness, we would additionally need to know that ASID 0
does not have inconsistent entries for the code and data areas of the kernel,
which is maintained if ASID 0 is used only in the way above. To make this more
explicit, we could add a static set to the program logic for code and data that
must always be consistency, and the condition asids_consistent would maintain
that at least the global kernel mappings are consistent in ASID 0.

This concludes the case study examples for our logic. We have seen that we
can reason about user code, ‘uninteresting’ kernel code, and kernel code that
manipulates paging structures, each at their appropriate level of abstraction.

15

{|�s. [[l]] s = bvpc ^ [[r]] s = bvc ^ vp /2 IC s ^ Addr vp ,!s pp ^
P (heap_iset_updates (pp 7! v))|}

l ::= r {|P|}

{|�s. kernel s ^ [[rte]] s = brtc ^ P (root_iset_updates Addr rt)|}
UpdateTTBR0 rte {|P|}

{|�s. kernel s ^ P (asid_pt_snpshot_updates a)|} UpdateASID a {|P|}

{|�s. kernel s ^ P (iset_pt_snpshot_updates f)|} Flush f {|P|}

{|�s. kernel s ^ P (s(|mode := flg|))|} SetMode flg {|P|}

Fig. 4. Hoare Logic rules for commands with TLB e↵ects.

The rule for the command UpdateTTBR0, only available in kernel mode, up-
dates the current page table root to the value of the expression rte. The e↵ect
is modelled by root_iset_update defined in Sect. 4.2.

The UpdateASID command, also only available in kernel mode, sets the new
ASID a, increases the iset using snp_incon, and records a page table snapshot
for the old ASID using new_snp.

Finally, Flush is the instruction that the makes the iset smaller, and removes
mappings in the snapshots of inactive ASIDs, using iset_asid_map_update from
Sect. 4.2.

4.4 Discussion

Our previous work [17] motivated an abstract TLB model that we have extended
and refined here. The program logic uses the (morally) same model, but there
is still a break in logic: the TLB abstraction is on a machine-level ISA model;
the program logic is for a higher-level language with explicit memory access,
intended for languages such as C. The bridge between the two worlds would
be a compiler correctness statement that takes the TLB into account. This may
initially not sound straightforward: the high-level language makes fewer memory
accesses visible than the low-level machine performs. In particular, a compiler
will usually implement a stack for local variables, and memory areas for global
variables, as well as for the code itself. These memory accesses are under address
translation and might be relevant for TLB reasoning.

Sect. 5 and 6 will show that we can ignore the TLB for kernel-level code, if we
can assume that these memory areas (code, stack, globals) are statically known
and that the compiler will not generate additional memory accesses outside these
static areas. This is a reasonable assumption — otherwise kernel code could
never be sure that privileged memory areas such as memory-mapped devices are
not randomly overwritten by compiler-generated accesses. We will then have to
prove that we never remove or change active mappings for these areas (adding
new mappings for e.g. the stack would be fine). For user-level code, we will see
that the issue becomes irrelevant.

9

{|�s. [[l]] s = bvpc ^ [[r]] s = bvc ^ vp /2 IC s ^ Addr vp ,!s pp ^
P (heap_iset_updates (pp 7! v))|}

l ::= r {|P|}

{|�s. kernel s ^ [[rte]] s = brtc ^ P (root_iset_updates Addr rt)|}
UpdateTTBR0 rte {|P|}

{|�s. kernel s ^ P (asid_pt_snpshot_updates a)|} UpdateASID a {|P|}

{|�s. kernel s ^ P (iset_pt_snpshot_updates f)|} Flush f {|P|}

{|�s. kernel s ^ P (s(|mode := flg|))|} SetMode flg {|P|}

Fig. 4. Hoare Logic rules for commands with TLB e↵ects.

The rule for the command UpdateTTBR0, only available in kernel mode, up-
dates the current page table root to the value of the expression rte. The e↵ect
is modelled by root_iset_update defined in Sect. 4.2.

The UpdateASID command, also only available in kernel mode, sets the new
ASID a, increases the iset using snp_incon, and records a page table snapshot
for the old ASID using new_snp.

Finally, Flush is the instruction that the makes the iset smaller, and removes
mappings in the snapshots of inactive ASIDs, using iset_asid_map_update from
Sect. 4.2.

4.4 Discussion

Our previous work [17] motivated an abstract TLB model that we have extended
and refined here. The program logic uses the (morally) same model, but there
is still a break in logic: the TLB abstraction is on a machine-level ISA model;
the program logic is for a higher-level language with explicit memory access,
intended for languages such as C. The bridge between the two worlds would
be a compiler correctness statement that takes the TLB into account. This may
initially not sound straightforward: the high-level language makes fewer memory
accesses visible than the low-level machine performs. In particular, a compiler
will usually implement a stack for local variables, and memory areas for global
variables, as well as for the code itself. These memory accesses are under address
translation and might be relevant for TLB reasoning.

Sect. 5 and 6 will show that we can ignore the TLB for kernel-level code, if we
can assume that these memory areas (code, stack, globals) are statically known
and that the compiler will not generate additional memory accesses outside these
static areas. This is a reasonable assumption — otherwise kernel code could
never be sure that privileged memory areas such as memory-mapped devices are
not randomly overwritten by compiler-generated accesses. We will then have to
prove that we never remove or change active mappings for these areas (adding
new mappings for e.g. the stack would be fine). For user-level code, we will see
that the issue becomes irrelevant.

9

{|�s. [[l]] s = bvpc ^ [[r]] s = bvc ^ vp /2 IC s ^ Addr vp ,!s pp ^
P (heap_iset_updates (pp 7! v))|}

l ::= r {|P|}

{|�s. kernel s ^ [[rte]] s = brtc ^ P (root_iset_updates Addr rt)|}
UpdateTTBR0 rte {|P|}

{|�s. kernel s ^ P (asid_pt_snpshot_updates a)|} UpdateASID a {|P|}

{|�s. kernel s ^ P (iset_pt_snpshot_updates f)|} Flush f {|P|}

{|�s. kernel s ^ P (s(|mode := flg|))|} SetMode flg {|P|}

Fig. 4. Hoare Logic rules for commands with TLB e↵ects.

The rule for the command UpdateTTBR0, only available in kernel mode, up-
dates the current page table root to the value of the expression rte. The e↵ect
is modelled by root_iset_update defined in Sect. 4.2.

The UpdateASID command, also only available in kernel mode, sets the new
ASID a, increases the iset using snp_incon, and records a page table snapshot
for the old ASID using new_snp.

Finally, Flush is the instruction that the makes the iset smaller, and removes
mappings in the snapshots of inactive ASIDs, using iset_asid_map_update from
Sect. 4.2.

4.4 Discussion

Our previous work [17] motivated an abstract TLB model that we have extended
and refined here. The program logic uses the (morally) same model, but there
is still a break in logic: the TLB abstraction is on a machine-level ISA model;
the program logic is for a higher-level language with explicit memory access,
intended for languages such as C. The bridge between the two worlds would
be a compiler correctness statement that takes the TLB into account. This may
initially not sound straightforward: the high-level language makes fewer memory
accesses visible than the low-level machine performs. In particular, a compiler
will usually implement a stack for local variables, and memory areas for global
variables, as well as for the code itself. These memory accesses are under address
translation and might be relevant for TLB reasoning.

Sect. 5 and 6 will show that we can ignore the TLB for kernel-level code, if we
can assume that these memory areas (code, stack, globals) are statically known
and that the compiler will not generate additional memory accesses outside these
static areas. This is a reasonable assumption — otherwise kernel code could
never be sure that privileged memory areas such as memory-mapped devices are
not randomly overwritten by compiler-generated accesses. We will then have to
prove that we never remove or change active mappings for these areas (adding
new mappings for e.g. the stack would be fine). For user-level code, we will see
that the issue becomes irrelevant.

9

{|�s. [[l]] s = bvpc ^ [[r]] s = bvc ^ vp /2 IC s ^ Addr vp ,!s pp ^
P (heap_iset_updates (pp 7! v))|}

l ::= r {|P|}

{|�s. kernel s ^ [[rte]] s = brtc ^ P (root_iset_updates Addr rt)|}
UpdateTTBR0 rte {|P|}

{|�s. kernel s ^ P (asid_pt_snpshot_updates a)|} UpdateASID a {|P|}

{|�s. kernel s ^ P (iset_pt_snpshot_updates f)|} Flush f {|P|}

{|�s. kernel s ^ P (s(|mode := flg|))|} SetMode flg {|P|}

Fig. 4. Hoare Logic rules for commands with TLB e↵ects.

The rule for the command UpdateTTBR0, only available in kernel mode, up-
dates the current page table root to the value of the expression rte. The e↵ect
is modelled by root_iset_update defined in Sect. 4.2.

The UpdateASID command, also only available in kernel mode, sets the new
ASID a, increases the iset using snp_incon, and records a page table snapshot
for the old ASID using new_snp.

Finally, Flush is the instruction that the makes the iset smaller, and removes
mappings in the snapshots of inactive ASIDs, using iset_asid_map_update from
Sect. 4.2.

4.4 Discussion

Our previous work [17] motivated an abstract TLB model that we have extended
and refined here. The program logic uses the (morally) same model, but there
is still a break in logic: the TLB abstraction is on a machine-level ISA model;
the program logic is for a higher-level language with explicit memory access,
intended for languages such as C. The bridge between the two worlds would
be a compiler correctness statement that takes the TLB into account. This may
initially not sound straightforward: the high-level language makes fewer memory
accesses visible than the low-level machine performs. In particular, a compiler
will usually implement a stack for local variables, and memory areas for global
variables, as well as for the code itself. These memory accesses are under address
translation and might be relevant for TLB reasoning.

Sect. 5 and 6 will show that we can ignore the TLB for kernel-level code, if we
can assume that these memory areas (code, stack, globals) are statically known
and that the compiler will not generate additional memory accesses outside these
static areas. This is a reasonable assumption — otherwise kernel code could
never be sure that privileged memory areas such as memory-mapped devices are
not randomly overwritten by compiler-generated accesses. We will then have to
prove that we never remove or change active mappings for these areas (adding
new mappings for e.g. the stack would be fine). For user-level code, we will see
that the issue becomes irrelevant.

9

 Program Verification in the Presence of TLB-Address Translation Hira Syeda30

- Operations —
- update root register to root r, then
- update ASID register to ASID a

- ARMv7-A manual’s recommended sequence

Context Switch

There are many ways for the OS to implement context switching — our example
shows one where we change to a new address space, i.e. a new page table and
ASID, without flushing the TLB, establishing the conditions of Theorem 3 for
user-level reasoning.

Switching page table roots without flushing is non-trivial, and the ARM
architecture manual [2, Chapter B3.10] even gives a specific sequence of in-
structions to achieve this. The manual uses this sequence, because speculative
execution might otherwise contaminate the new ASID with mappings from the
old page table, i.e. the TLB might still contain entries from the previous user.
Theorem 5 shows that our model is conservative for speculative execution, but
precise enough so we can reason about this sequence and see why it is safe.

The recommended sequence switches to a new user-level page table and ASID
by using a reserved ASID (in this case 0). It first switches to this reserved ASID,
then sets the new page table root, then switches to the ASID for that root, before
it switches to user mode. A real kernel would at this point also restore registers,
which we omit.

Theorem 5 The context switch sequence to a new ASID a and new page table
root r preserves the mmu_layout and ASID snapshot consistency invariants and
establishes the conditions for user-level reasoning, provided that the TLB has no
inconsistent addresses at this point, that the reserved ASID 0 is not used for any
user page table, and that that r is a known page table associated with ASID a.

{|�s. mmu_layout s ^ asids_consistent s ^ mode s = Kernel ^
IC s = ; ^ 0 /2 ran (root_map s) ^ root_map s (Addr r) = bac|}

UpdateASID 0;; UpdateTTBR0 (Const r);; UpdateASID a;; SetMode User
{|�s. mmu_layout s ^ IC s = ; ^ mode s = User ^ asids_consistent s|}

Proof. See lemma context_switch_invariants in [18].

Our previous ISA-level model [17] without ASID page table snapshots was not
strong enough to admit this theorem without flushing the TLB. In particular,
the fact that the TLB does not contain entries for the ASID we are switching to
that are inconsistent with the current page table at that point would either be
lost (making it unsound) or over-approximated (requiring a flush).

For compiler correctness, we would additionally need to know that ASID 0
does not have inconsistent entries for the code and data areas of the kernel,
which is maintained if ASID 0 is used only in the way above. To make this more
explicit, we could add a static set to the program logic for code and data that
must always be consistency, and the condition asids_consistent would maintain
that at least the global kernel mappings are consistent in ASID 0.

This concludes the case study examples for our logic. We have seen that we
can reason about user code, ‘uninteresting’ kernel code, and kernel code that
manipulates paging structures, each at their appropriate level of abstraction.

15

{|�s. [[l]] s = bvpc ^ [[r]] s = bvc ^ vp /2 IC s ^ Addr vp ,!s pp ^
P (heap_iset_updates (pp 7! v))|}

l ::= r {|P|}

{|�s. kernel s ^ [[rte]] s = brtc ^ P (root_iset_updates Addr rt)|}
UpdateTTBR0 rte {|P|}

{|�s. kernel s ^ P (asid_pt_snpshot_updates a)|} UpdateASID a {|P|}

{|�s. kernel s ^ P (iset_pt_snpshot_updates f)|} Flush f {|P|}

{|�s. kernel s ^ P (s(|mode := flg|))|} SetMode flg {|P|}

Fig. 4. Hoare Logic rules for commands with TLB e↵ects.

The rule for the command UpdateTTBR0, only available in kernel mode, up-
dates the current page table root to the value of the expression rte. The e↵ect
is modelled by root_iset_update defined in Sect. 4.2.

The UpdateASID command, also only available in kernel mode, sets the new
ASID a, increases the iset using snp_incon, and records a page table snapshot
for the old ASID using new_snp.

Finally, Flush is the instruction that the makes the iset smaller, and removes
mappings in the snapshots of inactive ASIDs, using iset_asid_map_update from
Sect. 4.2.

4.4 Discussion

Our previous work [17] motivated an abstract TLB model that we have extended
and refined here. The program logic uses the (morally) same model, but there
is still a break in logic: the TLB abstraction is on a machine-level ISA model;
the program logic is for a higher-level language with explicit memory access,
intended for languages such as C. The bridge between the two worlds would
be a compiler correctness statement that takes the TLB into account. This may
initially not sound straightforward: the high-level language makes fewer memory
accesses visible than the low-level machine performs. In particular, a compiler
will usually implement a stack for local variables, and memory areas for global
variables, as well as for the code itself. These memory accesses are under address
translation and might be relevant for TLB reasoning.

Sect. 5 and 6 will show that we can ignore the TLB for kernel-level code, if we
can assume that these memory areas (code, stack, globals) are statically known
and that the compiler will not generate additional memory accesses outside these
static areas. This is a reasonable assumption — otherwise kernel code could
never be sure that privileged memory areas such as memory-mapped devices are
not randomly overwritten by compiler-generated accesses. We will then have to
prove that we never remove or change active mappings for these areas (adding
new mappings for e.g. the stack would be fine). For user-level code, we will see
that the issue becomes irrelevant.

9

{|�s. [[l]] s = bvpc ^ [[r]] s = bvc ^ vp /2 IC s ^ Addr vp ,!s pp ^
P (heap_iset_updates (pp 7! v))|}

l ::= r {|P|}

{|�s. kernel s ^ [[rte]] s = brtc ^ P (root_iset_updates Addr rt)|}
UpdateTTBR0 rte {|P|}

{|�s. kernel s ^ P (asid_pt_snpshot_updates a)|} UpdateASID a {|P|}

{|�s. kernel s ^ P (iset_pt_snpshot_updates f)|} Flush f {|P|}

{|�s. kernel s ^ P (s(|mode := flg|))|} SetMode flg {|P|}

Fig. 4. Hoare Logic rules for commands with TLB e↵ects.

The rule for the command UpdateTTBR0, only available in kernel mode, up-
dates the current page table root to the value of the expression rte. The e↵ect
is modelled by root_iset_update defined in Sect. 4.2.

The UpdateASID command, also only available in kernel mode, sets the new
ASID a, increases the iset using snp_incon, and records a page table snapshot
for the old ASID using new_snp.

Finally, Flush is the instruction that the makes the iset smaller, and removes
mappings in the snapshots of inactive ASIDs, using iset_asid_map_update from
Sect. 4.2.

4.4 Discussion

Our previous work [17] motivated an abstract TLB model that we have extended
and refined here. The program logic uses the (morally) same model, but there
is still a break in logic: the TLB abstraction is on a machine-level ISA model;
the program logic is for a higher-level language with explicit memory access,
intended for languages such as C. The bridge between the two worlds would
be a compiler correctness statement that takes the TLB into account. This may
initially not sound straightforward: the high-level language makes fewer memory
accesses visible than the low-level machine performs. In particular, a compiler
will usually implement a stack for local variables, and memory areas for global
variables, as well as for the code itself. These memory accesses are under address
translation and might be relevant for TLB reasoning.

Sect. 5 and 6 will show that we can ignore the TLB for kernel-level code, if we
can assume that these memory areas (code, stack, globals) are statically known
and that the compiler will not generate additional memory accesses outside these
static areas. This is a reasonable assumption — otherwise kernel code could
never be sure that privileged memory areas such as memory-mapped devices are
not randomly overwritten by compiler-generated accesses. We will then have to
prove that we never remove or change active mappings for these areas (adding
new mappings for e.g. the stack would be fine). For user-level code, we will see
that the issue becomes irrelevant.

9

{|�s. [[l]] s = bvpc ^ [[r]] s = bvc ^ vp /2 IC s ^ Addr vp ,!s pp ^
P (heap_iset_updates (pp 7! v))|}

l ::= r {|P|}

{|�s. kernel s ^ [[rte]] s = brtc ^ P (root_iset_updates Addr rt)|}
UpdateTTBR0 rte {|P|}

{|�s. kernel s ^ P (asid_pt_snpshot_updates a)|} UpdateASID a {|P|}

{|�s. kernel s ^ P (iset_pt_snpshot_updates f)|} Flush f {|P|}

{|�s. kernel s ^ P (s(|mode := flg|))|} SetMode flg {|P|}

Fig. 4. Hoare Logic rules for commands with TLB e↵ects.

The rule for the command UpdateTTBR0, only available in kernel mode, up-
dates the current page table root to the value of the expression rte. The e↵ect
is modelled by root_iset_update defined in Sect. 4.2.

The UpdateASID command, also only available in kernel mode, sets the new
ASID a, increases the iset using snp_incon, and records a page table snapshot
for the old ASID using new_snp.

Finally, Flush is the instruction that the makes the iset smaller, and removes
mappings in the snapshots of inactive ASIDs, using iset_asid_map_update from
Sect. 4.2.

4.4 Discussion

Our previous work [17] motivated an abstract TLB model that we have extended
and refined here. The program logic uses the (morally) same model, but there
is still a break in logic: the TLB abstraction is on a machine-level ISA model;
the program logic is for a higher-level language with explicit memory access,
intended for languages such as C. The bridge between the two worlds would
be a compiler correctness statement that takes the TLB into account. This may
initially not sound straightforward: the high-level language makes fewer memory
accesses visible than the low-level machine performs. In particular, a compiler
will usually implement a stack for local variables, and memory areas for global
variables, as well as for the code itself. These memory accesses are under address
translation and might be relevant for TLB reasoning.

Sect. 5 and 6 will show that we can ignore the TLB for kernel-level code, if we
can assume that these memory areas (code, stack, globals) are statically known
and that the compiler will not generate additional memory accesses outside these
static areas. This is a reasonable assumption — otherwise kernel code could
never be sure that privileged memory areas such as memory-mapped devices are
not randomly overwritten by compiler-generated accesses. We will then have to
prove that we never remove or change active mappings for these areas (adding
new mappings for e.g. the stack would be fine). For user-level code, we will see
that the issue becomes irrelevant.

9

{|�s. [[l]] s = bvpc ^ [[r]] s = bvc ^ vp /2 IC s ^ Addr vp ,!s pp ^
P (heap_iset_updates (pp 7! v))|}

l ::= r {|P|}

{|�s. kernel s ^ [[rte]] s = brtc ^ P (root_iset_updates Addr rt)|}
UpdateTTBR0 rte {|P|}

{|�s. kernel s ^ P (asid_pt_snpshot_updates a)|} UpdateASID a {|P|}

{|�s. kernel s ^ P (iset_pt_snpshot_updates f)|} Flush f {|P|}

{|�s. kernel s ^ P (s(|mode := flg|))|} SetMode flg {|P|}

Fig. 4. Hoare Logic rules for commands with TLB e↵ects.

The rule for the command UpdateTTBR0, only available in kernel mode, up-
dates the current page table root to the value of the expression rte. The e↵ect
is modelled by root_iset_update defined in Sect. 4.2.

The UpdateASID command, also only available in kernel mode, sets the new
ASID a, increases the iset using snp_incon, and records a page table snapshot
for the old ASID using new_snp.

Finally, Flush is the instruction that the makes the iset smaller, and removes
mappings in the snapshots of inactive ASIDs, using iset_asid_map_update from
Sect. 4.2.

4.4 Discussion

Our previous work [17] motivated an abstract TLB model that we have extended
and refined here. The program logic uses the (morally) same model, but there
is still a break in logic: the TLB abstraction is on a machine-level ISA model;
the program logic is for a higher-level language with explicit memory access,
intended for languages such as C. The bridge between the two worlds would
be a compiler correctness statement that takes the TLB into account. This may
initially not sound straightforward: the high-level language makes fewer memory
accesses visible than the low-level machine performs. In particular, a compiler
will usually implement a stack for local variables, and memory areas for global
variables, as well as for the code itself. These memory accesses are under address
translation and might be relevant for TLB reasoning.

Sect. 5 and 6 will show that we can ignore the TLB for kernel-level code, if we
can assume that these memory areas (code, stack, globals) are statically known
and that the compiler will not generate additional memory accesses outside these
static areas. This is a reasonable assumption — otherwise kernel code could
never be sure that privileged memory areas such as memory-mapped devices are
not randomly overwritten by compiler-generated accesses. We will then have to
prove that we never remove or change active mappings for these areas (adding
new mappings for e.g. the stack would be fine). For user-level code, we will see
that the issue becomes irrelevant.

9

 Program Verification in the Presence of TLB-Address Translation Hira Syeda30

- Operations —
- update root register to root r, then
- update ASID register to ASID a

- ARMv7-A manual’s recommended sequence

Context Switch

There are many ways for the OS to implement context switching — our example
shows one where we change to a new address space, i.e. a new page table and
ASID, without flushing the TLB, establishing the conditions of Theorem 3 for
user-level reasoning.

Switching page table roots without flushing is non-trivial, and the ARM
architecture manual [2, Chapter B3.10] even gives a specific sequence of in-
structions to achieve this. The manual uses this sequence, because speculative
execution might otherwise contaminate the new ASID with mappings from the
old page table, i.e. the TLB might still contain entries from the previous user.
Theorem 5 shows that our model is conservative for speculative execution, but
precise enough so we can reason about this sequence and see why it is safe.

The recommended sequence switches to a new user-level page table and ASID
by using a reserved ASID (in this case 0). It first switches to this reserved ASID,
then sets the new page table root, then switches to the ASID for that root, before
it switches to user mode. A real kernel would at this point also restore registers,
which we omit.

Theorem 5 The context switch sequence to a new ASID a and new page table
root r preserves the mmu_layout and ASID snapshot consistency invariants and
establishes the conditions for user-level reasoning, provided that the TLB has no
inconsistent addresses at this point, that the reserved ASID 0 is not used for any
user page table, and that that r is a known page table associated with ASID a.

{|�s. mmu_layout s ^ asids_consistent s ^ mode s = Kernel ^
IC s = ; ^ 0 /2 ran (root_map s) ^ root_map s (Addr r) = bac|}

UpdateASID 0;; UpdateTTBR0 (Const r);; UpdateASID a;; SetMode User
{|�s. mmu_layout s ^ IC s = ; ^ mode s = User ^ asids_consistent s|}

Proof. See lemma context_switch_invariants in [18].

Our previous ISA-level model [17] without ASID page table snapshots was not
strong enough to admit this theorem without flushing the TLB. In particular,
the fact that the TLB does not contain entries for the ASID we are switching to
that are inconsistent with the current page table at that point would either be
lost (making it unsound) or over-approximated (requiring a flush).

For compiler correctness, we would additionally need to know that ASID 0
does not have inconsistent entries for the code and data areas of the kernel,
which is maintained if ASID 0 is used only in the way above. To make this more
explicit, we could add a static set to the program logic for code and data that
must always be consistency, and the condition asids_consistent would maintain
that at least the global kernel mappings are consistent in ASID 0.

This concludes the case study examples for our logic. We have seen that we
can reason about user code, ‘uninteresting’ kernel code, and kernel code that
manipulates paging structures, each at their appropriate level of abstraction.

15

{|�s. [[l]] s = bvpc ^ [[r]] s = bvc ^ vp /2 IC s ^ Addr vp ,!s pp ^
P (heap_iset_updates (pp 7! v))|}

l ::= r {|P|}

{|�s. kernel s ^ [[rte]] s = brtc ^ P (root_iset_updates Addr rt)|}
UpdateTTBR0 rte {|P|}

{|�s. kernel s ^ P (asid_pt_snpshot_updates a)|} UpdateASID a {|P|}

{|�s. kernel s ^ P (iset_pt_snpshot_updates f)|} Flush f {|P|}

{|�s. kernel s ^ P (s(|mode := flg|))|} SetMode flg {|P|}

Fig. 4. Hoare Logic rules for commands with TLB e↵ects.

The rule for the command UpdateTTBR0, only available in kernel mode, up-
dates the current page table root to the value of the expression rte. The e↵ect
is modelled by root_iset_update defined in Sect. 4.2.

The UpdateASID command, also only available in kernel mode, sets the new
ASID a, increases the iset using snp_incon, and records a page table snapshot
for the old ASID using new_snp.

Finally, Flush is the instruction that the makes the iset smaller, and removes
mappings in the snapshots of inactive ASIDs, using iset_asid_map_update from
Sect. 4.2.

4.4 Discussion

Our previous work [17] motivated an abstract TLB model that we have extended
and refined here. The program logic uses the (morally) same model, but there
is still a break in logic: the TLB abstraction is on a machine-level ISA model;
the program logic is for a higher-level language with explicit memory access,
intended for languages such as C. The bridge between the two worlds would
be a compiler correctness statement that takes the TLB into account. This may
initially not sound straightforward: the high-level language makes fewer memory
accesses visible than the low-level machine performs. In particular, a compiler
will usually implement a stack for local variables, and memory areas for global
variables, as well as for the code itself. These memory accesses are under address
translation and might be relevant for TLB reasoning.

Sect. 5 and 6 will show that we can ignore the TLB for kernel-level code, if we
can assume that these memory areas (code, stack, globals) are statically known
and that the compiler will not generate additional memory accesses outside these
static areas. This is a reasonable assumption — otherwise kernel code could
never be sure that privileged memory areas such as memory-mapped devices are
not randomly overwritten by compiler-generated accesses. We will then have to
prove that we never remove or change active mappings for these areas (adding
new mappings for e.g. the stack would be fine). For user-level code, we will see
that the issue becomes irrelevant.

9

{|�s. [[l]] s = bvpc ^ [[r]] s = bvc ^ vp /2 IC s ^ Addr vp ,!s pp ^
P (heap_iset_updates (pp 7! v))|}

l ::= r {|P|}

{|�s. kernel s ^ [[rte]] s = brtc ^ P (root_iset_updates Addr rt)|}
UpdateTTBR0 rte {|P|}

{|�s. kernel s ^ P (asid_pt_snpshot_updates a)|} UpdateASID a {|P|}

{|�s. kernel s ^ P (iset_pt_snpshot_updates f)|} Flush f {|P|}

{|�s. kernel s ^ P (s(|mode := flg|))|} SetMode flg {|P|}

Fig. 4. Hoare Logic rules for commands with TLB e↵ects.

The rule for the command UpdateTTBR0, only available in kernel mode, up-
dates the current page table root to the value of the expression rte. The e↵ect
is modelled by root_iset_update defined in Sect. 4.2.

The UpdateASID command, also only available in kernel mode, sets the new
ASID a, increases the iset using snp_incon, and records a page table snapshot
for the old ASID using new_snp.

Finally, Flush is the instruction that the makes the iset smaller, and removes
mappings in the snapshots of inactive ASIDs, using iset_asid_map_update from
Sect. 4.2.

4.4 Discussion

Our previous work [17] motivated an abstract TLB model that we have extended
and refined here. The program logic uses the (morally) same model, but there
is still a break in logic: the TLB abstraction is on a machine-level ISA model;
the program logic is for a higher-level language with explicit memory access,
intended for languages such as C. The bridge between the two worlds would
be a compiler correctness statement that takes the TLB into account. This may
initially not sound straightforward: the high-level language makes fewer memory
accesses visible than the low-level machine performs. In particular, a compiler
will usually implement a stack for local variables, and memory areas for global
variables, as well as for the code itself. These memory accesses are under address
translation and might be relevant for TLB reasoning.

Sect. 5 and 6 will show that we can ignore the TLB for kernel-level code, if we
can assume that these memory areas (code, stack, globals) are statically known
and that the compiler will not generate additional memory accesses outside these
static areas. This is a reasonable assumption — otherwise kernel code could
never be sure that privileged memory areas such as memory-mapped devices are
not randomly overwritten by compiler-generated accesses. We will then have to
prove that we never remove or change active mappings for these areas (adding
new mappings for e.g. the stack would be fine). For user-level code, we will see
that the issue becomes irrelevant.

9

{|�s. [[l]] s = bvpc ^ [[r]] s = bvc ^ vp /2 IC s ^ Addr vp ,!s pp ^
P (heap_iset_updates (pp 7! v))|}

l ::= r {|P|}

{|�s. kernel s ^ [[rte]] s = brtc ^ P (root_iset_updates Addr rt)|}
UpdateTTBR0 rte {|P|}

{|�s. kernel s ^ P (asid_pt_snpshot_updates a)|} UpdateASID a {|P|}

{|�s. kernel s ^ P (iset_pt_snpshot_updates f)|} Flush f {|P|}

{|�s. kernel s ^ P (s(|mode := flg|))|} SetMode flg {|P|}

Fig. 4. Hoare Logic rules for commands with TLB e↵ects.

The rule for the command UpdateTTBR0, only available in kernel mode, up-
dates the current page table root to the value of the expression rte. The e↵ect
is modelled by root_iset_update defined in Sect. 4.2.

The UpdateASID command, also only available in kernel mode, sets the new
ASID a, increases the iset using snp_incon, and records a page table snapshot
for the old ASID using new_snp.

Finally, Flush is the instruction that the makes the iset smaller, and removes
mappings in the snapshots of inactive ASIDs, using iset_asid_map_update from
Sect. 4.2.

4.4 Discussion

Our previous work [17] motivated an abstract TLB model that we have extended
and refined here. The program logic uses the (morally) same model, but there
is still a break in logic: the TLB abstraction is on a machine-level ISA model;
the program logic is for a higher-level language with explicit memory access,
intended for languages such as C. The bridge between the two worlds would
be a compiler correctness statement that takes the TLB into account. This may
initially not sound straightforward: the high-level language makes fewer memory
accesses visible than the low-level machine performs. In particular, a compiler
will usually implement a stack for local variables, and memory areas for global
variables, as well as for the code itself. These memory accesses are under address
translation and might be relevant for TLB reasoning.

Sect. 5 and 6 will show that we can ignore the TLB for kernel-level code, if we
can assume that these memory areas (code, stack, globals) are statically known
and that the compiler will not generate additional memory accesses outside these
static areas. This is a reasonable assumption — otherwise kernel code could
never be sure that privileged memory areas such as memory-mapped devices are
not randomly overwritten by compiler-generated accesses. We will then have to
prove that we never remove or change active mappings for these areas (adding
new mappings for e.g. the stack would be fine). For user-level code, we will see
that the issue becomes irrelevant.

9

{|�s. [[l]] s = bvpc ^ [[r]] s = bvc ^ vp /2 IC s ^ Addr vp ,!s pp ^
P (heap_iset_updates (pp 7! v))|}

l ::= r {|P|}

{|�s. kernel s ^ [[rte]] s = brtc ^ P (root_iset_updates Addr rt)|}
UpdateTTBR0 rte {|P|}

{|�s. kernel s ^ P (asid_pt_snpshot_updates a)|} UpdateASID a {|P|}

{|�s. kernel s ^ P (iset_pt_snpshot_updates f)|} Flush f {|P|}

{|�s. kernel s ^ P (s(|mode := flg|))|} SetMode flg {|P|}

Fig. 4. Hoare Logic rules for commands with TLB e↵ects.

The rule for the command UpdateTTBR0, only available in kernel mode, up-
dates the current page table root to the value of the expression rte. The e↵ect
is modelled by root_iset_update defined in Sect. 4.2.

The UpdateASID command, also only available in kernel mode, sets the new
ASID a, increases the iset using snp_incon, and records a page table snapshot
for the old ASID using new_snp.

Finally, Flush is the instruction that the makes the iset smaller, and removes
mappings in the snapshots of inactive ASIDs, using iset_asid_map_update from
Sect. 4.2.

4.4 Discussion

Our previous work [17] motivated an abstract TLB model that we have extended
and refined here. The program logic uses the (morally) same model, but there
is still a break in logic: the TLB abstraction is on a machine-level ISA model;
the program logic is for a higher-level language with explicit memory access,
intended for languages such as C. The bridge between the two worlds would
be a compiler correctness statement that takes the TLB into account. This may
initially not sound straightforward: the high-level language makes fewer memory
accesses visible than the low-level machine performs. In particular, a compiler
will usually implement a stack for local variables, and memory areas for global
variables, as well as for the code itself. These memory accesses are under address
translation and might be relevant for TLB reasoning.

Sect. 5 and 6 will show that we can ignore the TLB for kernel-level code, if we
can assume that these memory areas (code, stack, globals) are statically known
and that the compiler will not generate additional memory accesses outside these
static areas. This is a reasonable assumption — otherwise kernel code could
never be sure that privileged memory areas such as memory-mapped devices are
not randomly overwritten by compiler-generated accesses. We will then have to
prove that we never remove or change active mappings for these areas (adding
new mappings for e.g. the stack would be fine). For user-level code, we will see
that the issue becomes irrelevant.

9

 Program Verification in the Presence of TLB-Address Translation Hira Syeda30

- Operations —
- update root register to root r, then
- update ASID register to ASID a

- ARMv7-A manual’s recommended sequence

Context Switch

There are many ways for the OS to implement context switching — our example
shows one where we change to a new address space, i.e. a new page table and
ASID, without flushing the TLB, establishing the conditions of Theorem 3 for
user-level reasoning.

Switching page table roots without flushing is non-trivial, and the ARM
architecture manual [2, Chapter B3.10] even gives a specific sequence of in-
structions to achieve this. The manual uses this sequence, because speculative
execution might otherwise contaminate the new ASID with mappings from the
old page table, i.e. the TLB might still contain entries from the previous user.
Theorem 5 shows that our model is conservative for speculative execution, but
precise enough so we can reason about this sequence and see why it is safe.

The recommended sequence switches to a new user-level page table and ASID
by using a reserved ASID (in this case 0). It first switches to this reserved ASID,
then sets the new page table root, then switches to the ASID for that root, before
it switches to user mode. A real kernel would at this point also restore registers,
which we omit.

Theorem 5 The context switch sequence to a new ASID a and new page table
root r preserves the mmu_layout and ASID snapshot consistency invariants and
establishes the conditions for user-level reasoning, provided that the TLB has no
inconsistent addresses at this point, that the reserved ASID 0 is not used for any
user page table, and that that r is a known page table associated with ASID a.

{|�s. mmu_layout s ^ asids_consistent s ^ mode s = Kernel ^
IC s = ; ^ 0 /2 ran (root_map s) ^ root_map s (Addr r) = bac|}

UpdateASID 0;; UpdateTTBR0 (Const r);; UpdateASID a;; SetMode User
{|�s. mmu_layout s ^ IC s = ; ^ mode s = User ^ asids_consistent s|}

Proof. See lemma context_switch_invariants in [18].

Our previous ISA-level model [17] without ASID page table snapshots was not
strong enough to admit this theorem without flushing the TLB. In particular,
the fact that the TLB does not contain entries for the ASID we are switching to
that are inconsistent with the current page table at that point would either be
lost (making it unsound) or over-approximated (requiring a flush).

For compiler correctness, we would additionally need to know that ASID 0
does not have inconsistent entries for the code and data areas of the kernel,
which is maintained if ASID 0 is used only in the way above. To make this more
explicit, we could add a static set to the program logic for code and data that
must always be consistency, and the condition asids_consistent would maintain
that at least the global kernel mappings are consistent in ASID 0.

This concludes the case study examples for our logic. We have seen that we
can reason about user code, ‘uninteresting’ kernel code, and kernel code that
manipulates paging structures, each at their appropriate level of abstraction.

15

{|�s. [[l]] s = bvpc ^ [[r]] s = bvc ^ vp /2 IC s ^ Addr vp ,!s pp ^
P (heap_iset_updates (pp 7! v))|}

l ::= r {|P|}

{|�s. kernel s ^ [[rte]] s = brtc ^ P (root_iset_updates Addr rt)|}
UpdateTTBR0 rte {|P|}

{|�s. kernel s ^ P (asid_pt_snpshot_updates a)|} UpdateASID a {|P|}

{|�s. kernel s ^ P (iset_pt_snpshot_updates f)|} Flush f {|P|}

{|�s. kernel s ^ P (s(|mode := flg|))|} SetMode flg {|P|}

Fig. 4. Hoare Logic rules for commands with TLB e↵ects.

The rule for the command UpdateTTBR0, only available in kernel mode, up-
dates the current page table root to the value of the expression rte. The e↵ect
is modelled by root_iset_update defined in Sect. 4.2.

The UpdateASID command, also only available in kernel mode, sets the new
ASID a, increases the iset using snp_incon, and records a page table snapshot
for the old ASID using new_snp.

Finally, Flush is the instruction that the makes the iset smaller, and removes
mappings in the snapshots of inactive ASIDs, using iset_asid_map_update from
Sect. 4.2.

4.4 Discussion

Our previous work [17] motivated an abstract TLB model that we have extended
and refined here. The program logic uses the (morally) same model, but there
is still a break in logic: the TLB abstraction is on a machine-level ISA model;
the program logic is for a higher-level language with explicit memory access,
intended for languages such as C. The bridge between the two worlds would
be a compiler correctness statement that takes the TLB into account. This may
initially not sound straightforward: the high-level language makes fewer memory
accesses visible than the low-level machine performs. In particular, a compiler
will usually implement a stack for local variables, and memory areas for global
variables, as well as for the code itself. These memory accesses are under address
translation and might be relevant for TLB reasoning.

Sect. 5 and 6 will show that we can ignore the TLB for kernel-level code, if we
can assume that these memory areas (code, stack, globals) are statically known
and that the compiler will not generate additional memory accesses outside these
static areas. This is a reasonable assumption — otherwise kernel code could
never be sure that privileged memory areas such as memory-mapped devices are
not randomly overwritten by compiler-generated accesses. We will then have to
prove that we never remove or change active mappings for these areas (adding
new mappings for e.g. the stack would be fine). For user-level code, we will see
that the issue becomes irrelevant.

9

{|�s. [[l]] s = bvpc ^ [[r]] s = bvc ^ vp /2 IC s ^ Addr vp ,!s pp ^
P (heap_iset_updates (pp 7! v))|}

l ::= r {|P|}

{|�s. kernel s ^ [[rte]] s = brtc ^ P (root_iset_updates Addr rt)|}
UpdateTTBR0 rte {|P|}

{|�s. kernel s ^ P (asid_pt_snpshot_updates a)|} UpdateASID a {|P|}

{|�s. kernel s ^ P (iset_pt_snpshot_updates f)|} Flush f {|P|}

{|�s. kernel s ^ P (s(|mode := flg|))|} SetMode flg {|P|}

Fig. 4. Hoare Logic rules for commands with TLB e↵ects.

The rule for the command UpdateTTBR0, only available in kernel mode, up-
dates the current page table root to the value of the expression rte. The e↵ect
is modelled by root_iset_update defined in Sect. 4.2.

The UpdateASID command, also only available in kernel mode, sets the new
ASID a, increases the iset using snp_incon, and records a page table snapshot
for the old ASID using new_snp.

Finally, Flush is the instruction that the makes the iset smaller, and removes
mappings in the snapshots of inactive ASIDs, using iset_asid_map_update from
Sect. 4.2.

4.4 Discussion

Our previous work [17] motivated an abstract TLB model that we have extended
and refined here. The program logic uses the (morally) same model, but there
is still a break in logic: the TLB abstraction is on a machine-level ISA model;
the program logic is for a higher-level language with explicit memory access,
intended for languages such as C. The bridge between the two worlds would
be a compiler correctness statement that takes the TLB into account. This may
initially not sound straightforward: the high-level language makes fewer memory
accesses visible than the low-level machine performs. In particular, a compiler
will usually implement a stack for local variables, and memory areas for global
variables, as well as for the code itself. These memory accesses are under address
translation and might be relevant for TLB reasoning.

Sect. 5 and 6 will show that we can ignore the TLB for kernel-level code, if we
can assume that these memory areas (code, stack, globals) are statically known
and that the compiler will not generate additional memory accesses outside these
static areas. This is a reasonable assumption — otherwise kernel code could
never be sure that privileged memory areas such as memory-mapped devices are
not randomly overwritten by compiler-generated accesses. We will then have to
prove that we never remove or change active mappings for these areas (adding
new mappings for e.g. the stack would be fine). For user-level code, we will see
that the issue becomes irrelevant.

9

{|�s. [[l]] s = bvpc ^ [[r]] s = bvc ^ vp /2 IC s ^ Addr vp ,!s pp ^
P (heap_iset_updates (pp 7! v))|}

l ::= r {|P|}

{|�s. kernel s ^ [[rte]] s = brtc ^ P (root_iset_updates Addr rt)|}
UpdateTTBR0 rte {|P|}

{|�s. kernel s ^ P (asid_pt_snpshot_updates a)|} UpdateASID a {|P|}

{|�s. kernel s ^ P (iset_pt_snpshot_updates f)|} Flush f {|P|}

{|�s. kernel s ^ P (s(|mode := flg|))|} SetMode flg {|P|}

Fig. 4. Hoare Logic rules for commands with TLB e↵ects.

The rule for the command UpdateTTBR0, only available in kernel mode, up-
dates the current page table root to the value of the expression rte. The e↵ect
is modelled by root_iset_update defined in Sect. 4.2.

The UpdateASID command, also only available in kernel mode, sets the new
ASID a, increases the iset using snp_incon, and records a page table snapshot
for the old ASID using new_snp.

Finally, Flush is the instruction that the makes the iset smaller, and removes
mappings in the snapshots of inactive ASIDs, using iset_asid_map_update from
Sect. 4.2.

4.4 Discussion

Our previous work [17] motivated an abstract TLB model that we have extended
and refined here. The program logic uses the (morally) same model, but there
is still a break in logic: the TLB abstraction is on a machine-level ISA model;
the program logic is for a higher-level language with explicit memory access,
intended for languages such as C. The bridge between the two worlds would
be a compiler correctness statement that takes the TLB into account. This may
initially not sound straightforward: the high-level language makes fewer memory
accesses visible than the low-level machine performs. In particular, a compiler
will usually implement a stack for local variables, and memory areas for global
variables, as well as for the code itself. These memory accesses are under address
translation and might be relevant for TLB reasoning.

Sect. 5 and 6 will show that we can ignore the TLB for kernel-level code, if we
can assume that these memory areas (code, stack, globals) are statically known
and that the compiler will not generate additional memory accesses outside these
static areas. This is a reasonable assumption — otherwise kernel code could
never be sure that privileged memory areas such as memory-mapped devices are
not randomly overwritten by compiler-generated accesses. We will then have to
prove that we never remove or change active mappings for these areas (adding
new mappings for e.g. the stack would be fine). For user-level code, we will see
that the issue becomes irrelevant.

9

{|�s. [[l]] s = bvpc ^ [[r]] s = bvc ^ vp /2 IC s ^ Addr vp ,!s pp ^
P (heap_iset_updates (pp 7! v))|}

l ::= r {|P|}

{|�s. kernel s ^ [[rte]] s = brtc ^ P (root_iset_updates Addr rt)|}
UpdateTTBR0 rte {|P|}

{|�s. kernel s ^ P (asid_pt_snpshot_updates a)|} UpdateASID a {|P|}

{|�s. kernel s ^ P (iset_pt_snpshot_updates f)|} Flush f {|P|}

{|�s. kernel s ^ P (s(|mode := flg|))|} SetMode flg {|P|}

Fig. 4. Hoare Logic rules for commands with TLB e↵ects.

The rule for the command UpdateTTBR0, only available in kernel mode, up-
dates the current page table root to the value of the expression rte. The e↵ect
is modelled by root_iset_update defined in Sect. 4.2.

The UpdateASID command, also only available in kernel mode, sets the new
ASID a, increases the iset using snp_incon, and records a page table snapshot
for the old ASID using new_snp.

Finally, Flush is the instruction that the makes the iset smaller, and removes
mappings in the snapshots of inactive ASIDs, using iset_asid_map_update from
Sect. 4.2.

4.4 Discussion

Our previous work [17] motivated an abstract TLB model that we have extended
and refined here. The program logic uses the (morally) same model, but there
is still a break in logic: the TLB abstraction is on a machine-level ISA model;
the program logic is for a higher-level language with explicit memory access,
intended for languages such as C. The bridge between the two worlds would
be a compiler correctness statement that takes the TLB into account. This may
initially not sound straightforward: the high-level language makes fewer memory
accesses visible than the low-level machine performs. In particular, a compiler
will usually implement a stack for local variables, and memory areas for global
variables, as well as for the code itself. These memory accesses are under address
translation and might be relevant for TLB reasoning.

Sect. 5 and 6 will show that we can ignore the TLB for kernel-level code, if we
can assume that these memory areas (code, stack, globals) are statically known
and that the compiler will not generate additional memory accesses outside these
static areas. This is a reasonable assumption — otherwise kernel code could
never be sure that privileged memory areas such as memory-mapped devices are
not randomly overwritten by compiler-generated accesses. We will then have to
prove that we never remove or change active mappings for these areas (adding
new mappings for e.g. the stack would be fine). For user-level code, we will see
that the issue becomes irrelevant.

9

 Program Verification in the Presence of TLB-Address Translation Hira Syeda30

- Operations —
- update root register to root r, then
- update ASID register to ASID a

- ARMv7-A manual’s recommended sequence

Context Switch

There are many ways for the OS to implement context switching — our example
shows one where we change to a new address space, i.e. a new page table and
ASID, without flushing the TLB, establishing the conditions of Theorem 3 for
user-level reasoning.

Switching page table roots without flushing is non-trivial, and the ARM
architecture manual [2, Chapter B3.10] even gives a specific sequence of in-
structions to achieve this. The manual uses this sequence, because speculative
execution might otherwise contaminate the new ASID with mappings from the
old page table, i.e. the TLB might still contain entries from the previous user.
Theorem 5 shows that our model is conservative for speculative execution, but
precise enough so we can reason about this sequence and see why it is safe.

The recommended sequence switches to a new user-level page table and ASID
by using a reserved ASID (in this case 0). It first switches to this reserved ASID,
then sets the new page table root, then switches to the ASID for that root, before
it switches to user mode. A real kernel would at this point also restore registers,
which we omit.

Theorem 5 The context switch sequence to a new ASID a and new page table
root r preserves the mmu_layout and ASID snapshot consistency invariants and
establishes the conditions for user-level reasoning, provided that the TLB has no
inconsistent addresses at this point, that the reserved ASID 0 is not used for any
user page table, and that that r is a known page table associated with ASID a.

{|�s. mmu_layout s ^ asids_consistent s ^ mode s = Kernel ^
IC s = ; ^ 0 /2 ran (root_map s) ^ root_map s (Addr r) = bac|}

UpdateASID 0;; UpdateTTBR0 (Const r);; UpdateASID a;; SetMode User
{|�s. mmu_layout s ^ IC s = ; ^ mode s = User ^ asids_consistent s|}

Proof. See lemma context_switch_invariants in [18].

Our previous ISA-level model [17] without ASID page table snapshots was not
strong enough to admit this theorem without flushing the TLB. In particular,
the fact that the TLB does not contain entries for the ASID we are switching to
that are inconsistent with the current page table at that point would either be
lost (making it unsound) or over-approximated (requiring a flush).

For compiler correctness, we would additionally need to know that ASID 0
does not have inconsistent entries for the code and data areas of the kernel,
which is maintained if ASID 0 is used only in the way above. To make this more
explicit, we could add a static set to the program logic for code and data that
must always be consistency, and the condition asids_consistent would maintain
that at least the global kernel mappings are consistent in ASID 0.

This concludes the case study examples for our logic. We have seen that we
can reason about user code, ‘uninteresting’ kernel code, and kernel code that
manipulates paging structures, each at their appropriate level of abstraction.

15

{|�s. [[l]] s = bvpc ^ [[r]] s = bvc ^ vp /2 IC s ^ Addr vp ,!s pp ^
P (heap_iset_updates (pp 7! v))|}

l ::= r {|P|}

{|�s. kernel s ^ [[rte]] s = brtc ^ P (root_iset_updates Addr rt)|}
UpdateTTBR0 rte {|P|}

{|�s. kernel s ^ P (asid_pt_snpshot_updates a)|} UpdateASID a {|P|}

{|�s. kernel s ^ P (iset_pt_snpshot_updates f)|} Flush f {|P|}

{|�s. kernel s ^ P (s(|mode := flg|))|} SetMode flg {|P|}

Fig. 4. Hoare Logic rules for commands with TLB e↵ects.

The rule for the command UpdateTTBR0, only available in kernel mode, up-
dates the current page table root to the value of the expression rte. The e↵ect
is modelled by root_iset_update defined in Sect. 4.2.

The UpdateASID command, also only available in kernel mode, sets the new
ASID a, increases the iset using snp_incon, and records a page table snapshot
for the old ASID using new_snp.

Finally, Flush is the instruction that the makes the iset smaller, and removes
mappings in the snapshots of inactive ASIDs, using iset_asid_map_update from
Sect. 4.2.

4.4 Discussion

Our previous work [17] motivated an abstract TLB model that we have extended
and refined here. The program logic uses the (morally) same model, but there
is still a break in logic: the TLB abstraction is on a machine-level ISA model;
the program logic is for a higher-level language with explicit memory access,
intended for languages such as C. The bridge between the two worlds would
be a compiler correctness statement that takes the TLB into account. This may
initially not sound straightforward: the high-level language makes fewer memory
accesses visible than the low-level machine performs. In particular, a compiler
will usually implement a stack for local variables, and memory areas for global
variables, as well as for the code itself. These memory accesses are under address
translation and might be relevant for TLB reasoning.

Sect. 5 and 6 will show that we can ignore the TLB for kernel-level code, if we
can assume that these memory areas (code, stack, globals) are statically known
and that the compiler will not generate additional memory accesses outside these
static areas. This is a reasonable assumption — otherwise kernel code could
never be sure that privileged memory areas such as memory-mapped devices are
not randomly overwritten by compiler-generated accesses. We will then have to
prove that we never remove or change active mappings for these areas (adding
new mappings for e.g. the stack would be fine). For user-level code, we will see
that the issue becomes irrelevant.

9

{|�s. [[l]] s = bvpc ^ [[r]] s = bvc ^ vp /2 IC s ^ Addr vp ,!s pp ^
P (heap_iset_updates (pp 7! v))|}

l ::= r {|P|}

{|�s. kernel s ^ [[rte]] s = brtc ^ P (root_iset_updates Addr rt)|}
UpdateTTBR0 rte {|P|}

{|�s. kernel s ^ P (asid_pt_snpshot_updates a)|} UpdateASID a {|P|}

{|�s. kernel s ^ P (iset_pt_snpshot_updates f)|} Flush f {|P|}

{|�s. kernel s ^ P (s(|mode := flg|))|} SetMode flg {|P|}

Fig. 4. Hoare Logic rules for commands with TLB e↵ects.

The rule for the command UpdateTTBR0, only available in kernel mode, up-
dates the current page table root to the value of the expression rte. The e↵ect
is modelled by root_iset_update defined in Sect. 4.2.

The UpdateASID command, also only available in kernel mode, sets the new
ASID a, increases the iset using snp_incon, and records a page table snapshot
for the old ASID using new_snp.

Finally, Flush is the instruction that the makes the iset smaller, and removes
mappings in the snapshots of inactive ASIDs, using iset_asid_map_update from
Sect. 4.2.

4.4 Discussion

Our previous work [17] motivated an abstract TLB model that we have extended
and refined here. The program logic uses the (morally) same model, but there
is still a break in logic: the TLB abstraction is on a machine-level ISA model;
the program logic is for a higher-level language with explicit memory access,
intended for languages such as C. The bridge between the two worlds would
be a compiler correctness statement that takes the TLB into account. This may
initially not sound straightforward: the high-level language makes fewer memory
accesses visible than the low-level machine performs. In particular, a compiler
will usually implement a stack for local variables, and memory areas for global
variables, as well as for the code itself. These memory accesses are under address
translation and might be relevant for TLB reasoning.

Sect. 5 and 6 will show that we can ignore the TLB for kernel-level code, if we
can assume that these memory areas (code, stack, globals) are statically known
and that the compiler will not generate additional memory accesses outside these
static areas. This is a reasonable assumption — otherwise kernel code could
never be sure that privileged memory areas such as memory-mapped devices are
not randomly overwritten by compiler-generated accesses. We will then have to
prove that we never remove or change active mappings for these areas (adding
new mappings for e.g. the stack would be fine). For user-level code, we will see
that the issue becomes irrelevant.

9

{|�s. [[l]] s = bvpc ^ [[r]] s = bvc ^ vp /2 IC s ^ Addr vp ,!s pp ^
P (heap_iset_updates (pp 7! v))|}

l ::= r {|P|}

{|�s. kernel s ^ [[rte]] s = brtc ^ P (root_iset_updates Addr rt)|}
UpdateTTBR0 rte {|P|}

{|�s. kernel s ^ P (asid_pt_snpshot_updates a)|} UpdateASID a {|P|}

{|�s. kernel s ^ P (iset_pt_snpshot_updates f)|} Flush f {|P|}

{|�s. kernel s ^ P (s(|mode := flg|))|} SetMode flg {|P|}

Fig. 4. Hoare Logic rules for commands with TLB e↵ects.

The rule for the command UpdateTTBR0, only available in kernel mode, up-
dates the current page table root to the value of the expression rte. The e↵ect
is modelled by root_iset_update defined in Sect. 4.2.

The UpdateASID command, also only available in kernel mode, sets the new
ASID a, increases the iset using snp_incon, and records a page table snapshot
for the old ASID using new_snp.

Finally, Flush is the instruction that the makes the iset smaller, and removes
mappings in the snapshots of inactive ASIDs, using iset_asid_map_update from
Sect. 4.2.

4.4 Discussion

Our previous work [17] motivated an abstract TLB model that we have extended
and refined here. The program logic uses the (morally) same model, but there
is still a break in logic: the TLB abstraction is on a machine-level ISA model;
the program logic is for a higher-level language with explicit memory access,
intended for languages such as C. The bridge between the two worlds would
be a compiler correctness statement that takes the TLB into account. This may
initially not sound straightforward: the high-level language makes fewer memory
accesses visible than the low-level machine performs. In particular, a compiler
will usually implement a stack for local variables, and memory areas for global
variables, as well as for the code itself. These memory accesses are under address
translation and might be relevant for TLB reasoning.

Sect. 5 and 6 will show that we can ignore the TLB for kernel-level code, if we
can assume that these memory areas (code, stack, globals) are statically known
and that the compiler will not generate additional memory accesses outside these
static areas. This is a reasonable assumption — otherwise kernel code could
never be sure that privileged memory areas such as memory-mapped devices are
not randomly overwritten by compiler-generated accesses. We will then have to
prove that we never remove or change active mappings for these areas (adding
new mappings for e.g. the stack would be fine). For user-level code, we will see
that the issue becomes irrelevant.

9

{|�s. [[l]] s = bvpc ^ [[r]] s = bvc ^ vp /2 IC s ^ Addr vp ,!s pp ^
P (heap_iset_updates (pp 7! v))|}

l ::= r {|P|}

{|�s. kernel s ^ [[rte]] s = brtc ^ P (root_iset_updates Addr rt)|}
UpdateTTBR0 rte {|P|}

{|�s. kernel s ^ P (asid_pt_snpshot_updates a)|} UpdateASID a {|P|}

{|�s. kernel s ^ P (iset_pt_snpshot_updates f)|} Flush f {|P|}

{|�s. kernel s ^ P (s(|mode := flg|))|} SetMode flg {|P|}

Fig. 4. Hoare Logic rules for commands with TLB e↵ects.

The rule for the command UpdateTTBR0, only available in kernel mode, up-
dates the current page table root to the value of the expression rte. The e↵ect
is modelled by root_iset_update defined in Sect. 4.2.

The UpdateASID command, also only available in kernel mode, sets the new
ASID a, increases the iset using snp_incon, and records a page table snapshot
for the old ASID using new_snp.

Finally, Flush is the instruction that the makes the iset smaller, and removes
mappings in the snapshots of inactive ASIDs, using iset_asid_map_update from
Sect. 4.2.

4.4 Discussion

Our previous work [17] motivated an abstract TLB model that we have extended
and refined here. The program logic uses the (morally) same model, but there
is still a break in logic: the TLB abstraction is on a machine-level ISA model;
the program logic is for a higher-level language with explicit memory access,
intended for languages such as C. The bridge between the two worlds would
be a compiler correctness statement that takes the TLB into account. This may
initially not sound straightforward: the high-level language makes fewer memory
accesses visible than the low-level machine performs. In particular, a compiler
will usually implement a stack for local variables, and memory areas for global
variables, as well as for the code itself. These memory accesses are under address
translation and might be relevant for TLB reasoning.

Sect. 5 and 6 will show that we can ignore the TLB for kernel-level code, if we
can assume that these memory areas (code, stack, globals) are statically known
and that the compiler will not generate additional memory accesses outside these
static areas. This is a reasonable assumption — otherwise kernel code could
never be sure that privileged memory areas such as memory-mapped devices are
not randomly overwritten by compiler-generated accesses. We will then have to
prove that we never remove or change active mappings for these areas (adding
new mappings for e.g. the stack would be fine). For user-level code, we will see
that the issue becomes irrelevant.

9

 Program Verification in the Presence of TLB-Address Translation Hira Syeda30

- Operations —
- update root register to root r, then
- update ASID register to ASID a

- ARMv7-A manual’s recommended sequence

Context Switch

There are many ways for the OS to implement context switching — our example
shows one where we change to a new address space, i.e. a new page table and
ASID, without flushing the TLB, establishing the conditions of Theorem 3 for
user-level reasoning.

Switching page table roots without flushing is non-trivial, and the ARM
architecture manual [2, Chapter B3.10] even gives a specific sequence of in-
structions to achieve this. The manual uses this sequence, because speculative
execution might otherwise contaminate the new ASID with mappings from the
old page table, i.e. the TLB might still contain entries from the previous user.
Theorem 5 shows that our model is conservative for speculative execution, but
precise enough so we can reason about this sequence and see why it is safe.

The recommended sequence switches to a new user-level page table and ASID
by using a reserved ASID (in this case 0). It first switches to this reserved ASID,
then sets the new page table root, then switches to the ASID for that root, before
it switches to user mode. A real kernel would at this point also restore registers,
which we omit.

Theorem 5 The context switch sequence to a new ASID a and new page table
root r preserves the mmu_layout and ASID snapshot consistency invariants and
establishes the conditions for user-level reasoning, provided that the TLB has no
inconsistent addresses at this point, that the reserved ASID 0 is not used for any
user page table, and that that r is a known page table associated with ASID a.

{|�s. mmu_layout s ^ asids_consistent s ^ mode s = Kernel ^
IC s = ; ^ 0 /2 ran (root_map s) ^ root_map s (Addr r) = bac|}

UpdateASID 0;; UpdateTTBR0 (Const r);; UpdateASID a;; SetMode User
{|�s. mmu_layout s ^ IC s = ; ^ mode s = User ^ asids_consistent s|}

Proof. See lemma context_switch_invariants in [18].

Our previous ISA-level model [17] without ASID page table snapshots was not
strong enough to admit this theorem without flushing the TLB. In particular,
the fact that the TLB does not contain entries for the ASID we are switching to
that are inconsistent with the current page table at that point would either be
lost (making it unsound) or over-approximated (requiring a flush).

For compiler correctness, we would additionally need to know that ASID 0
does not have inconsistent entries for the code and data areas of the kernel,
which is maintained if ASID 0 is used only in the way above. To make this more
explicit, we could add a static set to the program logic for code and data that
must always be consistency, and the condition asids_consistent would maintain
that at least the global kernel mappings are consistent in ASID 0.

This concludes the case study examples for our logic. We have seen that we
can reason about user code, ‘uninteresting’ kernel code, and kernel code that
manipulates paging structures, each at their appropriate level of abstraction.

15

{|�s. [[l]] s = bvpc ^ [[r]] s = bvc ^ vp /2 IC s ^ Addr vp ,!s pp ^
P (heap_iset_updates (pp 7! v))|}

l ::= r {|P|}

{|�s. kernel s ^ [[rte]] s = brtc ^ P (root_iset_updates Addr rt)|}
UpdateTTBR0 rte {|P|}

{|�s. kernel s ^ P (asid_pt_snpshot_updates a)|} UpdateASID a {|P|}

{|�s. kernel s ^ P (iset_pt_snpshot_updates f)|} Flush f {|P|}

{|�s. kernel s ^ P (s(|mode := flg|))|} SetMode flg {|P|}

Fig. 4. Hoare Logic rules for commands with TLB e↵ects.

The rule for the command UpdateTTBR0, only available in kernel mode, up-
dates the current page table root to the value of the expression rte. The e↵ect
is modelled by root_iset_update defined in Sect. 4.2.

The UpdateASID command, also only available in kernel mode, sets the new
ASID a, increases the iset using snp_incon, and records a page table snapshot
for the old ASID using new_snp.

Finally, Flush is the instruction that the makes the iset smaller, and removes
mappings in the snapshots of inactive ASIDs, using iset_asid_map_update from
Sect. 4.2.

4.4 Discussion

Our previous work [17] motivated an abstract TLB model that we have extended
and refined here. The program logic uses the (morally) same model, but there
is still a break in logic: the TLB abstraction is on a machine-level ISA model;
the program logic is for a higher-level language with explicit memory access,
intended for languages such as C. The bridge between the two worlds would
be a compiler correctness statement that takes the TLB into account. This may
initially not sound straightforward: the high-level language makes fewer memory
accesses visible than the low-level machine performs. In particular, a compiler
will usually implement a stack for local variables, and memory areas for global
variables, as well as for the code itself. These memory accesses are under address
translation and might be relevant for TLB reasoning.

Sect. 5 and 6 will show that we can ignore the TLB for kernel-level code, if we
can assume that these memory areas (code, stack, globals) are statically known
and that the compiler will not generate additional memory accesses outside these
static areas. This is a reasonable assumption — otherwise kernel code could
never be sure that privileged memory areas such as memory-mapped devices are
not randomly overwritten by compiler-generated accesses. We will then have to
prove that we never remove or change active mappings for these areas (adding
new mappings for e.g. the stack would be fine). For user-level code, we will see
that the issue becomes irrelevant.

9

{|�s. [[l]] s = bvpc ^ [[r]] s = bvc ^ vp /2 IC s ^ Addr vp ,!s pp ^
P (heap_iset_updates (pp 7! v))|}

l ::= r {|P|}

{|�s. kernel s ^ [[rte]] s = brtc ^ P (root_iset_updates Addr rt)|}
UpdateTTBR0 rte {|P|}

{|�s. kernel s ^ P (asid_pt_snpshot_updates a)|} UpdateASID a {|P|}

{|�s. kernel s ^ P (iset_pt_snpshot_updates f)|} Flush f {|P|}

{|�s. kernel s ^ P (s(|mode := flg|))|} SetMode flg {|P|}

Fig. 4. Hoare Logic rules for commands with TLB e↵ects.

The rule for the command UpdateTTBR0, only available in kernel mode, up-
dates the current page table root to the value of the expression rte. The e↵ect
is modelled by root_iset_update defined in Sect. 4.2.

The UpdateASID command, also only available in kernel mode, sets the new
ASID a, increases the iset using snp_incon, and records a page table snapshot
for the old ASID using new_snp.

Finally, Flush is the instruction that the makes the iset smaller, and removes
mappings in the snapshots of inactive ASIDs, using iset_asid_map_update from
Sect. 4.2.

4.4 Discussion

Our previous work [17] motivated an abstract TLB model that we have extended
and refined here. The program logic uses the (morally) same model, but there
is still a break in logic: the TLB abstraction is on a machine-level ISA model;
the program logic is for a higher-level language with explicit memory access,
intended for languages such as C. The bridge between the two worlds would
be a compiler correctness statement that takes the TLB into account. This may
initially not sound straightforward: the high-level language makes fewer memory
accesses visible than the low-level machine performs. In particular, a compiler
will usually implement a stack for local variables, and memory areas for global
variables, as well as for the code itself. These memory accesses are under address
translation and might be relevant for TLB reasoning.

Sect. 5 and 6 will show that we can ignore the TLB for kernel-level code, if we
can assume that these memory areas (code, stack, globals) are statically known
and that the compiler will not generate additional memory accesses outside these
static areas. This is a reasonable assumption — otherwise kernel code could
never be sure that privileged memory areas such as memory-mapped devices are
not randomly overwritten by compiler-generated accesses. We will then have to
prove that we never remove or change active mappings for these areas (adding
new mappings for e.g. the stack would be fine). For user-level code, we will see
that the issue becomes irrelevant.

9

{|�s. [[l]] s = bvpc ^ [[r]] s = bvc ^ vp /2 IC s ^ Addr vp ,!s pp ^
P (heap_iset_updates (pp 7! v))|}

l ::= r {|P|}

{|�s. kernel s ^ [[rte]] s = brtc ^ P (root_iset_updates Addr rt)|}
UpdateTTBR0 rte {|P|}

{|�s. kernel s ^ P (asid_pt_snpshot_updates a)|} UpdateASID a {|P|}

{|�s. kernel s ^ P (iset_pt_snpshot_updates f)|} Flush f {|P|}

{|�s. kernel s ^ P (s(|mode := flg|))|} SetMode flg {|P|}

Fig. 4. Hoare Logic rules for commands with TLB e↵ects.

The rule for the command UpdateTTBR0, only available in kernel mode, up-
dates the current page table root to the value of the expression rte. The e↵ect
is modelled by root_iset_update defined in Sect. 4.2.

The UpdateASID command, also only available in kernel mode, sets the new
ASID a, increases the iset using snp_incon, and records a page table snapshot
for the old ASID using new_snp.

Finally, Flush is the instruction that the makes the iset smaller, and removes
mappings in the snapshots of inactive ASIDs, using iset_asid_map_update from
Sect. 4.2.

4.4 Discussion

Our previous work [17] motivated an abstract TLB model that we have extended
and refined here. The program logic uses the (morally) same model, but there
is still a break in logic: the TLB abstraction is on a machine-level ISA model;
the program logic is for a higher-level language with explicit memory access,
intended for languages such as C. The bridge between the two worlds would
be a compiler correctness statement that takes the TLB into account. This may
initially not sound straightforward: the high-level language makes fewer memory
accesses visible than the low-level machine performs. In particular, a compiler
will usually implement a stack for local variables, and memory areas for global
variables, as well as for the code itself. These memory accesses are under address
translation and might be relevant for TLB reasoning.

Sect. 5 and 6 will show that we can ignore the TLB for kernel-level code, if we
can assume that these memory areas (code, stack, globals) are statically known
and that the compiler will not generate additional memory accesses outside these
static areas. This is a reasonable assumption — otherwise kernel code could
never be sure that privileged memory areas such as memory-mapped devices are
not randomly overwritten by compiler-generated accesses. We will then have to
prove that we never remove or change active mappings for these areas (adding
new mappings for e.g. the stack would be fine). For user-level code, we will see
that the issue becomes irrelevant.

9

{|�s. [[l]] s = bvpc ^ [[r]] s = bvc ^ vp /2 IC s ^ Addr vp ,!s pp ^
P (heap_iset_updates (pp 7! v))|}

l ::= r {|P|}

{|�s. kernel s ^ [[rte]] s = brtc ^ P (root_iset_updates Addr rt)|}
UpdateTTBR0 rte {|P|}

{|�s. kernel s ^ P (asid_pt_snpshot_updates a)|} UpdateASID a {|P|}

{|�s. kernel s ^ P (iset_pt_snpshot_updates f)|} Flush f {|P|}

{|�s. kernel s ^ P (s(|mode := flg|))|} SetMode flg {|P|}

Fig. 4. Hoare Logic rules for commands with TLB e↵ects.

The rule for the command UpdateTTBR0, only available in kernel mode, up-
dates the current page table root to the value of the expression rte. The e↵ect
is modelled by root_iset_update defined in Sect. 4.2.

The UpdateASID command, also only available in kernel mode, sets the new
ASID a, increases the iset using snp_incon, and records a page table snapshot
for the old ASID using new_snp.

Finally, Flush is the instruction that the makes the iset smaller, and removes
mappings in the snapshots of inactive ASIDs, using iset_asid_map_update from
Sect. 4.2.

4.4 Discussion

Our previous work [17] motivated an abstract TLB model that we have extended
and refined here. The program logic uses the (morally) same model, but there
is still a break in logic: the TLB abstraction is on a machine-level ISA model;
the program logic is for a higher-level language with explicit memory access,
intended for languages such as C. The bridge between the two worlds would
be a compiler correctness statement that takes the TLB into account. This may
initially not sound straightforward: the high-level language makes fewer memory
accesses visible than the low-level machine performs. In particular, a compiler
will usually implement a stack for local variables, and memory areas for global
variables, as well as for the code itself. These memory accesses are under address
translation and might be relevant for TLB reasoning.

Sect. 5 and 6 will show that we can ignore the TLB for kernel-level code, if we
can assume that these memory areas (code, stack, globals) are statically known
and that the compiler will not generate additional memory accesses outside these
static areas. This is a reasonable assumption — otherwise kernel code could
never be sure that privileged memory areas such as memory-mapped devices are
not randomly overwritten by compiler-generated accesses. We will then have to
prove that we never remove or change active mappings for these areas (adding
new mappings for e.g. the stack would be fine). For user-level code, we will see
that the issue becomes irrelevant.

9

 Program Verification in the Presence of TLB-Address Translation Hira Syeda30

- Operations —
- update root register to root r, then
- update ASID register to ASID a

- ARMv7-A manual’s recommended sequence

Context Switch

There are many ways for the OS to implement context switching — our example
shows one where we change to a new address space, i.e. a new page table and
ASID, without flushing the TLB, establishing the conditions of Theorem 3 for
user-level reasoning.

Switching page table roots without flushing is non-trivial, and the ARM
architecture manual [2, Chapter B3.10] even gives a specific sequence of in-
structions to achieve this. The manual uses this sequence, because speculative
execution might otherwise contaminate the new ASID with mappings from the
old page table, i.e. the TLB might still contain entries from the previous user.
Theorem 5 shows that our model is conservative for speculative execution, but
precise enough so we can reason about this sequence and see why it is safe.

The recommended sequence switches to a new user-level page table and ASID
by using a reserved ASID (in this case 0). It first switches to this reserved ASID,
then sets the new page table root, then switches to the ASID for that root, before
it switches to user mode. A real kernel would at this point also restore registers,
which we omit.

Theorem 5 The context switch sequence to a new ASID a and new page table
root r preserves the mmu_layout and ASID snapshot consistency invariants and
establishes the conditions for user-level reasoning, provided that the TLB has no
inconsistent addresses at this point, that the reserved ASID 0 is not used for any
user page table, and that that r is a known page table associated with ASID a.

{|�s. mmu_layout s ^ asids_consistent s ^ mode s = Kernel ^
IC s = ; ^ 0 /2 ran (root_map s) ^ root_map s (Addr r) = bac|}

UpdateASID 0;; UpdateTTBR0 (Const r);; UpdateASID a;; SetMode User
{|�s. mmu_layout s ^ IC s = ; ^ mode s = User ^ asids_consistent s|}

Proof. See lemma context_switch_invariants in [18].

Our previous ISA-level model [17] without ASID page table snapshots was not
strong enough to admit this theorem without flushing the TLB. In particular,
the fact that the TLB does not contain entries for the ASID we are switching to
that are inconsistent with the current page table at that point would either be
lost (making it unsound) or over-approximated (requiring a flush).

For compiler correctness, we would additionally need to know that ASID 0
does not have inconsistent entries for the code and data areas of the kernel,
which is maintained if ASID 0 is used only in the way above. To make this more
explicit, we could add a static set to the program logic for code and data that
must always be consistency, and the condition asids_consistent would maintain
that at least the global kernel mappings are consistent in ASID 0.

This concludes the case study examples for our logic. We have seen that we
can reason about user code, ‘uninteresting’ kernel code, and kernel code that
manipulates paging structures, each at their appropriate level of abstraction.

15

{|�s. [[l]] s = bvpc ^ [[r]] s = bvc ^ vp /2 IC s ^ Addr vp ,!s pp ^
P (heap_iset_updates (pp 7! v))|}

l ::= r {|P|}

{|�s. kernel s ^ [[rte]] s = brtc ^ P (root_iset_updates Addr rt)|}
UpdateTTBR0 rte {|P|}

{|�s. kernel s ^ P (asid_pt_snpshot_updates a)|} UpdateASID a {|P|}

{|�s. kernel s ^ P (iset_pt_snpshot_updates f)|} Flush f {|P|}

{|�s. kernel s ^ P (s(|mode := flg|))|} SetMode flg {|P|}

Fig. 4. Hoare Logic rules for commands with TLB e↵ects.

The rule for the command UpdateTTBR0, only available in kernel mode, up-
dates the current page table root to the value of the expression rte. The e↵ect
is modelled by root_iset_update defined in Sect. 4.2.

The UpdateASID command, also only available in kernel mode, sets the new
ASID a, increases the iset using snp_incon, and records a page table snapshot
for the old ASID using new_snp.

Finally, Flush is the instruction that the makes the iset smaller, and removes
mappings in the snapshots of inactive ASIDs, using iset_asid_map_update from
Sect. 4.2.

4.4 Discussion

Our previous work [17] motivated an abstract TLB model that we have extended
and refined here. The program logic uses the (morally) same model, but there
is still a break in logic: the TLB abstraction is on a machine-level ISA model;
the program logic is for a higher-level language with explicit memory access,
intended for languages such as C. The bridge between the two worlds would
be a compiler correctness statement that takes the TLB into account. This may
initially not sound straightforward: the high-level language makes fewer memory
accesses visible than the low-level machine performs. In particular, a compiler
will usually implement a stack for local variables, and memory areas for global
variables, as well as for the code itself. These memory accesses are under address
translation and might be relevant for TLB reasoning.

Sect. 5 and 6 will show that we can ignore the TLB for kernel-level code, if we
can assume that these memory areas (code, stack, globals) are statically known
and that the compiler will not generate additional memory accesses outside these
static areas. This is a reasonable assumption — otherwise kernel code could
never be sure that privileged memory areas such as memory-mapped devices are
not randomly overwritten by compiler-generated accesses. We will then have to
prove that we never remove or change active mappings for these areas (adding
new mappings for e.g. the stack would be fine). For user-level code, we will see
that the issue becomes irrelevant.

9

{|�s. [[l]] s = bvpc ^ [[r]] s = bvc ^ vp /2 IC s ^ Addr vp ,!s pp ^
P (heap_iset_updates (pp 7! v))|}

l ::= r {|P|}

{|�s. kernel s ^ [[rte]] s = brtc ^ P (root_iset_updates Addr rt)|}
UpdateTTBR0 rte {|P|}

{|�s. kernel s ^ P (asid_pt_snpshot_updates a)|} UpdateASID a {|P|}

{|�s. kernel s ^ P (iset_pt_snpshot_updates f)|} Flush f {|P|}

{|�s. kernel s ^ P (s(|mode := flg|))|} SetMode flg {|P|}

Fig. 4. Hoare Logic rules for commands with TLB e↵ects.

The rule for the command UpdateTTBR0, only available in kernel mode, up-
dates the current page table root to the value of the expression rte. The e↵ect
is modelled by root_iset_update defined in Sect. 4.2.

The UpdateASID command, also only available in kernel mode, sets the new
ASID a, increases the iset using snp_incon, and records a page table snapshot
for the old ASID using new_snp.

Finally, Flush is the instruction that the makes the iset smaller, and removes
mappings in the snapshots of inactive ASIDs, using iset_asid_map_update from
Sect. 4.2.

4.4 Discussion

Our previous work [17] motivated an abstract TLB model that we have extended
and refined here. The program logic uses the (morally) same model, but there
is still a break in logic: the TLB abstraction is on a machine-level ISA model;
the program logic is for a higher-level language with explicit memory access,
intended for languages such as C. The bridge between the two worlds would
be a compiler correctness statement that takes the TLB into account. This may
initially not sound straightforward: the high-level language makes fewer memory
accesses visible than the low-level machine performs. In particular, a compiler
will usually implement a stack for local variables, and memory areas for global
variables, as well as for the code itself. These memory accesses are under address
translation and might be relevant for TLB reasoning.

Sect. 5 and 6 will show that we can ignore the TLB for kernel-level code, if we
can assume that these memory areas (code, stack, globals) are statically known
and that the compiler will not generate additional memory accesses outside these
static areas. This is a reasonable assumption — otherwise kernel code could
never be sure that privileged memory areas such as memory-mapped devices are
not randomly overwritten by compiler-generated accesses. We will then have to
prove that we never remove or change active mappings for these areas (adding
new mappings for e.g. the stack would be fine). For user-level code, we will see
that the issue becomes irrelevant.

9

{|�s. [[l]] s = bvpc ^ [[r]] s = bvc ^ vp /2 IC s ^ Addr vp ,!s pp ^
P (heap_iset_updates (pp 7! v))|}

l ::= r {|P|}

{|�s. kernel s ^ [[rte]] s = brtc ^ P (root_iset_updates Addr rt)|}
UpdateTTBR0 rte {|P|}

{|�s. kernel s ^ P (asid_pt_snpshot_updates a)|} UpdateASID a {|P|}

{|�s. kernel s ^ P (iset_pt_snpshot_updates f)|} Flush f {|P|}

{|�s. kernel s ^ P (s(|mode := flg|))|} SetMode flg {|P|}

Fig. 4. Hoare Logic rules for commands with TLB e↵ects.

The rule for the command UpdateTTBR0, only available in kernel mode, up-
dates the current page table root to the value of the expression rte. The e↵ect
is modelled by root_iset_update defined in Sect. 4.2.

The UpdateASID command, also only available in kernel mode, sets the new
ASID a, increases the iset using snp_incon, and records a page table snapshot
for the old ASID using new_snp.

Finally, Flush is the instruction that the makes the iset smaller, and removes
mappings in the snapshots of inactive ASIDs, using iset_asid_map_update from
Sect. 4.2.

4.4 Discussion

Our previous work [17] motivated an abstract TLB model that we have extended
and refined here. The program logic uses the (morally) same model, but there
is still a break in logic: the TLB abstraction is on a machine-level ISA model;
the program logic is for a higher-level language with explicit memory access,
intended for languages such as C. The bridge between the two worlds would
be a compiler correctness statement that takes the TLB into account. This may
initially not sound straightforward: the high-level language makes fewer memory
accesses visible than the low-level machine performs. In particular, a compiler
will usually implement a stack for local variables, and memory areas for global
variables, as well as for the code itself. These memory accesses are under address
translation and might be relevant for TLB reasoning.

Sect. 5 and 6 will show that we can ignore the TLB for kernel-level code, if we
can assume that these memory areas (code, stack, globals) are statically known
and that the compiler will not generate additional memory accesses outside these
static areas. This is a reasonable assumption — otherwise kernel code could
never be sure that privileged memory areas such as memory-mapped devices are
not randomly overwritten by compiler-generated accesses. We will then have to
prove that we never remove or change active mappings for these areas (adding
new mappings for e.g. the stack would be fine). For user-level code, we will see
that the issue becomes irrelevant.

9

{|�s. [[l]] s = bvpc ^ [[r]] s = bvc ^ vp /2 IC s ^ Addr vp ,!s pp ^
P (heap_iset_updates (pp 7! v))|}

l ::= r {|P|}

{|�s. kernel s ^ [[rte]] s = brtc ^ P (root_iset_updates Addr rt)|}
UpdateTTBR0 rte {|P|}

{|�s. kernel s ^ P (asid_pt_snpshot_updates a)|} UpdateASID a {|P|}

{|�s. kernel s ^ P (iset_pt_snpshot_updates f)|} Flush f {|P|}

{|�s. kernel s ^ P (s(|mode := flg|))|} SetMode flg {|P|}

Fig. 4. Hoare Logic rules for commands with TLB e↵ects.

The rule for the command UpdateTTBR0, only available in kernel mode, up-
dates the current page table root to the value of the expression rte. The e↵ect
is modelled by root_iset_update defined in Sect. 4.2.

The UpdateASID command, also only available in kernel mode, sets the new
ASID a, increases the iset using snp_incon, and records a page table snapshot
for the old ASID using new_snp.

Finally, Flush is the instruction that the makes the iset smaller, and removes
mappings in the snapshots of inactive ASIDs, using iset_asid_map_update from
Sect. 4.2.

4.4 Discussion

Our previous work [17] motivated an abstract TLB model that we have extended
and refined here. The program logic uses the (morally) same model, but there
is still a break in logic: the TLB abstraction is on a machine-level ISA model;
the program logic is for a higher-level language with explicit memory access,
intended for languages such as C. The bridge between the two worlds would
be a compiler correctness statement that takes the TLB into account. This may
initially not sound straightforward: the high-level language makes fewer memory
accesses visible than the low-level machine performs. In particular, a compiler
will usually implement a stack for local variables, and memory areas for global
variables, as well as for the code itself. These memory accesses are under address
translation and might be relevant for TLB reasoning.

Sect. 5 and 6 will show that we can ignore the TLB for kernel-level code, if we
can assume that these memory areas (code, stack, globals) are statically known
and that the compiler will not generate additional memory accesses outside these
static areas. This is a reasonable assumption — otherwise kernel code could
never be sure that privileged memory areas such as memory-mapped devices are
not randomly overwritten by compiler-generated accesses. We will then have to
prove that we never remove or change active mappings for these areas (adding
new mappings for e.g. the stack would be fine). For user-level code, we will see
that the issue becomes irrelevant.

9

 Program Verification in the Presence of TLB-Address Translation Hira Syeda30

- Operations —
- update root register to root r, then
- update ASID register to ASID a

- ARMv7-A manual’s recommended sequence

Context Switch

There are many ways for the OS to implement context switching — our example
shows one where we change to a new address space, i.e. a new page table and
ASID, without flushing the TLB, establishing the conditions of Theorem 3 for
user-level reasoning.

Switching page table roots without flushing is non-trivial, and the ARM
architecture manual [2, Chapter B3.10] even gives a specific sequence of in-
structions to achieve this. The manual uses this sequence, because speculative
execution might otherwise contaminate the new ASID with mappings from the
old page table, i.e. the TLB might still contain entries from the previous user.
Theorem 5 shows that our model is conservative for speculative execution, but
precise enough so we can reason about this sequence and see why it is safe.

The recommended sequence switches to a new user-level page table and ASID
by using a reserved ASID (in this case 0). It first switches to this reserved ASID,
then sets the new page table root, then switches to the ASID for that root, before
it switches to user mode. A real kernel would at this point also restore registers,
which we omit.

Theorem 5 The context switch sequence to a new ASID a and new page table
root r preserves the mmu_layout and ASID snapshot consistency invariants and
establishes the conditions for user-level reasoning, provided that the TLB has no
inconsistent addresses at this point, that the reserved ASID 0 is not used for any
user page table, and that that r is a known page table associated with ASID a.

{|�s. mmu_layout s ^ asids_consistent s ^ mode s = Kernel ^
IC s = ; ^ 0 /2 ran (root_map s) ^ root_map s (Addr r) = bac|}

UpdateASID 0;; UpdateTTBR0 (Const r);; UpdateASID a;; SetMode User
{|�s. mmu_layout s ^ IC s = ; ^ mode s = User ^ asids_consistent s|}

Proof. See lemma context_switch_invariants in [18].

Our previous ISA-level model [17] without ASID page table snapshots was not
strong enough to admit this theorem without flushing the TLB. In particular,
the fact that the TLB does not contain entries for the ASID we are switching to
that are inconsistent with the current page table at that point would either be
lost (making it unsound) or over-approximated (requiring a flush).

For compiler correctness, we would additionally need to know that ASID 0
does not have inconsistent entries for the code and data areas of the kernel,
which is maintained if ASID 0 is used only in the way above. To make this more
explicit, we could add a static set to the program logic for code and data that
must always be consistency, and the condition asids_consistent would maintain
that at least the global kernel mappings are consistent in ASID 0.

This concludes the case study examples for our logic. We have seen that we
can reason about user code, ‘uninteresting’ kernel code, and kernel code that
manipulates paging structures, each at their appropriate level of abstraction.

15

{|�s. [[l]] s = bvpc ^ [[r]] s = bvc ^ vp /2 IC s ^ Addr vp ,!s pp ^
P (heap_iset_updates (pp 7! v))|}

l ::= r {|P|}

{|�s. kernel s ^ [[rte]] s = brtc ^ P (root_iset_updates Addr rt)|}
UpdateTTBR0 rte {|P|}

{|�s. kernel s ^ P (asid_pt_snpshot_updates a)|} UpdateASID a {|P|}

{|�s. kernel s ^ P (iset_pt_snpshot_updates f)|} Flush f {|P|}

{|�s. kernel s ^ P (s(|mode := flg|))|} SetMode flg {|P|}

Fig. 4. Hoare Logic rules for commands with TLB e↵ects.

The rule for the command UpdateTTBR0, only available in kernel mode, up-
dates the current page table root to the value of the expression rte. The e↵ect
is modelled by root_iset_update defined in Sect. 4.2.

The UpdateASID command, also only available in kernel mode, sets the new
ASID a, increases the iset using snp_incon, and records a page table snapshot
for the old ASID using new_snp.

Finally, Flush is the instruction that the makes the iset smaller, and removes
mappings in the snapshots of inactive ASIDs, using iset_asid_map_update from
Sect. 4.2.

4.4 Discussion

Our previous work [17] motivated an abstract TLB model that we have extended
and refined here. The program logic uses the (morally) same model, but there
is still a break in logic: the TLB abstraction is on a machine-level ISA model;
the program logic is for a higher-level language with explicit memory access,
intended for languages such as C. The bridge between the two worlds would
be a compiler correctness statement that takes the TLB into account. This may
initially not sound straightforward: the high-level language makes fewer memory
accesses visible than the low-level machine performs. In particular, a compiler
will usually implement a stack for local variables, and memory areas for global
variables, as well as for the code itself. These memory accesses are under address
translation and might be relevant for TLB reasoning.

Sect. 5 and 6 will show that we can ignore the TLB for kernel-level code, if we
can assume that these memory areas (code, stack, globals) are statically known
and that the compiler will not generate additional memory accesses outside these
static areas. This is a reasonable assumption — otherwise kernel code could
never be sure that privileged memory areas such as memory-mapped devices are
not randomly overwritten by compiler-generated accesses. We will then have to
prove that we never remove or change active mappings for these areas (adding
new mappings for e.g. the stack would be fine). For user-level code, we will see
that the issue becomes irrelevant.

9

{|�s. [[l]] s = bvpc ^ [[r]] s = bvc ^ vp /2 IC s ^ Addr vp ,!s pp ^
P (heap_iset_updates (pp 7! v))|}

l ::= r {|P|}

{|�s. kernel s ^ [[rte]] s = brtc ^ P (root_iset_updates Addr rt)|}
UpdateTTBR0 rte {|P|}

{|�s. kernel s ^ P (asid_pt_snpshot_updates a)|} UpdateASID a {|P|}

{|�s. kernel s ^ P (iset_pt_snpshot_updates f)|} Flush f {|P|}

{|�s. kernel s ^ P (s(|mode := flg|))|} SetMode flg {|P|}

Fig. 4. Hoare Logic rules for commands with TLB e↵ects.

The rule for the command UpdateTTBR0, only available in kernel mode, up-
dates the current page table root to the value of the expression rte. The e↵ect
is modelled by root_iset_update defined in Sect. 4.2.

The UpdateASID command, also only available in kernel mode, sets the new
ASID a, increases the iset using snp_incon, and records a page table snapshot
for the old ASID using new_snp.

Finally, Flush is the instruction that the makes the iset smaller, and removes
mappings in the snapshots of inactive ASIDs, using iset_asid_map_update from
Sect. 4.2.

4.4 Discussion

Our previous work [17] motivated an abstract TLB model that we have extended
and refined here. The program logic uses the (morally) same model, but there
is still a break in logic: the TLB abstraction is on a machine-level ISA model;
the program logic is for a higher-level language with explicit memory access,
intended for languages such as C. The bridge between the two worlds would
be a compiler correctness statement that takes the TLB into account. This may
initially not sound straightforward: the high-level language makes fewer memory
accesses visible than the low-level machine performs. In particular, a compiler
will usually implement a stack for local variables, and memory areas for global
variables, as well as for the code itself. These memory accesses are under address
translation and might be relevant for TLB reasoning.

Sect. 5 and 6 will show that we can ignore the TLB for kernel-level code, if we
can assume that these memory areas (code, stack, globals) are statically known
and that the compiler will not generate additional memory accesses outside these
static areas. This is a reasonable assumption — otherwise kernel code could
never be sure that privileged memory areas such as memory-mapped devices are
not randomly overwritten by compiler-generated accesses. We will then have to
prove that we never remove or change active mappings for these areas (adding
new mappings for e.g. the stack would be fine). For user-level code, we will see
that the issue becomes irrelevant.

9

{|�s. [[l]] s = bvpc ^ [[r]] s = bvc ^ vp /2 IC s ^ Addr vp ,!s pp ^
P (heap_iset_updates (pp 7! v))|}

l ::= r {|P|}

{|�s. kernel s ^ [[rte]] s = brtc ^ P (root_iset_updates Addr rt)|}
UpdateTTBR0 rte {|P|}

{|�s. kernel s ^ P (asid_pt_snpshot_updates a)|} UpdateASID a {|P|}

{|�s. kernel s ^ P (iset_pt_snpshot_updates f)|} Flush f {|P|}

{|�s. kernel s ^ P (s(|mode := flg|))|} SetMode flg {|P|}

Fig. 4. Hoare Logic rules for commands with TLB e↵ects.

The rule for the command UpdateTTBR0, only available in kernel mode, up-
dates the current page table root to the value of the expression rte. The e↵ect
is modelled by root_iset_update defined in Sect. 4.2.

The UpdateASID command, also only available in kernel mode, sets the new
ASID a, increases the iset using snp_incon, and records a page table snapshot
for the old ASID using new_snp.

Finally, Flush is the instruction that the makes the iset smaller, and removes
mappings in the snapshots of inactive ASIDs, using iset_asid_map_update from
Sect. 4.2.

4.4 Discussion

Our previous work [17] motivated an abstract TLB model that we have extended
and refined here. The program logic uses the (morally) same model, but there
is still a break in logic: the TLB abstraction is on a machine-level ISA model;
the program logic is for a higher-level language with explicit memory access,
intended for languages such as C. The bridge between the two worlds would
be a compiler correctness statement that takes the TLB into account. This may
initially not sound straightforward: the high-level language makes fewer memory
accesses visible than the low-level machine performs. In particular, a compiler
will usually implement a stack for local variables, and memory areas for global
variables, as well as for the code itself. These memory accesses are under address
translation and might be relevant for TLB reasoning.

Sect. 5 and 6 will show that we can ignore the TLB for kernel-level code, if we
can assume that these memory areas (code, stack, globals) are statically known
and that the compiler will not generate additional memory accesses outside these
static areas. This is a reasonable assumption — otherwise kernel code could
never be sure that privileged memory areas such as memory-mapped devices are
not randomly overwritten by compiler-generated accesses. We will then have to
prove that we never remove or change active mappings for these areas (adding
new mappings for e.g. the stack would be fine). For user-level code, we will see
that the issue becomes irrelevant.

9

{|�s. [[l]] s = bvpc ^ [[r]] s = bvc ^ vp /2 IC s ^ Addr vp ,!s pp ^
P (heap_iset_updates (pp 7! v))|}

l ::= r {|P|}

{|�s. kernel s ^ [[rte]] s = brtc ^ P (root_iset_updates Addr rt)|}
UpdateTTBR0 rte {|P|}

{|�s. kernel s ^ P (asid_pt_snpshot_updates a)|} UpdateASID a {|P|}

{|�s. kernel s ^ P (iset_pt_snpshot_updates f)|} Flush f {|P|}

{|�s. kernel s ^ P (s(|mode := flg|))|} SetMode flg {|P|}

Fig. 4. Hoare Logic rules for commands with TLB e↵ects.

The rule for the command UpdateTTBR0, only available in kernel mode, up-
dates the current page table root to the value of the expression rte. The e↵ect
is modelled by root_iset_update defined in Sect. 4.2.

The UpdateASID command, also only available in kernel mode, sets the new
ASID a, increases the iset using snp_incon, and records a page table snapshot
for the old ASID using new_snp.

Finally, Flush is the instruction that the makes the iset smaller, and removes
mappings in the snapshots of inactive ASIDs, using iset_asid_map_update from
Sect. 4.2.

4.4 Discussion

Our previous work [17] motivated an abstract TLB model that we have extended
and refined here. The program logic uses the (morally) same model, but there
is still a break in logic: the TLB abstraction is on a machine-level ISA model;
the program logic is for a higher-level language with explicit memory access,
intended for languages such as C. The bridge between the two worlds would
be a compiler correctness statement that takes the TLB into account. This may
initially not sound straightforward: the high-level language makes fewer memory
accesses visible than the low-level machine performs. In particular, a compiler
will usually implement a stack for local variables, and memory areas for global
variables, as well as for the code itself. These memory accesses are under address
translation and might be relevant for TLB reasoning.

Sect. 5 and 6 will show that we can ignore the TLB for kernel-level code, if we
can assume that these memory areas (code, stack, globals) are statically known
and that the compiler will not generate additional memory accesses outside these
static areas. This is a reasonable assumption — otherwise kernel code could
never be sure that privileged memory areas such as memory-mapped devices are
not randomly overwritten by compiler-generated accesses. We will then have to
prove that we never remove or change active mappings for these areas (adding
new mappings for e.g. the stack would be fine). For user-level code, we will see
that the issue becomes irrelevant.

9

