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- Translation Lookaside Buffer (TLB) is
- a dedicated cache for page table walks
- architecture specific
- managed by hardware and operating system together
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- TLB-aware logic for program reasoning
- abstract model for ARMv7-style MMU

TLB Effects on Program Execution
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- TLB maintenance operations after updating
- page table(s)
- root register
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- TLB maintenance operations after updating
- page table(s)
- root register

- Selective invalidation using Address Space IDentifier - ASID
- ASID register
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- bexp        — partial function from state to bool
- command  — relation between state and state option
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- Operational semantics
- aexp        — partial function from state to 32-bit value
- bexp        — partial function from state to bool
- command  — relation between state and state option

- Hoare triple — 
- soundness is derived directly from the operational semantics 
- logic rules are in weakest-precondition form 
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Program Logic

{|P |} SKIP {|P |}
{|P |} c {|Q |} P 0 b�!c P Q b�!c Q 0

{|P 0|} c {|Q 0|}

{|P b^c <b>|} c1 {|Q |} {|P b^c ¬<b>|} c2 {|Q |}
{|P b^c ⌧b�|} IF b THEN c1 ELSE c2 {|Q |}

{|P b^c <b>|} c {|P |} P b�!c ⌧b�

{|P |} WHILE b DO c {|P b^c ¬<b>|}
{|P |} c1 {|Q |} {|Q |} c2 {|R|}

{|P |} c1 ; c2 {|R|}

{|P |} c {|Q |} {|R|} c {|S |}
{|P b^c R|} c {|Q b^c S |}

{|P |} c {|Q |} {|R|} c {|S |}
{|P b_c R|} c {|Q b_c S |}

{|(VPtr vp 7! � ^⇤ P) b^c [[l ]] = vp b^c [[r ]] = v |} l := r {|VPtr vp 7! v ^⇤ P |}

{|P |} c {|Q |}
{|P ^⇤ R|} c {|Q ^⇤ R|}

Fig. 5. The proof rules for Mapped Separation Logic.

separate from the heap in which the update occurs. Since the physical address of
the write is separate from the page table lookup for this address and from P, the
translation layer for their heaps is not a↵ected by the write. To reason about page
table updates we need a slightly stronger rule that unfolds the virtual-to-value

mapping and lets us talk about the physical address p:

{|(VPtr vp 7!v p ^⇤ p 7! � ^⇤ P) b^c [[l ]] = vp b^c [[r ]] = v |}
l := r

{|VPtr vp 7!v p ^⇤ p 7! v ^⇤ P |}

Reasoning with the new mapping predicates is similar to abstract-predicate
style reasoning [13] if we never unfold their definitions in client proofs. As we
will see in the case study, we only need to do this locally if we are reasoning
about changes to the page table and we are interested in the page that is being
modified. This obviously heavily depends on the page table encoding. Application
level reasoning can proceed fully abstractly.

The second interesting proof rule is the frame rule that allows global reasoning
based on local proofs. In many ways it can be seen as the core of Separation
Logic. Calcagno et al. [3] provide an abstract framework for identifying a logic as
Separation Logic and distill out the central property of locality. In their setting,
our separation algebra is the common heap monoid where the binary operation

is heap merge lifted to the heap ⇥ pptr type. Our definition of separating
conjunction then coincides with the one in the framework, and to show that
our logic is a Separation Logic, we only need to show that all actions in the
programming language are local. Locality is equivalent to the combination of
safety monotonicity and the frame property. In our setting, these two are:

10
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- assignment

- updateRoot

- updateASID
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Program Logic — Rules

{|P|} SKIP {|P|}
{|P|} c {|Q|} P’ �! P

{|P’|} c {|Q|}

{|P ^ hbi|} c1 {|Q|} {|P ^ ¬hbi|} c2 {|Q|}
{|P ^ hhbii|} IF b THEN c1 ELSE c2 {|Q|}

{|P ^ hbi|} c {|P|} P �! hhbii
{|P|} WHILE b DO c {|P ^ ¬hbi|}

{|P|} c1 {|Q|} {|Q|} c2 {|R|}
{|P|} c1;; c2 {|R|}

Fig. 3. Hoare Logic rules for standard commands.

{|�s. [[l]] s = bvpc ^ [[r]] s = bvc ^ vp /2 IC s ^ Addr vp ,!s pp ^
P (heap_iset_updates (pp 7! v))|}

l ::= r {|P|}

{|�s. kernel s ^ [[rte]] s = brtc ^ P (root_iset_updates Addr rt)|}
UpdateTTBR0 rte {|P|}

{|�s. mode s = Kernel ^ P (asid_pt_snpshot_updates a)|} UpdateASID a {|P|}

{|�s. mode s = Kernel ^ P (iset_pt_snpshot_updates f)|} Flush f {|P|}

{|�s. mode s = Kernel ^ P (s(|mode := flg|))|} SetMode flg {|P|}

Fig. 4. Hoare Logic rules for commands with TLB e↵ects.

completely standard, as intended. We write hhbii s to denote that [[b]]b s 6= None:
the precondition in the IF and WHILE rules must be strong enough for failure free
evaluation of b. The rules in Fig. 4 are in weakest-precondition form. They have
a generic postcondition P and the weakest precondition that will establish P. We
will now explain them.

The assignment rule requires that the expressions l and r evaluate without
failure. The assignment succeeds if the virtual address vp is consistent in the
current state (vp /2 IC s) and vp is mapped (Addr vp ,!s pp), where

vp ,!s pp = (phy_ad (iset s) (heap s) (root s) (mode s) vp = bppc)

The e↵ect of the assignment is the heap and iset update heap_iset_update we
described in Sect. 4.2.

The rule for the command UpdateTTBR0, only available in kernel mode, up-
dates the current page table root to the value of the expression rte. The e↵ect
is modelled by root_iset_update defined in Sect. 4.2.

The UpdateASID command, also only available in kernel mode, sets the new
ASID a, increases the iset using snp_incon, and records a page table snapshot
for the old ASID using new_snp.

Finally, Flush is the instruction that the makes the iset smaller, and removes
mappings in the snapshots of inactive ASIDs, using iset_asid_map_update from
Sect. 4.2.
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DR
AF
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block-invalidation :: tlb ) asid ) va set ) tlb

block-invalidation t a V ⌘ (
S

x2V. selective-invalidation t a x)

asid-invalidation :: tlb ) asid ) tlb

asid-invalidation t a ⌘ t - asid-entry-set t a

va-invalidation :: tlb ) va ) tlb

va-invalidation t v ⌘ t - va-set t v

selective-invalidation selectively removes the entry or entries covering the
given virtual address and ASID depending upon the outcome of lookup opera-
tion. Whereas, block-invalidation takes a set of virtual addresses along with
particular ASID and selectively invalidates all of them. asid-invalidation and
va-invalidation removes entries using asid-entry-set and va-entry-set re-
spectively. We have proved the correctness of invalidation functions by validating
many interesting theorems shown in Figure ??.

✏ �s. P (s(x := e s)) x := e P

4 TLB Model inclusion in Cambridge ARM model

5 Conclusions



       Program Verification in the Presence of TLB-Address Translation        Hira Syeda

✓successful evaluation of    to a 
✓consistency of 
✓valid address translation of       to
✓ reasoning about heap and incon_set update

{|P |} SKIP {|P |}
{|P |} c {|Q |} P 0 b�!c P Q b�!c Q 0

{|P 0|} c {|Q 0|}

{|P b^c <b>|} c1 {|Q |} {|P b^c ¬<b>|} c2 {|Q |}
{|P b^c ⌧b�|} IF b THEN c1 ELSE c2 {|Q |}

{|P b^c <b>|} c {|P |} P b�!c ⌧b�

{|P |} WHILE b DO c {|P b^c ¬<b>|}
{|P |} c1 {|Q |} {|Q |} c2 {|R|}

{|P |} c1 ; c2 {|R|}

{|P |} c {|Q |} {|R|} c {|S |}
{|P b^c R|} c {|Q b^c S |}

{|P |} c {|Q |} {|R|} c {|S |}
{|P b_c R|} c {|Q b_c S |}

{|(VPtr vp 7! � ^⇤ P) b^c [[l ]] = vp b^c [[r ]] = v |} l := r {|VPtr vp 7! v ^⇤ P |}

{|P |} c {|Q |}
{|P ^⇤ R|} c {|Q ^⇤ R|}

Fig. 5. The proof rules for Mapped Separation Logic.

separate from the heap in which the update occurs. Since the physical address of
the write is separate from the page table lookup for this address and from P, the
translation layer for their heaps is not a↵ected by the write. To reason about page
table updates we need a slightly stronger rule that unfolds the virtual-to-value

mapping and lets us talk about the physical address p:

{|(VPtr vp 7!v p ^⇤ p 7! � ^⇤ P) b^c [[l ]] = vp b^c [[r ]] = v |}
l := r

{|VPtr vp 7!v p ^⇤ p 7! v ^⇤ P |}

Reasoning with the new mapping predicates is similar to abstract-predicate
style reasoning [13] if we never unfold their definitions in client proofs. As we
will see in the case study, we only need to do this locally if we are reasoning
about changes to the page table and we are interested in the page that is being
modified. This obviously heavily depends on the page table encoding. Application
level reasoning can proceed fully abstractly.

The second interesting proof rule is the frame rule that allows global reasoning
based on local proofs. In many ways it can be seen as the core of Separation
Logic. Calcagno et al. [3] provide an abstract framework for identifying a logic as
Separation Logic and distill out the central property of locality. In their setting,
our separation algebra is the common heap monoid where the binary operation

is heap merge lifted to the heap ⇥ pptr type. Our definition of separating
conjunction then coincides with the one in the framework, and to show that
our logic is a Separation Logic, we only need to show that all actions in the
programming language are local. Locality is equivalent to the combination of
safety monotonicity and the frame property. In our setting, these two are:
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style reasoning [13] if we never unfold their definitions in client proofs. As we
will see in the case study, we only need to do this locally if we are reasoning
about changes to the page table and we are interested in the page that is being
modified. This obviously heavily depends on the page table encoding. Application
level reasoning can proceed fully abstractly.

The second interesting proof rule is the frame rule that allows global reasoning
based on local proofs. In many ways it can be seen as the core of Separation
Logic. Calcagno et al. [3] provide an abstract framework for identifying a logic as
Separation Logic and distill out the central property of locality. In their setting,
our separation algebra is the common heap monoid where the binary operation

is heap merge lifted to the heap ⇥ pptr type. Our definition of separating
conjunction then coincides with the one in the framework, and to show that
our logic is a Separation Logic, we only need to show that all actions in the
programming language are local. Locality is equivalent to the combination of
safety monotonicity and the frame property. In our setting, these two are:
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{|P ^ hbi|} c {|P|} P �! hhbii
{|P|} WHILE b DO c {|P ^ ¬hbi|}

{|P|} c1 {|Q|} {|Q|} c2 {|R|}
{|P|} c1;; c2 {|R|}

Fig. 3. Hoare Logic rules for standard commands.

{|�s. [[l]] s = bvpc ^ [[r]] s = bvc ^ vp /2 IC s ^ Addr vp ,!s pp ^
P (heap_iset_updates (pp 7! v))|}

l ::= r {|P|}

{|�s. kernel s ^ [[rte]] s = brtc ^ P (root_iset_updates Addr rt)|}
UpdateTTBR0 rte {|P|}

{|�s. mode s = Kernel ^ P (asid_pt_snpshot_updates a)|} UpdateASID a {|P|}

{|�s. mode s = Kernel ^ P (iset_pt_snpshot_updates f)|} Flush f {|P|}

{|�s. mode s = Kernel ^ P (s(|mode := flg|))|} SetMode flg {|P|}

Fig. 4. Hoare Logic rules for commands with TLB e↵ects.

completely standard, as intended. We write hhbii s to denote that [[b]]b s 6= None:
the precondition in the IF and WHILE rules must be strong enough for failure free
evaluation of b. The rules in Fig. 4 are in weakest-precondition form. They have
a generic postcondition P and the weakest precondition that will establish P. We
will now explain them.

The assignment rule requires that the expressions l and r evaluate without
failure. The assignment succeeds if the virtual address vp is consistent in the
current state (vp /2 IC s) and vp is mapped (Addr vp ,!s pp), where

vp ,!s pp = (phy_ad (iset s) (heap s) (root s) (mode s) vp = bppc)

The e↵ect of the assignment is the heap and iset update heap_iset_update we
described in Sect. 4.2.

The rule for the command UpdateTTBR0, only available in kernel mode, up-
dates the current page table root to the value of the expression rte. The e↵ect
is modelled by root_iset_update defined in Sect. 4.2.

The UpdateASID command, also only available in kernel mode, sets the new
ASID a, increases the iset using snp_incon, and records a page table snapshot
for the old ASID using new_snp.

Finally, Flush is the instruction that the makes the iset smaller, and removes
mappings in the snapshots of inactive ASIDs, using iset_asid_map_update from
Sect. 4.2.
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va-invalidation :: tlb ) va ) tlb

va-invalidation t v ⌘ t - va-set t v

selective-invalidation selectively removes the entry or entries covering the
given virtual address and ASID depending upon the outcome of lookup opera-
tion. Whereas, block-invalidation takes a set of virtual addresses along with
particular ASID and selectively invalidates all of them. asid-invalidation and
va-invalidation removes entries using asid-entry-set and va-entry-set re-
spectively. We have proved the correctness of invalidation functions by validating
many interesting theorems shown in Figure ??.

✏ �s. P (s(x := e s)) x := e P

4 TLB Model inclusion in Cambridge ARM model
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separate from the heap in which the update occurs. Since the physical address of
the write is separate from the page table lookup for this address and from P, the
translation layer for their heaps is not a↵ected by the write. To reason about page
table updates we need a slightly stronger rule that unfolds the virtual-to-value

mapping and lets us talk about the physical address p:

{|(VPtr vp 7!v p ^⇤ p 7! � ^⇤ P) b^c [[l ]] = vp b^c [[r ]] = v |}
l := r

{|VPtr vp 7!v p ^⇤ p 7! v ^⇤ P |}

Reasoning with the new mapping predicates is similar to abstract-predicate
style reasoning [13] if we never unfold their definitions in client proofs. As we
will see in the case study, we only need to do this locally if we are reasoning
about changes to the page table and we are interested in the page that is being
modified. This obviously heavily depends on the page table encoding. Application
level reasoning can proceed fully abstractly.

The second interesting proof rule is the frame rule that allows global reasoning
based on local proofs. In many ways it can be seen as the core of Separation
Logic. Calcagno et al. [3] provide an abstract framework for identifying a logic as
Separation Logic and distill out the central property of locality. In their setting,
our separation algebra is the common heap monoid where the binary operation

is heap merge lifted to the heap ⇥ pptr type. Our definition of separating
conjunction then coincides with the one in the framework, and to show that
our logic is a Separation Logic, we only need to show that all actions in the
programming language are local. Locality is equivalent to the combination of
safety monotonicity and the frame property. In our setting, these two are:
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{|P|} WHILE b DO c {|P ^ ¬hbi|}
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Fig. 3. Hoare Logic rules for standard commands.

{|�s. [[l]] s = bvpc ^ [[r]] s = bvc ^ vp /2 IC s ^ Addr vp ,!s pp ^
P (heap_iset_updates (pp 7! v))|}

l ::= r {|P|}

{|�s. kernel s ^ [[rte]] s = brtc ^ P (root_iset_updates Addr rt)|}
UpdateTTBR0 rte {|P|}

{|�s. mode s = Kernel ^ P (asid_pt_snpshot_updates a)|} UpdateASID a {|P|}

{|�s. mode s = Kernel ^ P (iset_pt_snpshot_updates f)|} Flush f {|P|}

{|�s. mode s = Kernel ^ P (s(|mode := flg|))|} SetMode flg {|P|}

Fig. 4. Hoare Logic rules for commands with TLB e↵ects.

completely standard, as intended. We write hhbii s to denote that [[b]]b s 6= None:
the precondition in the IF and WHILE rules must be strong enough for failure free
evaluation of b. The rules in Fig. 4 are in weakest-precondition form. They have
a generic postcondition P and the weakest precondition that will establish P. We
will now explain them.

The assignment rule requires that the expressions l and r evaluate without
failure. The assignment succeeds if the virtual address vp is consistent in the
current state (vp /2 IC s) and vp is mapped (Addr vp ,!s pp), where

vp ,!s pp = (phy_ad (iset s) (heap s) (root s) (mode s) vp = bppc)

The e↵ect of the assignment is the heap and iset update heap_iset_update we
described in Sect. 4.2.

The rule for the command UpdateTTBR0, only available in kernel mode, up-
dates the current page table root to the value of the expression rte. The e↵ect
is modelled by root_iset_update defined in Sect. 4.2.

The UpdateASID command, also only available in kernel mode, sets the new
ASID a, increases the iset using snp_incon, and records a page table snapshot
for the old ASID using new_snp.

Finally, Flush is the instruction that the makes the iset smaller, and removes
mappings in the snapshots of inactive ASIDs, using iset_asid_map_update from
Sect. 4.2.
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asid-invalidation t a ⌘ t - asid-entry-set t a

va-invalidation :: tlb ) va ) tlb

va-invalidation t v ⌘ t - va-set t v

selective-invalidation selectively removes the entry or entries covering the
given virtual address and ASID depending upon the outcome of lookup opera-
tion. Whereas, block-invalidation takes a set of virtual addresses along with
particular ASID and selectively invalidates all of them. asid-invalidation and
va-invalidation removes entries using asid-entry-set and va-entry-set re-
spectively. We have proved the correctness of invalidation functions by validating
many interesting theorems shown in Figure ??.

✏ �s. P (s(x := e s)) x := e P

4 TLB Model inclusion in Cambridge ARM model
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separate from the heap in which the update occurs. Since the physical address of
the write is separate from the page table lookup for this address and from P, the
translation layer for their heaps is not a↵ected by the write. To reason about page
table updates we need a slightly stronger rule that unfolds the virtual-to-value

mapping and lets us talk about the physical address p:

{|(VPtr vp 7!v p ^⇤ p 7! � ^⇤ P) b^c [[l ]] = vp b^c [[r ]] = v |}
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Reasoning with the new mapping predicates is similar to abstract-predicate
style reasoning [13] if we never unfold their definitions in client proofs. As we
will see in the case study, we only need to do this locally if we are reasoning
about changes to the page table and we are interested in the page that is being
modified. This obviously heavily depends on the page table encoding. Application
level reasoning can proceed fully abstractly.

The second interesting proof rule is the frame rule that allows global reasoning
based on local proofs. In many ways it can be seen as the core of Separation
Logic. Calcagno et al. [3] provide an abstract framework for identifying a logic as
Separation Logic and distill out the central property of locality. In their setting,
our separation algebra is the common heap monoid where the binary operation

is heap merge lifted to the heap ⇥ pptr type. Our definition of separating
conjunction then coincides with the one in the framework, and to show that
our logic is a Separation Logic, we only need to show that all actions in the
programming language are local. Locality is equivalent to the combination of
safety monotonicity and the frame property. In our setting, these two are:
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{|P|} SKIP {|P|}
{|P|} c {|Q|} P’ �! P

{|P’|} c {|Q|}

{|P ^ hbi|} c1 {|Q|} {|P ^ ¬hbi|} c2 {|Q|}
{|P ^ hhbii|} IF b THEN c1 ELSE c2 {|Q|}

{|P ^ hbi|} c {|P|} P �! hhbii
{|P|} WHILE b DO c {|P ^ ¬hbi|}

{|P|} c1 {|Q|} {|Q|} c2 {|R|}
{|P|} c1;; c2 {|R|}

Fig. 3. Hoare Logic rules for standard commands.

{|�s. [[l]] s = bvpc ^ [[r]] s = bvc ^ vp /2 IC s ^ Addr vp ,!s pp ^
P (heap_iset_updates (pp 7! v))|}

l ::= r {|P|}

{|�s. kernel s ^ [[rte]] s = brtc ^ P (root_iset_updates Addr rt)|}
UpdateTTBR0 rte {|P|}

{|�s. mode s = Kernel ^ P (asid_pt_snpshot_updates a)|} UpdateASID a {|P|}

{|�s. mode s = Kernel ^ P (iset_pt_snpshot_updates f)|} Flush f {|P|}

{|�s. mode s = Kernel ^ P (s(|mode := flg|))|} SetMode flg {|P|}

Fig. 4. Hoare Logic rules for commands with TLB e↵ects.

completely standard, as intended. We write hhbii s to denote that [[b]]b s 6= None:
the precondition in the IF and WHILE rules must be strong enough for failure free
evaluation of b. The rules in Fig. 4 are in weakest-precondition form. They have
a generic postcondition P and the weakest precondition that will establish P. We
will now explain them.

The assignment rule requires that the expressions l and r evaluate without
failure. The assignment succeeds if the virtual address vp is consistent in the
current state (vp /2 IC s) and vp is mapped (Addr vp ,!s pp), where

vp ,!s pp = (phy_ad (iset s) (heap s) (root s) (mode s) vp = bppc)

The e↵ect of the assignment is the heap and iset update heap_iset_update we
described in Sect. 4.2.

The rule for the command UpdateTTBR0, only available in kernel mode, up-
dates the current page table root to the value of the expression rte. The e↵ect
is modelled by root_iset_update defined in Sect. 4.2.

The UpdateASID command, also only available in kernel mode, sets the new
ASID a, increases the iset using snp_incon, and records a page table snapshot
for the old ASID using new_snp.

Finally, Flush is the instruction that the makes the iset smaller, and removes
mappings in the snapshots of inactive ASIDs, using iset_asid_map_update from
Sect. 4.2.
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selective-invalidation selectively removes the entry or entries covering the
given virtual address and ASID depending upon the outcome of lookup opera-
tion. Whereas, block-invalidation takes a set of virtual addresses along with
particular ASID and selectively invalidates all of them. asid-invalidation and
va-invalidation removes entries using asid-entry-set and va-entry-set re-
spectively. We have proved the correctness of invalidation functions by validating
many interesting theorems shown in Figure ??.
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separate from the heap in which the update occurs. Since the physical address of
the write is separate from the page table lookup for this address and from P, the
translation layer for their heaps is not a↵ected by the write. To reason about page
table updates we need a slightly stronger rule that unfolds the virtual-to-value

mapping and lets us talk about the physical address p:

{|(VPtr vp 7!v p ^⇤ p 7! � ^⇤ P) b^c [[l ]] = vp b^c [[r ]] = v |}
l := r

{|VPtr vp 7!v p ^⇤ p 7! v ^⇤ P |}

Reasoning with the new mapping predicates is similar to abstract-predicate
style reasoning [13] if we never unfold their definitions in client proofs. As we
will see in the case study, we only need to do this locally if we are reasoning
about changes to the page table and we are interested in the page that is being
modified. This obviously heavily depends on the page table encoding. Application
level reasoning can proceed fully abstractly.

The second interesting proof rule is the frame rule that allows global reasoning
based on local proofs. In many ways it can be seen as the core of Separation
Logic. Calcagno et al. [3] provide an abstract framework for identifying a logic as
Separation Logic and distill out the central property of locality. In their setting,
our separation algebra is the common heap monoid where the binary operation

is heap merge lifted to the heap ⇥ pptr type. Our definition of separating
conjunction then coincides with the one in the framework, and to show that
our logic is a Separation Logic, we only need to show that all actions in the
programming language are local. Locality is equivalent to the combination of
safety monotonicity and the frame property. In our setting, these two are:
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completely standard, as intended. We write hhbii s to denote that [[b]]b s 6= None:
the precondition in the IF and WHILE rules must be strong enough for failure free
evaluation of b. The rules in Fig. 4 are in weakest-precondition form. They have
a generic postcondition P and the weakest precondition that will establish P. We
will now explain them.

The assignment rule requires that the expressions l and r evaluate without
failure. The assignment succeeds if the virtual address vp is consistent in the
current state (vp /2 IC s) and vp is mapped (Addr vp ,!s pp), where

vp ,!s pp = (phy_ad (iset s) (heap s) (root s) (mode s) vp = bppc)

The e↵ect of the assignment is the heap and iset update heap_iset_update we
described in Sect. 4.2.

The rule for the command UpdateTTBR0, only available in kernel mode, up-
dates the current page table root to the value of the expression rte. The e↵ect
is modelled by root_iset_update defined in Sect. 4.2.

The UpdateASID command, also only available in kernel mode, sets the new
ASID a, increases the iset using snp_incon, and records a page table snapshot
for the old ASID using new_snp.

Finally, Flush is the instruction that the makes the iset smaller, and removes
mappings in the snapshots of inactive ASIDs, using iset_asid_map_update from
Sect. 4.2.
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x2V. selective-invalidation t a x)
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asid-invalidation t a ⌘ t - asid-entry-set t a

va-invalidation :: tlb ) va ) tlb

va-invalidation t v ⌘ t - va-set t v

selective-invalidation selectively removes the entry or entries covering the
given virtual address and ASID depending upon the outcome of lookup opera-
tion. Whereas, block-invalidation takes a set of virtual addresses along with
particular ASID and selectively invalidates all of them. asid-invalidation and
va-invalidation removes entries using asid-entry-set and va-entry-set re-
spectively. We have proved the correctness of invalidation functions by validating
many interesting theorems shown in Figure ??.

✏ �s. P (s(x := e s)) x := e P

4 TLB Model inclusion in Cambridge ARM model

5 Conclusions
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separate from the heap in which the update occurs. Since the physical address of
the write is separate from the page table lookup for this address and from P, the
translation layer for their heaps is not a↵ected by the write. To reason about page
table updates we need a slightly stronger rule that unfolds the virtual-to-value

mapping and lets us talk about the physical address p:

{|(VPtr vp 7!v p ^⇤ p 7! � ^⇤ P) b^c [[l ]] = vp b^c [[r ]] = v |}
l := r

{|VPtr vp 7!v p ^⇤ p 7! v ^⇤ P |}

Reasoning with the new mapping predicates is similar to abstract-predicate
style reasoning [13] if we never unfold their definitions in client proofs. As we
will see in the case study, we only need to do this locally if we are reasoning
about changes to the page table and we are interested in the page that is being
modified. This obviously heavily depends on the page table encoding. Application
level reasoning can proceed fully abstractly.

The second interesting proof rule is the frame rule that allows global reasoning
based on local proofs. In many ways it can be seen as the core of Separation
Logic. Calcagno et al. [3] provide an abstract framework for identifying a logic as
Separation Logic and distill out the central property of locality. In their setting,
our separation algebra is the common heap monoid where the binary operation

is heap merge lifted to the heap ⇥ pptr type. Our definition of separating
conjunction then coincides with the one in the framework, and to show that
our logic is a Separation Logic, we only need to show that all actions in the
programming language are local. Locality is equivalent to the combination of
safety monotonicity and the frame property. In our setting, these two are:
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{|�s. [[l]] s = bvpc ^ [[r]] s = bvc ^ vp /2 IC s ^ Addr vp ,!s pp ^
P (heap_iset_updates (pp 7! v))|}

l ::= r {|P|}

{|�s. kernel s ^ [[rte]] s = brtc ^ P (root_iset_updates Addr rt)|}
UpdateTTBR0 rte {|P|}

{|�s. mode s = Kernel ^ P (asid_pt_snpshot_updates a)|} UpdateASID a {|P|}

{|�s. mode s = Kernel ^ P (iset_pt_snpshot_updates f)|} Flush f {|P|}

{|�s. mode s = Kernel ^ P (s(|mode := flg|))|} SetMode flg {|P|}

Fig. 4. Hoare Logic rules for commands with TLB e↵ects.

completely standard, as intended. We write hhbii s to denote that [[b]]b s 6= None:
the precondition in the IF and WHILE rules must be strong enough for failure free
evaluation of b. The rules in Fig. 4 are in weakest-precondition form. They have
a generic postcondition P and the weakest precondition that will establish P. We
will now explain them.

The assignment rule requires that the expressions l and r evaluate without
failure. The assignment succeeds if the virtual address vp is consistent in the
current state (vp /2 IC s) and vp is mapped (Addr vp ,!s pp), where

vp ,!s pp = (phy_ad (iset s) (heap s) (root s) (mode s) vp = bppc)

The e↵ect of the assignment is the heap and iset update heap_iset_update we
described in Sect. 4.2.

The rule for the command UpdateTTBR0, only available in kernel mode, up-
dates the current page table root to the value of the expression rte. The e↵ect
is modelled by root_iset_update defined in Sect. 4.2.

The UpdateASID command, also only available in kernel mode, sets the new
ASID a, increases the iset using snp_incon, and records a page table snapshot
for the old ASID using new_snp.

Finally, Flush is the instruction that the makes the iset smaller, and removes
mappings in the snapshots of inactive ASIDs, using iset_asid_map_update from
Sect. 4.2.
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- assignment

- updateRoot

- updateASID
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Program Logic — Rules

Take-away:

TLB has been reduced to consistency check

Inconsistency is recomputed after every instruction 
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- TLB-aware program logic in Isabelle/HOL
- sound abstraction of ARMv7-style MMU

- language with TLB management primitives

- TLB-aware Hoare logic rules

Contributions

- Reduction theorems for program verification at
- user- and kernel-level execution

- context switch
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- Address space management
- inspired by seL4
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- User-level assignment
- user cannot update page table,                                                       

hence cannot affect TLB consistency
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Reduction Theorems  

non_overlapping [] = True
non_overlapping (x · xs) = (x \

S
set xs = ; ^ non_overlapping xs)

To avoid flushing the TLB, we maintain for most of the execution the ad-
ditional invariant that the TLB is fully consistent for all ASIDs that we might
switch to, and that for each ASID the TLB snapshot agrees with the page table
that we would switch to for that ASID. This means, if there were page table
modifications for a user we are about to switch to, we assume that the cor-
responding flush has already happened. Since the property is not valid for all
ASIDs between page table modifications and flush, we provide a set of ASIDs
as argument to exclude. If this set is empty, we will omit the argument in the
notation.

asids_consistent S s ⌘
8 r a. root_map s r = bac ^ a /2 S [ {asid s} �!

(8 v. pt_snpshot s a v = Miss _
pt_snpshot s a v = Hit (pt_walk a (heap s) r v))

This concludes the formalisation of the necessary kernel invariants.

6.1 User Execution

The simplest of the reduction theorems is user-level execution: when the kernel
has switched to user mode, the iset should be empty for the current ASID, and
since the user cannot perform any actions that adds addresses to this set, it
will remain empty. Most actions that have any e↵ect on the iset are explicitly
privileged, i.e. unavailable in user mode. Only assignments could possibly have
an adverse e↵ect.

The following theorem shows that they do not, and that any arbitrary assign-
ment in user mode will preserve not only this property of the iset, but, almost
trivially, also all kernel invariants. In that sense it is a simple demonstration of
the separation that virtual memory achieves between kernel and user processes.

Theorem 3 When the kernel invariants hold, we are in user mode, and the
iset is empty, then these three conditions are preserved, and the heap is updated
as expected. We assume that the address the left-hand side resolves to is mapped.

{|�s. mmu_layout s ^ mode s = User ^
IC s = ; ^ [[lval]] s = bvpc ^ [[rval]] s = bvc ^ Addr vp ,!s p|}

lval ::= rval
{|�s. mmu_layout s ^ mode s = User ^ IC s = ; ^ heap s p = bvc|}

Proof. See lemma user_safe_assignment in [18].

The essence of the rule above is the same as Kolanski’s assignment rule [11]
without TLB. The invariant part of the rule could be moved to the definition of
validity and be hidden from the user completely. Like Kolanski, we still had to
assume that the address vp is mapped, because we do not distinguish between
recoverable page faults and program failure. In the settings we are interested in,
we aim to avoid page faults. In a setting with dynamically mapped pages, e.g. by
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- user- and kernel-level execution
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a page fault handler, the logic can be extended to take this conditional execution
into account, for instance using an exception mechanism or a conditional jump.
In that case, the condition that addresses are mapped can be dropped, and we
arrive at a standard Hoare logic assignment rule.

6.2 Kernel Execution

User execution boils down to standard reasoning. We can show that kernel exe-
cution without virtual memory modifications do as well.

As mentioned in Sect. 5, the safe set for kernel execution is the entire kernel
window, i.e. the virtual addresses that are mapped by the global mappings,
minus the addresses of the page table entries that encode these global mappings.
Since we will need to re-establish this set every time we switch to a di↵erent
page table, and it is always safe to reduce the safe set, we not only remove the
kernel window encoding in the current page table, but also that of of all other
page tables the kernel might switch to and call this set kernel_safe.

Since we fixed the global mappings in mmu_layout, we can give a short,
closed form of translation for addresses in kernel_safe: k_phy_ad vp = Addr vp -

offset. With these, we can formulate a theorem for assignments in kernel mode
that do not touch any of the virtual memory data structures, i.e. when the write
does not take place in any of the addresses covered by kernel_data.

Theorem 4 If the mmu_layout invariants hold, we are in kernel mode, and we
are performing a write in the kernel safe set that does not touch any MMU-
relevant data structures, then the mmu_layout invariants are preserved and the
e↵ect is a simple heap update with known constant address translation.

{|�s. mmu_layout s ^ mode s = Kernel ^ safe_set (kernel_safe s) s ^
asids_consistent s ^ [[lval]] s = bvpc ^ [[rval]] s = bvc ^
Addr vp 2 kernel_safe s ^ k_phy_ad vp /2 kernel_data_area s|}

lval ::= rval
{|�s. mmu_layout s ^ mode s = Kernel ^ safe_set (kernel_safe s) s ^

asids_consistent s ^ heap s (k_phy_ad vp) = bvc|}

Proof. See lemma kernel_safe_assignemnt in [18].

This lemma covers kernel code that is uninteresting for the purposes of the
MMU and TLB, which is the majority of code in a normal kernel. The Isabelle
theories [18] also contain examples for page table modifications. The main dif-
ference to this theorem is that, while the write still happens in the safe set, and
the safe set is preserved, there are now inconsistent addresses that need to be
flushed before we return to user mode. These could be for the active page table,
but also for an inactive page table, where the need for flushing is observed in
the asids_consistent invariant.

6.3 Context Switch

We have so far shown reduction theorems for simpler reasoning when nothing
interesting happens to the TLB. This section is the opposite: context switching.

14

a page fault handler, the logic can be extended to take this conditional execution
into account, for instance using an exception mechanism or a conditional jump.
In that case, the condition that addresses are mapped can be dropped, and we
arrive at a standard Hoare logic assignment rule.

6.2 Kernel Execution

User execution boils down to standard reasoning. We can show that kernel exe-
cution without virtual memory modifications do as well.

As mentioned in Sect. 5, the safe set for kernel execution is the entire kernel
window, i.e. the virtual addresses that are mapped by the global mappings,
minus the addresses of the page table entries that encode these global mappings.
Since we will need to re-establish this set every time we switch to a di↵erent
page table, and it is always safe to reduce the safe set, we not only remove the
kernel window encoding in the current page table, but also that of of all other
page tables the kernel might switch to and call this set kernel_safe.

Since we fixed the global mappings in mmu_layout, we can give a short,
closed form of translation for addresses in kernel_safe: k_phy_ad vp = Addr vp -

offset. With these, we can formulate a theorem for assignments in kernel mode
that do not touch any of the virtual memory data structures, i.e. when the write
does not take place in any of the addresses covered by kernel_data.

Theorem 4 If the mmu_layout invariants hold, we are in kernel mode, and we
are performing a write in the kernel safe set that does not touch any MMU-
relevant data structures, then the mmu_layout invariants are preserved and the
e↵ect is a simple heap update with known constant address translation.

{|�s. mmu_layout s ^ mode s = Kernel ^ safe_set (kernel_safe s) s ^
asids_consistent s ^ [[lval]] s = bvpc ^ [[rval]] s = bvc ^
Addr vp 2 kernel_safe s ^ k_phy_ad vp /2 kernel_data_area s|}

lval ::= rval
{|�s. mmu_layout s ^ mode s = Kernel ^ safe_set (kernel_safe s) s ^

asids_consistent s ^ heap s (k_phy_ad vp) = bvc|}

Proof. See lemma kernel_safe_assignemnt in [18].

This lemma covers kernel code that is uninteresting for the purposes of the
MMU and TLB, which is the majority of code in a normal kernel. The Isabelle
theories [18] also contain examples for page table modifications. The main dif-
ference to this theorem is that, while the write still happens in the safe set, and
the safe set is preserved, there are now inconsistent addresses that need to be
flushed before we return to user mode. These could be for the active page table,
but also for an inactive page table, where the need for flushing is observed in
the asids_consistent invariant.

6.3 Context Switch

We have so far shown reduction theorems for simpler reasoning when nothing
interesting happens to the TLB. This section is the opposite: context switching.

14

a page fault handler, the logic can be extended to take this conditional execution
into account, for instance using an exception mechanism or a conditional jump.
In that case, the condition that addresses are mapped can be dropped, and we
arrive at a standard Hoare logic assignment rule.

6.2 Kernel Execution

User execution boils down to standard reasoning. We can show that kernel exe-
cution without virtual memory modifications do as well.

As mentioned in Sect. 5, the safe set for kernel execution is the entire kernel
window, i.e. the virtual addresses that are mapped by the global mappings,
minus the addresses of the page table entries that encode these global mappings.
Since we will need to re-establish this set every time we switch to a di↵erent
page table, and it is always safe to reduce the safe set, we not only remove the
kernel window encoding in the current page table, but also that of of all other
page tables the kernel might switch to and call this set kernel_safe.

Since we fixed the global mappings in mmu_layout, we can give a short,
closed form of translation for addresses in kernel_safe: k_phy_ad vp = Addr vp -

offset. With these, we can formulate a theorem for assignments in kernel mode
that do not touch any of the virtual memory data structures, i.e. when the write
does not take place in any of the addresses covered by kernel_data.

Theorem 4 If the mmu_layout invariants hold, we are in kernel mode, and we
are performing a write in the kernel safe set that does not touch any MMU-
relevant data structures, then the mmu_layout invariants are preserved and the
e↵ect is a simple heap update with known constant address translation.

{|�s. mmu_layout s ^ mode s = Kernel ^ safe_set (kernel_safe s) s ^
asids_consistent s ^ [[lval]] s = bvpc ^ [[rval]] s = bvc ^
Addr vp 2 kernel_safe s ^ k_phy_ad vp /2 kernel_data_area s|}

lval ::= rval
{|�s. mmu_layout s ^ mode s = Kernel ^ safe_set (kernel_safe s) s ^

asids_consistent s ^ heap s (k_phy_ad vp) = bvc|}

Proof. See lemma kernel_safe_assignemnt in [18].

This lemma covers kernel code that is uninteresting for the purposes of the
MMU and TLB, which is the majority of code in a normal kernel. The Isabelle
theories [18] also contain examples for page table modifications. The main dif-
ference to this theorem is that, while the write still happens in the safe set, and
the safe set is preserved, there are now inconsistent addresses that need to be
flushed before we return to user mode. These could be for the active page table,
but also for an inactive page table, where the need for flushing is observed in
the asids_consistent invariant.

6.3 Context Switch

We have so far shown reduction theorems for simpler reasoning when nothing
interesting happens to the TLB. This section is the opposite: context switching.

14

a page fault handler, the logic can be extended to take this conditional execution
into account, for instance using an exception mechanism or a conditional jump.
In that case, the condition that addresses are mapped can be dropped, and we
arrive at a standard Hoare logic assignment rule.

6.2 Kernel Execution

User execution boils down to standard reasoning. We can show that kernel exe-
cution without virtual memory modifications do as well.

As mentioned in Sect. 5, the safe set for kernel execution is the entire kernel
window, i.e. the virtual addresses that are mapped by the global mappings,
minus the addresses of the page table entries that encode these global mappings.
Since we will need to re-establish this set every time we switch to a di↵erent
page table, and it is always safe to reduce the safe set, we not only remove the
kernel window encoding in the current page table, but also that of of all other
page tables the kernel might switch to and call this set kernel_safe.

Since we fixed the global mappings in mmu_layout, we can give a short,
closed form of translation for addresses in kernel_safe: k_phy_ad vp = Addr vp -

offset. With these, we can formulate a theorem for assignments in kernel mode
that do not touch any of the virtual memory data structures, i.e. when the write
does not take place in any of the addresses covered by kernel_data.

Theorem 4 If the mmu_layout invariants hold, we are in kernel mode, and we
are performing a write in the kernel safe set that does not touch any MMU-
relevant data structures, then the mmu_layout invariants are preserved and the
e↵ect is a simple heap update with known constant address translation.

{|�s. mmu_layout s ^ mode s = Kernel ^ safe_set (kernel_safe s) s ^
asids_consistent s ^ [[lval]] s = bvpc ^ [[rval]] s = bvc ^
Addr vp 2 kernel_safe s ^ k_phy_ad vp /2 kernel_data_area s|}

lval ::= rval
{|�s. mmu_layout s ^ mode s = Kernel ^ safe_set (kernel_safe s) s ^

asids_consistent s ^ heap s (k_phy_ad vp) = bvc|}

Proof. See lemma kernel_safe_assignemnt in [18].

This lemma covers kernel code that is uninteresting for the purposes of the
MMU and TLB, which is the majority of code in a normal kernel. The Isabelle
theories [18] also contain examples for page table modifications. The main dif-
ference to this theorem is that, while the write still happens in the safe set, and
the safe set is preserved, there are now inconsistent addresses that need to be
flushed before we return to user mode. These could be for the active page table,
but also for an inactive page table, where the need for flushing is observed in
the asids_consistent invariant.

6.3 Context Switch

We have so far shown reduction theorems for simpler reasoning when nothing
interesting happens to the TLB. This section is the opposite: context switching.

14

a page fault handler, the logic can be extended to take this conditional execution
into account, for instance using an exception mechanism or a conditional jump.
In that case, the condition that addresses are mapped can be dropped, and we
arrive at a standard Hoare logic assignment rule.

6.2 Kernel Execution

User execution boils down to standard reasoning. We can show that kernel exe-
cution without virtual memory modifications do as well.

As mentioned in Sect. 5, the safe set for kernel execution is the entire kernel
window, i.e. the virtual addresses that are mapped by the global mappings,
minus the addresses of the page table entries that encode these global mappings.
Since we will need to re-establish this set every time we switch to a di↵erent
page table, and it is always safe to reduce the safe set, we not only remove the
kernel window encoding in the current page table, but also that of of all other
page tables the kernel might switch to and call this set kernel_safe.

Since we fixed the global mappings in mmu_layout, we can give a short,
closed form of translation for addresses in kernel_safe: k_phy_ad vp = Addr vp -

offset. With these, we can formulate a theorem for assignments in kernel mode
that do not touch any of the virtual memory data structures, i.e. when the write
does not take place in any of the addresses covered by kernel_data.

Theorem 4 If the mmu_layout invariants hold, we are in kernel mode, and we
are performing a write in the kernel safe set that does not touch any MMU-
relevant data structures, then the mmu_layout invariants are preserved and the
e↵ect is a simple heap update with known constant address translation.

{|�s. mmu_layout s ^ mode s = Kernel ^ safe_set (kernel_safe s) s ^
asids_consistent s ^ [[lval]] s = bvpc ^ [[rval]] s = bvc ^
Addr vp 2 kernel_safe s ^ k_phy_ad vp /2 kernel_data_area s|}

lval ::= rval
{|�s. mmu_layout s ^ mode s = Kernel ^ safe_set (kernel_safe s) s ^

asids_consistent s ^ heap s (k_phy_ad vp) = bvc|}

Proof. See lemma kernel_safe_assignemnt in [18].

This lemma covers kernel code that is uninteresting for the purposes of the
MMU and TLB, which is the majority of code in a normal kernel. The Isabelle
theories [18] also contain examples for page table modifications. The main dif-
ference to this theorem is that, while the write still happens in the safe set, and
the safe set is preserved, there are now inconsistent addresses that need to be
flushed before we return to user mode. These could be for the active page table,
but also for an inactive page table, where the need for flushing is observed in
the asids_consistent invariant.

6.3 Context Switch

We have so far shown reduction theorems for simpler reasoning when nothing
interesting happens to the TLB. This section is the opposite: context switching.

14

a page fault handler, the logic can be extended to take this conditional execution
into account, for instance using an exception mechanism or a conditional jump.
In that case, the condition that addresses are mapped can be dropped, and we
arrive at a standard Hoare logic assignment rule.

6.2 Kernel Execution

User execution boils down to standard reasoning. We can show that kernel exe-
cution without virtual memory modifications do as well.

As mentioned in Sect. 5, the safe set for kernel execution is the entire kernel
window, i.e. the virtual addresses that are mapped by the global mappings,
minus the addresses of the page table entries that encode these global mappings.
Since we will need to re-establish this set every time we switch to a di↵erent
page table, and it is always safe to reduce the safe set, we not only remove the
kernel window encoding in the current page table, but also that of of all other
page tables the kernel might switch to and call this set kernel_safe.

Since we fixed the global mappings in mmu_layout, we can give a short,
closed form of translation for addresses in kernel_safe: k_phy_ad vp = Addr vp -

offset. With these, we can formulate a theorem for assignments in kernel mode
that do not touch any of the virtual memory data structures, i.e. when the write
does not take place in any of the addresses covered by kernel_data.

Theorem 4 If the mmu_layout invariants hold, we are in kernel mode, and we
are performing a write in the kernel safe set that does not touch any MMU-
relevant data structures, then the mmu_layout invariants are preserved and the
e↵ect is a simple heap update with known constant address translation.

{|�s. mmu_layout s ^ mode s = Kernel ^ safe_set (kernel_safe s) s ^
asids_consistent s ^ [[lval]] s = bvpc ^ [[rval]] s = bvc ^
Addr vp 2 kernel_safe s ^ k_phy_ad vp /2 kernel_data_area s|}

lval ::= rval
{|�s. mmu_layout s ^ mode s = Kernel ^ safe_set (kernel_safe s) s ^

asids_consistent s ^ heap s (k_phy_ad vp) = bvc|}

Proof. See lemma kernel_safe_assignemnt in [18].

This lemma covers kernel code that is uninteresting for the purposes of the
MMU and TLB, which is the majority of code in a normal kernel. The Isabelle
theories [18] also contain examples for page table modifications. The main dif-
ference to this theorem is that, while the write still happens in the safe set, and
the safe set is preserved, there are now inconsistent addresses that need to be
flushed before we return to user mode. These could be for the active page table,
but also for an inactive page table, where the need for flushing is observed in
the asids_consistent invariant.

6.3 Context Switch

We have so far shown reduction theorems for simpler reasoning when nothing
interesting happens to the TLB. This section is the opposite: context switching.

14

a page fault handler, the logic can be extended to take this conditional execution
into account, for instance using an exception mechanism or a conditional jump.
In that case, the condition that addresses are mapped can be dropped, and we
arrive at a standard Hoare logic assignment rule.

6.2 Kernel Execution

User execution boils down to standard reasoning. We can show that kernel exe-
cution without virtual memory modifications do as well.

As mentioned in Sect. 5, the safe set for kernel execution is the entire kernel
window, i.e. the virtual addresses that are mapped by the global mappings,
minus the addresses of the page table entries that encode these global mappings.
Since we will need to re-establish this set every time we switch to a di↵erent
page table, and it is always safe to reduce the safe set, we not only remove the
kernel window encoding in the current page table, but also that of of all other
page tables the kernel might switch to and call this set kernel_safe.

Since we fixed the global mappings in mmu_layout, we can give a short,
closed form of translation for addresses in kernel_safe: k_phy_ad vp = Addr vp -

offset. With these, we can formulate a theorem for assignments in kernel mode
that do not touch any of the virtual memory data structures, i.e. when the write
does not take place in any of the addresses covered by kernel_data.

Theorem 4 If the mmu_layout invariants hold, we are in kernel mode, and we
are performing a write in the kernel safe set that does not touch any MMU-
relevant data structures, then the mmu_layout invariants are preserved and the
e↵ect is a simple heap update with known constant address translation.

{|�s. mmu_layout s ^ mode s = Kernel ^ safe_set (kernel_safe s) s ^
asids_consistent s ^ [[lval]] s = bvpc ^ [[rval]] s = bvc ^
Addr vp 2 kernel_safe s ^ k_phy_ad vp /2 kernel_data_area s|}

lval ::= rval
{|�s. mmu_layout s ^ mode s = Kernel ^ safe_set (kernel_safe s) s ^

asids_consistent s ^ heap s (k_phy_ad vp) = bvc|}

Proof. See lemma kernel_safe_assignemnt in [18].

This lemma covers kernel code that is uninteresting for the purposes of the
MMU and TLB, which is the majority of code in a normal kernel. The Isabelle
theories [18] also contain examples for page table modifications. The main dif-
ference to this theorem is that, while the write still happens in the safe set, and
the safe set is preserved, there are now inconsistent addresses that need to be
flushed before we return to user mode. These could be for the active page table,
but also for an inactive page table, where the need for flushing is observed in
the asids_consistent invariant.

6.3 Context Switch

We have so far shown reduction theorems for simpler reasoning when nothing
interesting happens to the TLB. This section is the opposite: context switching.

14

a page fault handler, the logic can be extended to take this conditional execution
into account, for instance using an exception mechanism or a conditional jump.
In that case, the condition that addresses are mapped can be dropped, and we
arrive at a standard Hoare logic assignment rule.

6.2 Kernel Execution

User execution boils down to standard reasoning. We can show that kernel exe-
cution without virtual memory modifications do as well.

As mentioned in Sect. 5, the safe set for kernel execution is the entire kernel
window, i.e. the virtual addresses that are mapped by the global mappings,
minus the addresses of the page table entries that encode these global mappings.
Since we will need to re-establish this set every time we switch to a di↵erent
page table, and it is always safe to reduce the safe set, we not only remove the
kernel window encoding in the current page table, but also that of of all other
page tables the kernel might switch to and call this set kernel_safe.

Since we fixed the global mappings in mmu_layout, we can give a short,
closed form of translation for addresses in kernel_safe: k_phy_ad vp = Addr vp -

offset. With these, we can formulate a theorem for assignments in kernel mode
that do not touch any of the virtual memory data structures, i.e. when the write
does not take place in any of the addresses covered by kernel_data.

Theorem 4 If the mmu_layout invariants hold, we are in kernel mode, and we
are performing a write in the kernel safe set that does not touch any MMU-
relevant data structures, then the mmu_layout invariants are preserved and the
e↵ect is a simple heap update with known constant address translation.

{|�s. mmu_layout s ^ mode s = Kernel ^ safe_set (kernel_safe s) s ^
asids_consistent s ^ [[lval]] s = bvpc ^ [[rval]] s = bvc ^
Addr vp 2 kernel_safe s ^ k_phy_ad vp /2 kernel_data_area s|}

lval ::= rval
{|�s. mmu_layout s ^ mode s = Kernel ^ safe_set (kernel_safe s) s ^

asids_consistent s ^ heap s (k_phy_ad vp) = bvc|}

Proof. See lemma kernel_safe_assignemnt in [18].

This lemma covers kernel code that is uninteresting for the purposes of the
MMU and TLB, which is the majority of code in a normal kernel. The Isabelle
theories [18] also contain examples for page table modifications. The main dif-
ference to this theorem is that, while the write still happens in the safe set, and
the safe set is preserved, there are now inconsistent addresses that need to be
flushed before we return to user mode. These could be for the active page table,
but also for an inactive page table, where the need for flushing is observed in
the asids_consistent invariant.

6.3 Context Switch

We have so far shown reduction theorems for simpler reasoning when nothing
interesting happens to the TLB. This section is the opposite: context switching.

14



       Program Verification in the Presence of TLB-Address Translation        Hira Syeda

a page fault handler, the logic can be extended to take this conditional execution
into account, for instance using an exception mechanism or a conditional jump.
In that case, the condition that addresses are mapped can be dropped, and we
arrive at a standard Hoare logic assignment rule.

6.2 Kernel Execution

User execution boils down to standard reasoning. We can show that kernel exe-
cution without virtual memory modifications do as well.

As mentioned in Sect. 5, the safe set for kernel execution is the entire kernel
window, i.e. the virtual addresses that are mapped by the global mappings,
minus the addresses of the page table entries that encode these global mappings.
Since we will need to re-establish this set every time we switch to a di↵erent
page table, and it is always safe to reduce the safe set, we not only remove the
kernel window encoding in the current page table, but also that of of all other
page tables the kernel might switch to and call this set kernel_safe.

Since we fixed the global mappings in mmu_layout, we can give a short,
closed form of translation for addresses in kernel_safe: k_phy_ad vp = Addr vp -

offset. With these, we can formulate a theorem for assignments in kernel mode
that do not touch any of the virtual memory data structures, i.e. when the write
does not take place in any of the addresses covered by kernel_data.

Theorem 4 If the mmu_layout invariants hold, we are in kernel mode, and we
are performing a write in the kernel safe set that does not touch any MMU-
relevant data structures, then the mmu_layout invariants are preserved and the
e↵ect is a simple heap update with known constant address translation.

{|�s. mmu_layout s ^ mode s = Kernel ^ safe_set (kernel_safe s) s ^
asids_consistent s ^ [[lval]] s = bvpc ^ [[rval]] s = bvc ^
Addr vp 2 kernel_safe s ^ k_phy_ad vp /2 kernel_data_area s|}

lval ::= rval
{|�s. mmu_layout s ^ mode s = Kernel ^ safe_set (kernel_safe s) s ^

asids_consistent s ^ heap s (k_phy_ad vp) = bvc|}

Proof. See lemma kernel_safe_assignemnt in [18].

This lemma covers kernel code that is uninteresting for the purposes of the
MMU and TLB, which is the majority of code in a normal kernel. The Isabelle
theories [18] also contain examples for page table modifications. The main dif-
ference to this theorem is that, while the write still happens in the safe set, and
the safe set is preserved, there are now inconsistent addresses that need to be
flushed before we return to user mode. These could be for the active page table,
but also for an inactive page table, where the need for flushing is observed in
the asids_consistent invariant.

6.3 Context Switch

We have so far shown reduction theorems for simpler reasoning when nothing
interesting happens to the TLB. This section is the opposite: context switching.

14

- Kernel-level assignment
- that doesn't modify page table

29

Reduction Theorems  

a page fault handler, the logic can be extended to take this conditional execution
into account, for instance using an exception mechanism or a conditional jump.
In that case, the condition that addresses are mapped can be dropped, and we
arrive at a standard Hoare logic assignment rule.

6.2 Kernel Execution

User execution boils down to standard reasoning. We can show that kernel exe-
cution without virtual memory modifications do as well.

As mentioned in Sect. 5, the safe set for kernel execution is the entire kernel
window, i.e. the virtual addresses that are mapped by the global mappings,
minus the addresses of the page table entries that encode these global mappings.
Since we will need to re-establish this set every time we switch to a di↵erent
page table, and it is always safe to reduce the safe set, we not only remove the
kernel window encoding in the current page table, but also that of of all other
page tables the kernel might switch to and call this set kernel_safe.

Since we fixed the global mappings in mmu_layout, we can give a short,
closed form of translation for addresses in kernel_safe: k_phy_ad vp = Addr vp -

offset. With these, we can formulate a theorem for assignments in kernel mode
that do not touch any of the virtual memory data structures, i.e. when the write
does not take place in any of the addresses covered by kernel_data.

Theorem 4 If the mmu_layout invariants hold, we are in kernel mode, and we
are performing a write in the kernel safe set that does not touch any MMU-
relevant data structures, then the mmu_layout invariants are preserved and the
e↵ect is a simple heap update with known constant address translation.

{|�s. mmu_layout s ^ mode s = Kernel ^ safe_set (kernel_safe s) s ^
asids_consistent s ^ [[lval]] s = bvpc ^ [[rval]] s = bvc ^
Addr vp 2 kernel_safe s ^ k_phy_ad vp /2 kernel_data_area s|}

lval ::= rval
{|�s. mmu_layout s ^ mode s = Kernel ^ safe_set (kernel_safe s) s ^

asids_consistent s ^ heap s (k_phy_ad vp) = bvc|}

Proof. See lemma kernel_safe_assignemnt in [18].

This lemma covers kernel code that is uninteresting for the purposes of the
MMU and TLB, which is the majority of code in a normal kernel. The Isabelle
theories [18] also contain examples for page table modifications. The main dif-
ference to this theorem is that, while the write still happens in the safe set, and
the safe set is preserved, there are now inconsistent addresses that need to be
flushed before we return to user mode. These could be for the active page table,
but also for an inactive page table, where the need for flushing is observed in
the asids_consistent invariant.

6.3 Context Switch

We have so far shown reduction theorems for simpler reasoning when nothing
interesting happens to the TLB. This section is the opposite: context switching.

14

a page fault handler, the logic can be extended to take this conditional execution
into account, for instance using an exception mechanism or a conditional jump.
In that case, the condition that addresses are mapped can be dropped, and we
arrive at a standard Hoare logic assignment rule.

6.2 Kernel Execution

User execution boils down to standard reasoning. We can show that kernel exe-
cution without virtual memory modifications do as well.

As mentioned in Sect. 5, the safe set for kernel execution is the entire kernel
window, i.e. the virtual addresses that are mapped by the global mappings,
minus the addresses of the page table entries that encode these global mappings.
Since we will need to re-establish this set every time we switch to a di↵erent
page table, and it is always safe to reduce the safe set, we not only remove the
kernel window encoding in the current page table, but also that of of all other
page tables the kernel might switch to and call this set kernel_safe.

Since we fixed the global mappings in mmu_layout, we can give a short,
closed form of translation for addresses in kernel_safe: k_phy_ad vp = Addr vp -

offset. With these, we can formulate a theorem for assignments in kernel mode
that do not touch any of the virtual memory data structures, i.e. when the write
does not take place in any of the addresses covered by kernel_data.

Theorem 4 If the mmu_layout invariants hold, we are in kernel mode, and we
are performing a write in the kernel safe set that does not touch any MMU-
relevant data structures, then the mmu_layout invariants are preserved and the
e↵ect is a simple heap update with known constant address translation.

{|�s. mmu_layout s ^ mode s = Kernel ^ safe_set (kernel_safe s) s ^
asids_consistent s ^ [[lval]] s = bvpc ^ [[rval]] s = bvc ^
Addr vp 2 kernel_safe s ^ k_phy_ad vp /2 kernel_data_area s|}

lval ::= rval
{|�s. mmu_layout s ^ mode s = Kernel ^ safe_set (kernel_safe s) s ^

asids_consistent s ^ heap s (k_phy_ad vp) = bvc|}

Proof. See lemma kernel_safe_assignemnt in [18].

This lemma covers kernel code that is uninteresting for the purposes of the
MMU and TLB, which is the majority of code in a normal kernel. The Isabelle
theories [18] also contain examples for page table modifications. The main dif-
ference to this theorem is that, while the write still happens in the safe set, and
the safe set is preserved, there are now inconsistent addresses that need to be
flushed before we return to user mode. These could be for the active page table,
but also for an inactive page table, where the need for flushing is observed in
the asids_consistent invariant.

6.3 Context Switch

We have so far shown reduction theorems for simpler reasoning when nothing
interesting happens to the TLB. This section is the opposite: context switching.

14

a page fault handler, the logic can be extended to take this conditional execution
into account, for instance using an exception mechanism or a conditional jump.
In that case, the condition that addresses are mapped can be dropped, and we
arrive at a standard Hoare logic assignment rule.

6.2 Kernel Execution

User execution boils down to standard reasoning. We can show that kernel exe-
cution without virtual memory modifications do as well.

As mentioned in Sect. 5, the safe set for kernel execution is the entire kernel
window, i.e. the virtual addresses that are mapped by the global mappings,
minus the addresses of the page table entries that encode these global mappings.
Since we will need to re-establish this set every time we switch to a di↵erent
page table, and it is always safe to reduce the safe set, we not only remove the
kernel window encoding in the current page table, but also that of of all other
page tables the kernel might switch to and call this set kernel_safe.

Since we fixed the global mappings in mmu_layout, we can give a short,
closed form of translation for addresses in kernel_safe: k_phy_ad vp = Addr vp -

offset. With these, we can formulate a theorem for assignments in kernel mode
that do not touch any of the virtual memory data structures, i.e. when the write
does not take place in any of the addresses covered by kernel_data.

Theorem 4 If the mmu_layout invariants hold, we are in kernel mode, and we
are performing a write in the kernel safe set that does not touch any MMU-
relevant data structures, then the mmu_layout invariants are preserved and the
e↵ect is a simple heap update with known constant address translation.

{|�s. mmu_layout s ^ mode s = Kernel ^ safe_set (kernel_safe s) s ^
asids_consistent s ^ [[lval]] s = bvpc ^ [[rval]] s = bvc ^
Addr vp 2 kernel_safe s ^ k_phy_ad vp /2 kernel_data_area s|}

lval ::= rval
{|�s. mmu_layout s ^ mode s = Kernel ^ safe_set (kernel_safe s) s ^

asids_consistent s ^ heap s (k_phy_ad vp) = bvc|}

Proof. See lemma kernel_safe_assignemnt in [18].

This lemma covers kernel code that is uninteresting for the purposes of the
MMU and TLB, which is the majority of code in a normal kernel. The Isabelle
theories [18] also contain examples for page table modifications. The main dif-
ference to this theorem is that, while the write still happens in the safe set, and
the safe set is preserved, there are now inconsistent addresses that need to be
flushed before we return to user mode. These could be for the active page table,
but also for an inactive page table, where the need for flushing is observed in
the asids_consistent invariant.

6.3 Context Switch

We have so far shown reduction theorems for simpler reasoning when nothing
interesting happens to the TLB. This section is the opposite: context switching.

14

a page fault handler, the logic can be extended to take this conditional execution
into account, for instance using an exception mechanism or a conditional jump.
In that case, the condition that addresses are mapped can be dropped, and we
arrive at a standard Hoare logic assignment rule.

6.2 Kernel Execution

User execution boils down to standard reasoning. We can show that kernel exe-
cution without virtual memory modifications do as well.

As mentioned in Sect. 5, the safe set for kernel execution is the entire kernel
window, i.e. the virtual addresses that are mapped by the global mappings,
minus the addresses of the page table entries that encode these global mappings.
Since we will need to re-establish this set every time we switch to a di↵erent
page table, and it is always safe to reduce the safe set, we not only remove the
kernel window encoding in the current page table, but also that of of all other
page tables the kernel might switch to and call this set kernel_safe.

Since we fixed the global mappings in mmu_layout, we can give a short,
closed form of translation for addresses in kernel_safe: k_phy_ad vp = Addr vp -

offset. With these, we can formulate a theorem for assignments in kernel mode
that do not touch any of the virtual memory data structures, i.e. when the write
does not take place in any of the addresses covered by kernel_data.

Theorem 4 If the mmu_layout invariants hold, we are in kernel mode, and we
are performing a write in the kernel safe set that does not touch any MMU-
relevant data structures, then the mmu_layout invariants are preserved and the
e↵ect is a simple heap update with known constant address translation.

{|�s. mmu_layout s ^ mode s = Kernel ^ safe_set (kernel_safe s) s ^
asids_consistent s ^ [[lval]] s = bvpc ^ [[rval]] s = bvc ^
Addr vp 2 kernel_safe s ^ k_phy_ad vp /2 kernel_data_area s|}

lval ::= rval
{|�s. mmu_layout s ^ mode s = Kernel ^ safe_set (kernel_safe s) s ^

asids_consistent s ^ heap s (k_phy_ad vp) = bvc|}

Proof. See lemma kernel_safe_assignemnt in [18].

This lemma covers kernel code that is uninteresting for the purposes of the
MMU and TLB, which is the majority of code in a normal kernel. The Isabelle
theories [18] also contain examples for page table modifications. The main dif-
ference to this theorem is that, while the write still happens in the safe set, and
the safe set is preserved, there are now inconsistent addresses that need to be
flushed before we return to user mode. These could be for the active page table,
but also for an inactive page table, where the need for flushing is observed in
the asids_consistent invariant.

6.3 Context Switch

We have so far shown reduction theorems for simpler reasoning when nothing
interesting happens to the TLB. This section is the opposite: context switching.

14

a page fault handler, the logic can be extended to take this conditional execution
into account, for instance using an exception mechanism or a conditional jump.
In that case, the condition that addresses are mapped can be dropped, and we
arrive at a standard Hoare logic assignment rule.

6.2 Kernel Execution

User execution boils down to standard reasoning. We can show that kernel exe-
cution without virtual memory modifications do as well.

As mentioned in Sect. 5, the safe set for kernel execution is the entire kernel
window, i.e. the virtual addresses that are mapped by the global mappings,
minus the addresses of the page table entries that encode these global mappings.
Since we will need to re-establish this set every time we switch to a di↵erent
page table, and it is always safe to reduce the safe set, we not only remove the
kernel window encoding in the current page table, but also that of of all other
page tables the kernel might switch to and call this set kernel_safe.

Since we fixed the global mappings in mmu_layout, we can give a short,
closed form of translation for addresses in kernel_safe: k_phy_ad vp = Addr vp -

offset. With these, we can formulate a theorem for assignments in kernel mode
that do not touch any of the virtual memory data structures, i.e. when the write
does not take place in any of the addresses covered by kernel_data.

Theorem 4 If the mmu_layout invariants hold, we are in kernel mode, and we
are performing a write in the kernel safe set that does not touch any MMU-
relevant data structures, then the mmu_layout invariants are preserved and the
e↵ect is a simple heap update with known constant address translation.

{|�s. mmu_layout s ^ mode s = Kernel ^ safe_set (kernel_safe s) s ^
asids_consistent s ^ [[lval]] s = bvpc ^ [[rval]] s = bvc ^
Addr vp 2 kernel_safe s ^ k_phy_ad vp /2 kernel_data_area s|}

lval ::= rval
{|�s. mmu_layout s ^ mode s = Kernel ^ safe_set (kernel_safe s) s ^

asids_consistent s ^ heap s (k_phy_ad vp) = bvc|}

Proof. See lemma kernel_safe_assignemnt in [18].

This lemma covers kernel code that is uninteresting for the purposes of the
MMU and TLB, which is the majority of code in a normal kernel. The Isabelle
theories [18] also contain examples for page table modifications. The main dif-
ference to this theorem is that, while the write still happens in the safe set, and
the safe set is preserved, there are now inconsistent addresses that need to be
flushed before we return to user mode. These could be for the active page table,
but also for an inactive page table, where the need for flushing is observed in
the asids_consistent invariant.

6.3 Context Switch

We have so far shown reduction theorems for simpler reasoning when nothing
interesting happens to the TLB. This section is the opposite: context switching.

14

a page fault handler, the logic can be extended to take this conditional execution
into account, for instance using an exception mechanism or a conditional jump.
In that case, the condition that addresses are mapped can be dropped, and we
arrive at a standard Hoare logic assignment rule.

6.2 Kernel Execution

User execution boils down to standard reasoning. We can show that kernel exe-
cution without virtual memory modifications do as well.

As mentioned in Sect. 5, the safe set for kernel execution is the entire kernel
window, i.e. the virtual addresses that are mapped by the global mappings,
minus the addresses of the page table entries that encode these global mappings.
Since we will need to re-establish this set every time we switch to a di↵erent
page table, and it is always safe to reduce the safe set, we not only remove the
kernel window encoding in the current page table, but also that of of all other
page tables the kernel might switch to and call this set kernel_safe.

Since we fixed the global mappings in mmu_layout, we can give a short,
closed form of translation for addresses in kernel_safe: k_phy_ad vp = Addr vp -

offset. With these, we can formulate a theorem for assignments in kernel mode
that do not touch any of the virtual memory data structures, i.e. when the write
does not take place in any of the addresses covered by kernel_data.

Theorem 4 If the mmu_layout invariants hold, we are in kernel mode, and we
are performing a write in the kernel safe set that does not touch any MMU-
relevant data structures, then the mmu_layout invariants are preserved and the
e↵ect is a simple heap update with known constant address translation.

{|�s. mmu_layout s ^ mode s = Kernel ^ safe_set (kernel_safe s) s ^
asids_consistent s ^ [[lval]] s = bvpc ^ [[rval]] s = bvc ^
Addr vp 2 kernel_safe s ^ k_phy_ad vp /2 kernel_data_area s|}

lval ::= rval
{|�s. mmu_layout s ^ mode s = Kernel ^ safe_set (kernel_safe s) s ^

asids_consistent s ^ heap s (k_phy_ad vp) = bvc|}

Proof. See lemma kernel_safe_assignemnt in [18].

This lemma covers kernel code that is uninteresting for the purposes of the
MMU and TLB, which is the majority of code in a normal kernel. The Isabelle
theories [18] also contain examples for page table modifications. The main dif-
ference to this theorem is that, while the write still happens in the safe set, and
the safe set is preserved, there are now inconsistent addresses that need to be
flushed before we return to user mode. These could be for the active page table,
but also for an inactive page table, where the need for flushing is observed in
the asids_consistent invariant.

6.3 Context Switch

We have so far shown reduction theorems for simpler reasoning when nothing
interesting happens to the TLB. This section is the opposite: context switching.

14

a page fault handler, the logic can be extended to take this conditional execution
into account, for instance using an exception mechanism or a conditional jump.
In that case, the condition that addresses are mapped can be dropped, and we
arrive at a standard Hoare logic assignment rule.

6.2 Kernel Execution

User execution boils down to standard reasoning. We can show that kernel exe-
cution without virtual memory modifications do as well.

As mentioned in Sect. 5, the safe set for kernel execution is the entire kernel
window, i.e. the virtual addresses that are mapped by the global mappings,
minus the addresses of the page table entries that encode these global mappings.
Since we will need to re-establish this set every time we switch to a di↵erent
page table, and it is always safe to reduce the safe set, we not only remove the
kernel window encoding in the current page table, but also that of of all other
page tables the kernel might switch to and call this set kernel_safe.

Since we fixed the global mappings in mmu_layout, we can give a short,
closed form of translation for addresses in kernel_safe: k_phy_ad vp = Addr vp -

offset. With these, we can formulate a theorem for assignments in kernel mode
that do not touch any of the virtual memory data structures, i.e. when the write
does not take place in any of the addresses covered by kernel_data.

Theorem 4 If the mmu_layout invariants hold, we are in kernel mode, and we
are performing a write in the kernel safe set that does not touch any MMU-
relevant data structures, then the mmu_layout invariants are preserved and the
e↵ect is a simple heap update with known constant address translation.

{|�s. mmu_layout s ^ mode s = Kernel ^ safe_set (kernel_safe s) s ^
asids_consistent s ^ [[lval]] s = bvpc ^ [[rval]] s = bvc ^
Addr vp 2 kernel_safe s ^ k_phy_ad vp /2 kernel_data_area s|}

lval ::= rval
{|�s. mmu_layout s ^ mode s = Kernel ^ safe_set (kernel_safe s) s ^

asids_consistent s ^ heap s (k_phy_ad vp) = bvc|}

Proof. See lemma kernel_safe_assignemnt in [18].

This lemma covers kernel code that is uninteresting for the purposes of the
MMU and TLB, which is the majority of code in a normal kernel. The Isabelle
theories [18] also contain examples for page table modifications. The main dif-
ference to this theorem is that, while the write still happens in the safe set, and
the safe set is preserved, there are now inconsistent addresses that need to be
flushed before we return to user mode. These could be for the active page table,
but also for an inactive page table, where the need for flushing is observed in
the asids_consistent invariant.

6.3 Context Switch

We have so far shown reduction theorems for simpler reasoning when nothing
interesting happens to the TLB. This section is the opposite: context switching.

14

a page fault handler, the logic can be extended to take this conditional execution
into account, for instance using an exception mechanism or a conditional jump.
In that case, the condition that addresses are mapped can be dropped, and we
arrive at a standard Hoare logic assignment rule.

6.2 Kernel Execution

User execution boils down to standard reasoning. We can show that kernel exe-
cution without virtual memory modifications do as well.

As mentioned in Sect. 5, the safe set for kernel execution is the entire kernel
window, i.e. the virtual addresses that are mapped by the global mappings,
minus the addresses of the page table entries that encode these global mappings.
Since we will need to re-establish this set every time we switch to a di↵erent
page table, and it is always safe to reduce the safe set, we not only remove the
kernel window encoding in the current page table, but also that of of all other
page tables the kernel might switch to and call this set kernel_safe.

Since we fixed the global mappings in mmu_layout, we can give a short,
closed form of translation for addresses in kernel_safe: k_phy_ad vp = Addr vp -

offset. With these, we can formulate a theorem for assignments in kernel mode
that do not touch any of the virtual memory data structures, i.e. when the write
does not take place in any of the addresses covered by kernel_data.

Theorem 4 If the mmu_layout invariants hold, we are in kernel mode, and we
are performing a write in the kernel safe set that does not touch any MMU-
relevant data structures, then the mmu_layout invariants are preserved and the
e↵ect is a simple heap update with known constant address translation.

{|�s. mmu_layout s ^ mode s = Kernel ^ safe_set (kernel_safe s) s ^
asids_consistent s ^ [[lval]] s = bvpc ^ [[rval]] s = bvc ^
Addr vp 2 kernel_safe s ^ k_phy_ad vp /2 kernel_data_area s|}

lval ::= rval
{|�s. mmu_layout s ^ mode s = Kernel ^ safe_set (kernel_safe s) s ^

asids_consistent s ^ heap s (k_phy_ad vp) = bvc|}

Proof. See lemma kernel_safe_assignemnt in [18].

This lemma covers kernel code that is uninteresting for the purposes of the
MMU and TLB, which is the majority of code in a normal kernel. The Isabelle
theories [18] also contain examples for page table modifications. The main dif-
ference to this theorem is that, while the write still happens in the safe set, and
the safe set is preserved, there are now inconsistent addresses that need to be
flushed before we return to user mode. These could be for the active page table,
but also for an inactive page table, where the need for flushing is observed in
the asids_consistent invariant.

6.3 Context Switch

We have so far shown reduction theorems for simpler reasoning when nothing
interesting happens to the TLB. This section is the opposite: context switching.

14



       Program Verification in the Presence of TLB-Address Translation        Hira Syeda

a page fault handler, the logic can be extended to take this conditional execution
into account, for instance using an exception mechanism or a conditional jump.
In that case, the condition that addresses are mapped can be dropped, and we
arrive at a standard Hoare logic assignment rule.

6.2 Kernel Execution

User execution boils down to standard reasoning. We can show that kernel exe-
cution without virtual memory modifications do as well.

As mentioned in Sect. 5, the safe set for kernel execution is the entire kernel
window, i.e. the virtual addresses that are mapped by the global mappings,
minus the addresses of the page table entries that encode these global mappings.
Since we will need to re-establish this set every time we switch to a di↵erent
page table, and it is always safe to reduce the safe set, we not only remove the
kernel window encoding in the current page table, but also that of of all other
page tables the kernel might switch to and call this set kernel_safe.

Since we fixed the global mappings in mmu_layout, we can give a short,
closed form of translation for addresses in kernel_safe: k_phy_ad vp = Addr vp -

offset. With these, we can formulate a theorem for assignments in kernel mode
that do not touch any of the virtual memory data structures, i.e. when the write
does not take place in any of the addresses covered by kernel_data.

Theorem 4 If the mmu_layout invariants hold, we are in kernel mode, and we
are performing a write in the kernel safe set that does not touch any MMU-
relevant data structures, then the mmu_layout invariants are preserved and the
e↵ect is a simple heap update with known constant address translation.

{|�s. mmu_layout s ^ mode s = Kernel ^ safe_set (kernel_safe s) s ^
asids_consistent s ^ [[lval]] s = bvpc ^ [[rval]] s = bvc ^
Addr vp 2 kernel_safe s ^ k_phy_ad vp /2 kernel_data_area s|}

lval ::= rval
{|�s. mmu_layout s ^ mode s = Kernel ^ safe_set (kernel_safe s) s ^

asids_consistent s ^ heap s (k_phy_ad vp) = bvc|}

Proof. See lemma kernel_safe_assignemnt in [18].

This lemma covers kernel code that is uninteresting for the purposes of the
MMU and TLB, which is the majority of code in a normal kernel. The Isabelle
theories [18] also contain examples for page table modifications. The main dif-
ference to this theorem is that, while the write still happens in the safe set, and
the safe set is preserved, there are now inconsistent addresses that need to be
flushed before we return to user mode. These could be for the active page table,
but also for an inactive page table, where the need for flushing is observed in
the asids_consistent invariant.

6.3 Context Switch

We have so far shown reduction theorems for simpler reasoning when nothing
interesting happens to the TLB. This section is the opposite: context switching.

14

- Kernel-level assignment
- that doesn't modify page table

29

Reduction Theorems  

a page fault handler, the logic can be extended to take this conditional execution
into account, for instance using an exception mechanism or a conditional jump.
In that case, the condition that addresses are mapped can be dropped, and we
arrive at a standard Hoare logic assignment rule.

6.2 Kernel Execution

User execution boils down to standard reasoning. We can show that kernel exe-
cution without virtual memory modifications do as well.

As mentioned in Sect. 5, the safe set for kernel execution is the entire kernel
window, i.e. the virtual addresses that are mapped by the global mappings,
minus the addresses of the page table entries that encode these global mappings.
Since we will need to re-establish this set every time we switch to a di↵erent
page table, and it is always safe to reduce the safe set, we not only remove the
kernel window encoding in the current page table, but also that of of all other
page tables the kernel might switch to and call this set kernel_safe.

Since we fixed the global mappings in mmu_layout, we can give a short,
closed form of translation for addresses in kernel_safe: k_phy_ad vp = Addr vp -

offset. With these, we can formulate a theorem for assignments in kernel mode
that do not touch any of the virtual memory data structures, i.e. when the write
does not take place in any of the addresses covered by kernel_data.

Theorem 4 If the mmu_layout invariants hold, we are in kernel mode, and we
are performing a write in the kernel safe set that does not touch any MMU-
relevant data structures, then the mmu_layout invariants are preserved and the
e↵ect is a simple heap update with known constant address translation.

{|�s. mmu_layout s ^ mode s = Kernel ^ safe_set (kernel_safe s) s ^
asids_consistent s ^ [[lval]] s = bvpc ^ [[rval]] s = bvc ^
Addr vp 2 kernel_safe s ^ k_phy_ad vp /2 kernel_data_area s|}

lval ::= rval
{|�s. mmu_layout s ^ mode s = Kernel ^ safe_set (kernel_safe s) s ^

asids_consistent s ^ heap s (k_phy_ad vp) = bvc|}

Proof. See lemma kernel_safe_assignemnt in [18].

This lemma covers kernel code that is uninteresting for the purposes of the
MMU and TLB, which is the majority of code in a normal kernel. The Isabelle
theories [18] also contain examples for page table modifications. The main dif-
ference to this theorem is that, while the write still happens in the safe set, and
the safe set is preserved, there are now inconsistent addresses that need to be
flushed before we return to user mode. These could be for the active page table,
but also for an inactive page table, where the need for flushing is observed in
the asids_consistent invariant.

6.3 Context Switch

We have so far shown reduction theorems for simpler reasoning when nothing
interesting happens to the TLB. This section is the opposite: context switching.

14

a page fault handler, the logic can be extended to take this conditional execution
into account, for instance using an exception mechanism or a conditional jump.
In that case, the condition that addresses are mapped can be dropped, and we
arrive at a standard Hoare logic assignment rule.

6.2 Kernel Execution

User execution boils down to standard reasoning. We can show that kernel exe-
cution without virtual memory modifications do as well.

As mentioned in Sect. 5, the safe set for kernel execution is the entire kernel
window, i.e. the virtual addresses that are mapped by the global mappings,
minus the addresses of the page table entries that encode these global mappings.
Since we will need to re-establish this set every time we switch to a di↵erent
page table, and it is always safe to reduce the safe set, we not only remove the
kernel window encoding in the current page table, but also that of of all other
page tables the kernel might switch to and call this set kernel_safe.

Since we fixed the global mappings in mmu_layout, we can give a short,
closed form of translation for addresses in kernel_safe: k_phy_ad vp = Addr vp -

offset. With these, we can formulate a theorem for assignments in kernel mode
that do not touch any of the virtual memory data structures, i.e. when the write
does not take place in any of the addresses covered by kernel_data.

Theorem 4 If the mmu_layout invariants hold, we are in kernel mode, and we
are performing a write in the kernel safe set that does not touch any MMU-
relevant data structures, then the mmu_layout invariants are preserved and the
e↵ect is a simple heap update with known constant address translation.

{|�s. mmu_layout s ^ mode s = Kernel ^ safe_set (kernel_safe s) s ^
asids_consistent s ^ [[lval]] s = bvpc ^ [[rval]] s = bvc ^
Addr vp 2 kernel_safe s ^ k_phy_ad vp /2 kernel_data_area s|}

lval ::= rval
{|�s. mmu_layout s ^ mode s = Kernel ^ safe_set (kernel_safe s) s ^

asids_consistent s ^ heap s (k_phy_ad vp) = bvc|}

Proof. See lemma kernel_safe_assignemnt in [18].

This lemma covers kernel code that is uninteresting for the purposes of the
MMU and TLB, which is the majority of code in a normal kernel. The Isabelle
theories [18] also contain examples for page table modifications. The main dif-
ference to this theorem is that, while the write still happens in the safe set, and
the safe set is preserved, there are now inconsistent addresses that need to be
flushed before we return to user mode. These could be for the active page table,
but also for an inactive page table, where the need for flushing is observed in
the asids_consistent invariant.

6.3 Context Switch

We have so far shown reduction theorems for simpler reasoning when nothing
interesting happens to the TLB. This section is the opposite: context switching.

14

a page fault handler, the logic can be extended to take this conditional execution
into account, for instance using an exception mechanism or a conditional jump.
In that case, the condition that addresses are mapped can be dropped, and we
arrive at a standard Hoare logic assignment rule.

6.2 Kernel Execution

User execution boils down to standard reasoning. We can show that kernel exe-
cution without virtual memory modifications do as well.

As mentioned in Sect. 5, the safe set for kernel execution is the entire kernel
window, i.e. the virtual addresses that are mapped by the global mappings,
minus the addresses of the page table entries that encode these global mappings.
Since we will need to re-establish this set every time we switch to a di↵erent
page table, and it is always safe to reduce the safe set, we not only remove the
kernel window encoding in the current page table, but also that of of all other
page tables the kernel might switch to and call this set kernel_safe.

Since we fixed the global mappings in mmu_layout, we can give a short,
closed form of translation for addresses in kernel_safe: k_phy_ad vp = Addr vp -

offset. With these, we can formulate a theorem for assignments in kernel mode
that do not touch any of the virtual memory data structures, i.e. when the write
does not take place in any of the addresses covered by kernel_data.

Theorem 4 If the mmu_layout invariants hold, we are in kernel mode, and we
are performing a write in the kernel safe set that does not touch any MMU-
relevant data structures, then the mmu_layout invariants are preserved and the
e↵ect is a simple heap update with known constant address translation.

{|�s. mmu_layout s ^ mode s = Kernel ^ safe_set (kernel_safe s) s ^
asids_consistent s ^ [[lval]] s = bvpc ^ [[rval]] s = bvc ^
Addr vp 2 kernel_safe s ^ k_phy_ad vp /2 kernel_data_area s|}

lval ::= rval
{|�s. mmu_layout s ^ mode s = Kernel ^ safe_set (kernel_safe s) s ^

asids_consistent s ^ heap s (k_phy_ad vp) = bvc|}

Proof. See lemma kernel_safe_assignemnt in [18].

This lemma covers kernel code that is uninteresting for the purposes of the
MMU and TLB, which is the majority of code in a normal kernel. The Isabelle
theories [18] also contain examples for page table modifications. The main dif-
ference to this theorem is that, while the write still happens in the safe set, and
the safe set is preserved, there are now inconsistent addresses that need to be
flushed before we return to user mode. These could be for the active page table,
but also for an inactive page table, where the need for flushing is observed in
the asids_consistent invariant.

6.3 Context Switch

We have so far shown reduction theorems for simpler reasoning when nothing
interesting happens to the TLB. This section is the opposite: context switching.

14

a page fault handler, the logic can be extended to take this conditional execution
into account, for instance using an exception mechanism or a conditional jump.
In that case, the condition that addresses are mapped can be dropped, and we
arrive at a standard Hoare logic assignment rule.

6.2 Kernel Execution

User execution boils down to standard reasoning. We can show that kernel exe-
cution without virtual memory modifications do as well.

As mentioned in Sect. 5, the safe set for kernel execution is the entire kernel
window, i.e. the virtual addresses that are mapped by the global mappings,
minus the addresses of the page table entries that encode these global mappings.
Since we will need to re-establish this set every time we switch to a di↵erent
page table, and it is always safe to reduce the safe set, we not only remove the
kernel window encoding in the current page table, but also that of of all other
page tables the kernel might switch to and call this set kernel_safe.

Since we fixed the global mappings in mmu_layout, we can give a short,
closed form of translation for addresses in kernel_safe: k_phy_ad vp = Addr vp -

offset. With these, we can formulate a theorem for assignments in kernel mode
that do not touch any of the virtual memory data structures, i.e. when the write
does not take place in any of the addresses covered by kernel_data.

Theorem 4 If the mmu_layout invariants hold, we are in kernel mode, and we
are performing a write in the kernel safe set that does not touch any MMU-
relevant data structures, then the mmu_layout invariants are preserved and the
e↵ect is a simple heap update with known constant address translation.

{|�s. mmu_layout s ^ mode s = Kernel ^ safe_set (kernel_safe s) s ^
asids_consistent s ^ [[lval]] s = bvpc ^ [[rval]] s = bvc ^
Addr vp 2 kernel_safe s ^ k_phy_ad vp /2 kernel_data_area s|}

lval ::= rval
{|�s. mmu_layout s ^ mode s = Kernel ^ safe_set (kernel_safe s) s ^

asids_consistent s ^ heap s (k_phy_ad vp) = bvc|}

Proof. See lemma kernel_safe_assignemnt in [18].

This lemma covers kernel code that is uninteresting for the purposes of the
MMU and TLB, which is the majority of code in a normal kernel. The Isabelle
theories [18] also contain examples for page table modifications. The main dif-
ference to this theorem is that, while the write still happens in the safe set, and
the safe set is preserved, there are now inconsistent addresses that need to be
flushed before we return to user mode. These could be for the active page table,
but also for an inactive page table, where the need for flushing is observed in
the asids_consistent invariant.

6.3 Context Switch

We have so far shown reduction theorems for simpler reasoning when nothing
interesting happens to the TLB. This section is the opposite: context switching.

14

a page fault handler, the logic can be extended to take this conditional execution
into account, for instance using an exception mechanism or a conditional jump.
In that case, the condition that addresses are mapped can be dropped, and we
arrive at a standard Hoare logic assignment rule.

6.2 Kernel Execution

User execution boils down to standard reasoning. We can show that kernel exe-
cution without virtual memory modifications do as well.

As mentioned in Sect. 5, the safe set for kernel execution is the entire kernel
window, i.e. the virtual addresses that are mapped by the global mappings,
minus the addresses of the page table entries that encode these global mappings.
Since we will need to re-establish this set every time we switch to a di↵erent
page table, and it is always safe to reduce the safe set, we not only remove the
kernel window encoding in the current page table, but also that of of all other
page tables the kernel might switch to and call this set kernel_safe.

Since we fixed the global mappings in mmu_layout, we can give a short,
closed form of translation for addresses in kernel_safe: k_phy_ad vp = Addr vp -

offset. With these, we can formulate a theorem for assignments in kernel mode
that do not touch any of the virtual memory data structures, i.e. when the write
does not take place in any of the addresses covered by kernel_data.

Theorem 4 If the mmu_layout invariants hold, we are in kernel mode, and we
are performing a write in the kernel safe set that does not touch any MMU-
relevant data structures, then the mmu_layout invariants are preserved and the
e↵ect is a simple heap update with known constant address translation.

{|�s. mmu_layout s ^ mode s = Kernel ^ safe_set (kernel_safe s) s ^
asids_consistent s ^ [[lval]] s = bvpc ^ [[rval]] s = bvc ^
Addr vp 2 kernel_safe s ^ k_phy_ad vp /2 kernel_data_area s|}

lval ::= rval
{|�s. mmu_layout s ^ mode s = Kernel ^ safe_set (kernel_safe s) s ^

asids_consistent s ^ heap s (k_phy_ad vp) = bvc|}

Proof. See lemma kernel_safe_assignemnt in [18].

This lemma covers kernel code that is uninteresting for the purposes of the
MMU and TLB, which is the majority of code in a normal kernel. The Isabelle
theories [18] also contain examples for page table modifications. The main dif-
ference to this theorem is that, while the write still happens in the safe set, and
the safe set is preserved, there are now inconsistent addresses that need to be
flushed before we return to user mode. These could be for the active page table,
but also for an inactive page table, where the need for flushing is observed in
the asids_consistent invariant.

6.3 Context Switch

We have so far shown reduction theorems for simpler reasoning when nothing
interesting happens to the TLB. This section is the opposite: context switching.

14

a page fault handler, the logic can be extended to take this conditional execution
into account, for instance using an exception mechanism or a conditional jump.
In that case, the condition that addresses are mapped can be dropped, and we
arrive at a standard Hoare logic assignment rule.

6.2 Kernel Execution

User execution boils down to standard reasoning. We can show that kernel exe-
cution without virtual memory modifications do as well.

As mentioned in Sect. 5, the safe set for kernel execution is the entire kernel
window, i.e. the virtual addresses that are mapped by the global mappings,
minus the addresses of the page table entries that encode these global mappings.
Since we will need to re-establish this set every time we switch to a di↵erent
page table, and it is always safe to reduce the safe set, we not only remove the
kernel window encoding in the current page table, but also that of of all other
page tables the kernel might switch to and call this set kernel_safe.

Since we fixed the global mappings in mmu_layout, we can give a short,
closed form of translation for addresses in kernel_safe: k_phy_ad vp = Addr vp -

offset. With these, we can formulate a theorem for assignments in kernel mode
that do not touch any of the virtual memory data structures, i.e. when the write
does not take place in any of the addresses covered by kernel_data.

Theorem 4 If the mmu_layout invariants hold, we are in kernel mode, and we
are performing a write in the kernel safe set that does not touch any MMU-
relevant data structures, then the mmu_layout invariants are preserved and the
e↵ect is a simple heap update with known constant address translation.

{|�s. mmu_layout s ^ mode s = Kernel ^ safe_set (kernel_safe s) s ^
asids_consistent s ^ [[lval]] s = bvpc ^ [[rval]] s = bvc ^
Addr vp 2 kernel_safe s ^ k_phy_ad vp /2 kernel_data_area s|}

lval ::= rval
{|�s. mmu_layout s ^ mode s = Kernel ^ safe_set (kernel_safe s) s ^

asids_consistent s ^ heap s (k_phy_ad vp) = bvc|}

Proof. See lemma kernel_safe_assignemnt in [18].

This lemma covers kernel code that is uninteresting for the purposes of the
MMU and TLB, which is the majority of code in a normal kernel. The Isabelle
theories [18] also contain examples for page table modifications. The main dif-
ference to this theorem is that, while the write still happens in the safe set, and
the safe set is preserved, there are now inconsistent addresses that need to be
flushed before we return to user mode. These could be for the active page table,
but also for an inactive page table, where the need for flushing is observed in
the asids_consistent invariant.

6.3 Context Switch

We have so far shown reduction theorems for simpler reasoning when nothing
interesting happens to the TLB. This section is the opposite: context switching.

14

a page fault handler, the logic can be extended to take this conditional execution
into account, for instance using an exception mechanism or a conditional jump.
In that case, the condition that addresses are mapped can be dropped, and we
arrive at a standard Hoare logic assignment rule.

6.2 Kernel Execution

User execution boils down to standard reasoning. We can show that kernel exe-
cution without virtual memory modifications do as well.

As mentioned in Sect. 5, the safe set for kernel execution is the entire kernel
window, i.e. the virtual addresses that are mapped by the global mappings,
minus the addresses of the page table entries that encode these global mappings.
Since we will need to re-establish this set every time we switch to a di↵erent
page table, and it is always safe to reduce the safe set, we not only remove the
kernel window encoding in the current page table, but also that of of all other
page tables the kernel might switch to and call this set kernel_safe.

Since we fixed the global mappings in mmu_layout, we can give a short,
closed form of translation for addresses in kernel_safe: k_phy_ad vp = Addr vp -

offset. With these, we can formulate a theorem for assignments in kernel mode
that do not touch any of the virtual memory data structures, i.e. when the write
does not take place in any of the addresses covered by kernel_data.

Theorem 4 If the mmu_layout invariants hold, we are in kernel mode, and we
are performing a write in the kernel safe set that does not touch any MMU-
relevant data structures, then the mmu_layout invariants are preserved and the
e↵ect is a simple heap update with known constant address translation.

{|�s. mmu_layout s ^ mode s = Kernel ^ safe_set (kernel_safe s) s ^
asids_consistent s ^ [[lval]] s = bvpc ^ [[rval]] s = bvc ^
Addr vp 2 kernel_safe s ^ k_phy_ad vp /2 kernel_data_area s|}

lval ::= rval
{|�s. mmu_layout s ^ mode s = Kernel ^ safe_set (kernel_safe s) s ^

asids_consistent s ^ heap s (k_phy_ad vp) = bvc|}

Proof. See lemma kernel_safe_assignemnt in [18].

This lemma covers kernel code that is uninteresting for the purposes of the
MMU and TLB, which is the majority of code in a normal kernel. The Isabelle
theories [18] also contain examples for page table modifications. The main dif-
ference to this theorem is that, while the write still happens in the safe set, and
the safe set is preserved, there are now inconsistent addresses that need to be
flushed before we return to user mode. These could be for the active page table,
but also for an inactive page table, where the need for flushing is observed in
the asids_consistent invariant.

6.3 Context Switch

We have so far shown reduction theorems for simpler reasoning when nothing
interesting happens to the TLB. This section is the opposite: context switching.

14

a page fault handler, the logic can be extended to take this conditional execution
into account, for instance using an exception mechanism or a conditional jump.
In that case, the condition that addresses are mapped can be dropped, and we
arrive at a standard Hoare logic assignment rule.

6.2 Kernel Execution

User execution boils down to standard reasoning. We can show that kernel exe-
cution without virtual memory modifications do as well.

As mentioned in Sect. 5, the safe set for kernel execution is the entire kernel
window, i.e. the virtual addresses that are mapped by the global mappings,
minus the addresses of the page table entries that encode these global mappings.
Since we will need to re-establish this set every time we switch to a di↵erent
page table, and it is always safe to reduce the safe set, we not only remove the
kernel window encoding in the current page table, but also that of of all other
page tables the kernel might switch to and call this set kernel_safe.

Since we fixed the global mappings in mmu_layout, we can give a short,
closed form of translation for addresses in kernel_safe: k_phy_ad vp = Addr vp -

offset. With these, we can formulate a theorem for assignments in kernel mode
that do not touch any of the virtual memory data structures, i.e. when the write
does not take place in any of the addresses covered by kernel_data.

Theorem 4 If the mmu_layout invariants hold, we are in kernel mode, and we
are performing a write in the kernel safe set that does not touch any MMU-
relevant data structures, then the mmu_layout invariants are preserved and the
e↵ect is a simple heap update with known constant address translation.

{|�s. mmu_layout s ^ mode s = Kernel ^ safe_set (kernel_safe s) s ^
asids_consistent s ^ [[lval]] s = bvpc ^ [[rval]] s = bvc ^
Addr vp 2 kernel_safe s ^ k_phy_ad vp /2 kernel_data_area s|}

lval ::= rval
{|�s. mmu_layout s ^ mode s = Kernel ^ safe_set (kernel_safe s) s ^

asids_consistent s ^ heap s (k_phy_ad vp) = bvc|}

Proof. See lemma kernel_safe_assignemnt in [18].

This lemma covers kernel code that is uninteresting for the purposes of the
MMU and TLB, which is the majority of code in a normal kernel. The Isabelle
theories [18] also contain examples for page table modifications. The main dif-
ference to this theorem is that, while the write still happens in the safe set, and
the safe set is preserved, there are now inconsistent addresses that need to be
flushed before we return to user mode. These could be for the active page table,
but also for an inactive page table, where the need for flushing is observed in
the asids_consistent invariant.

6.3 Context Switch

We have so far shown reduction theorems for simpler reasoning when nothing
interesting happens to the TLB. This section is the opposite: context switching.

14



       Program Verification in the Presence of TLB-Address Translation        Hira Syeda

a page fault handler, the logic can be extended to take this conditional execution
into account, for instance using an exception mechanism or a conditional jump.
In that case, the condition that addresses are mapped can be dropped, and we
arrive at a standard Hoare logic assignment rule.

6.2 Kernel Execution

User execution boils down to standard reasoning. We can show that kernel exe-
cution without virtual memory modifications do as well.

As mentioned in Sect. 5, the safe set for kernel execution is the entire kernel
window, i.e. the virtual addresses that are mapped by the global mappings,
minus the addresses of the page table entries that encode these global mappings.
Since we will need to re-establish this set every time we switch to a di↵erent
page table, and it is always safe to reduce the safe set, we not only remove the
kernel window encoding in the current page table, but also that of of all other
page tables the kernel might switch to and call this set kernel_safe.

Since we fixed the global mappings in mmu_layout, we can give a short,
closed form of translation for addresses in kernel_safe: k_phy_ad vp = Addr vp -

offset. With these, we can formulate a theorem for assignments in kernel mode
that do not touch any of the virtual memory data structures, i.e. when the write
does not take place in any of the addresses covered by kernel_data.

Theorem 4 If the mmu_layout invariants hold, we are in kernel mode, and we
are performing a write in the kernel safe set that does not touch any MMU-
relevant data structures, then the mmu_layout invariants are preserved and the
e↵ect is a simple heap update with known constant address translation.

{|�s. mmu_layout s ^ mode s = Kernel ^ safe_set (kernel_safe s) s ^
asids_consistent s ^ [[lval]] s = bvpc ^ [[rval]] s = bvc ^
Addr vp 2 kernel_safe s ^ k_phy_ad vp /2 kernel_data_area s|}

lval ::= rval
{|�s. mmu_layout s ^ mode s = Kernel ^ safe_set (kernel_safe s) s ^

asids_consistent s ^ heap s (k_phy_ad vp) = bvc|}

Proof. See lemma kernel_safe_assignemnt in [18].

This lemma covers kernel code that is uninteresting for the purposes of the
MMU and TLB, which is the majority of code in a normal kernel. The Isabelle
theories [18] also contain examples for page table modifications. The main dif-
ference to this theorem is that, while the write still happens in the safe set, and
the safe set is preserved, there are now inconsistent addresses that need to be
flushed before we return to user mode. These could be for the active page table,
but also for an inactive page table, where the need for flushing is observed in
the asids_consistent invariant.

6.3 Context Switch

We have so far shown reduction theorems for simpler reasoning when nothing
interesting happens to the TLB. This section is the opposite: context switching.

14

- Kernel-level assignment
- that doesn't modify page table

29

Reduction Theorems  

a page fault handler, the logic can be extended to take this conditional execution
into account, for instance using an exception mechanism or a conditional jump.
In that case, the condition that addresses are mapped can be dropped, and we
arrive at a standard Hoare logic assignment rule.

6.2 Kernel Execution

User execution boils down to standard reasoning. We can show that kernel exe-
cution without virtual memory modifications do as well.

As mentioned in Sect. 5, the safe set for kernel execution is the entire kernel
window, i.e. the virtual addresses that are mapped by the global mappings,
minus the addresses of the page table entries that encode these global mappings.
Since we will need to re-establish this set every time we switch to a di↵erent
page table, and it is always safe to reduce the safe set, we not only remove the
kernel window encoding in the current page table, but also that of of all other
page tables the kernel might switch to and call this set kernel_safe.

Since we fixed the global mappings in mmu_layout, we can give a short,
closed form of translation for addresses in kernel_safe: k_phy_ad vp = Addr vp -

offset. With these, we can formulate a theorem for assignments in kernel mode
that do not touch any of the virtual memory data structures, i.e. when the write
does not take place in any of the addresses covered by kernel_data.

Theorem 4 If the mmu_layout invariants hold, we are in kernel mode, and we
are performing a write in the kernel safe set that does not touch any MMU-
relevant data structures, then the mmu_layout invariants are preserved and the
e↵ect is a simple heap update with known constant address translation.

{|�s. mmu_layout s ^ mode s = Kernel ^ safe_set (kernel_safe s) s ^
asids_consistent s ^ [[lval]] s = bvpc ^ [[rval]] s = bvc ^
Addr vp 2 kernel_safe s ^ k_phy_ad vp /2 kernel_data_area s|}

lval ::= rval
{|�s. mmu_layout s ^ mode s = Kernel ^ safe_set (kernel_safe s) s ^

asids_consistent s ^ heap s (k_phy_ad vp) = bvc|}

Proof. See lemma kernel_safe_assignemnt in [18].

This lemma covers kernel code that is uninteresting for the purposes of the
MMU and TLB, which is the majority of code in a normal kernel. The Isabelle
theories [18] also contain examples for page table modifications. The main dif-
ference to this theorem is that, while the write still happens in the safe set, and
the safe set is preserved, there are now inconsistent addresses that need to be
flushed before we return to user mode. These could be for the active page table,
but also for an inactive page table, where the need for flushing is observed in
the asids_consistent invariant.

6.3 Context Switch

We have so far shown reduction theorems for simpler reasoning when nothing
interesting happens to the TLB. This section is the opposite: context switching.

14

a page fault handler, the logic can be extended to take this conditional execution
into account, for instance using an exception mechanism or a conditional jump.
In that case, the condition that addresses are mapped can be dropped, and we
arrive at a standard Hoare logic assignment rule.

6.2 Kernel Execution

User execution boils down to standard reasoning. We can show that kernel exe-
cution without virtual memory modifications do as well.

As mentioned in Sect. 5, the safe set for kernel execution is the entire kernel
window, i.e. the virtual addresses that are mapped by the global mappings,
minus the addresses of the page table entries that encode these global mappings.
Since we will need to re-establish this set every time we switch to a di↵erent
page table, and it is always safe to reduce the safe set, we not only remove the
kernel window encoding in the current page table, but also that of of all other
page tables the kernel might switch to and call this set kernel_safe.

Since we fixed the global mappings in mmu_layout, we can give a short,
closed form of translation for addresses in kernel_safe: k_phy_ad vp = Addr vp -

offset. With these, we can formulate a theorem for assignments in kernel mode
that do not touch any of the virtual memory data structures, i.e. when the write
does not take place in any of the addresses covered by kernel_data.

Theorem 4 If the mmu_layout invariants hold, we are in kernel mode, and we
are performing a write in the kernel safe set that does not touch any MMU-
relevant data structures, then the mmu_layout invariants are preserved and the
e↵ect is a simple heap update with known constant address translation.

{|�s. mmu_layout s ^ mode s = Kernel ^ safe_set (kernel_safe s) s ^
asids_consistent s ^ [[lval]] s = bvpc ^ [[rval]] s = bvc ^
Addr vp 2 kernel_safe s ^ k_phy_ad vp /2 kernel_data_area s|}

lval ::= rval
{|�s. mmu_layout s ^ mode s = Kernel ^ safe_set (kernel_safe s) s ^

asids_consistent s ^ heap s (k_phy_ad vp) = bvc|}

Proof. See lemma kernel_safe_assignemnt in [18].

This lemma covers kernel code that is uninteresting for the purposes of the
MMU and TLB, which is the majority of code in a normal kernel. The Isabelle
theories [18] also contain examples for page table modifications. The main dif-
ference to this theorem is that, while the write still happens in the safe set, and
the safe set is preserved, there are now inconsistent addresses that need to be
flushed before we return to user mode. These could be for the active page table,
but also for an inactive page table, where the need for flushing is observed in
the asids_consistent invariant.

6.3 Context Switch

We have so far shown reduction theorems for simpler reasoning when nothing
interesting happens to the TLB. This section is the opposite: context switching.

14

a page fault handler, the logic can be extended to take this conditional execution
into account, for instance using an exception mechanism or a conditional jump.
In that case, the condition that addresses are mapped can be dropped, and we
arrive at a standard Hoare logic assignment rule.

6.2 Kernel Execution

User execution boils down to standard reasoning. We can show that kernel exe-
cution without virtual memory modifications do as well.

As mentioned in Sect. 5, the safe set for kernel execution is the entire kernel
window, i.e. the virtual addresses that are mapped by the global mappings,
minus the addresses of the page table entries that encode these global mappings.
Since we will need to re-establish this set every time we switch to a di↵erent
page table, and it is always safe to reduce the safe set, we not only remove the
kernel window encoding in the current page table, but also that of of all other
page tables the kernel might switch to and call this set kernel_safe.

Since we fixed the global mappings in mmu_layout, we can give a short,
closed form of translation for addresses in kernel_safe: k_phy_ad vp = Addr vp -

offset. With these, we can formulate a theorem for assignments in kernel mode
that do not touch any of the virtual memory data structures, i.e. when the write
does not take place in any of the addresses covered by kernel_data.

Theorem 4 If the mmu_layout invariants hold, we are in kernel mode, and we
are performing a write in the kernel safe set that does not touch any MMU-
relevant data structures, then the mmu_layout invariants are preserved and the
e↵ect is a simple heap update with known constant address translation.

{|�s. mmu_layout s ^ mode s = Kernel ^ safe_set (kernel_safe s) s ^
asids_consistent s ^ [[lval]] s = bvpc ^ [[rval]] s = bvc ^
Addr vp 2 kernel_safe s ^ k_phy_ad vp /2 kernel_data_area s|}

lval ::= rval
{|�s. mmu_layout s ^ mode s = Kernel ^ safe_set (kernel_safe s) s ^

asids_consistent s ^ heap s (k_phy_ad vp) = bvc|}

Proof. See lemma kernel_safe_assignemnt in [18].

This lemma covers kernel code that is uninteresting for the purposes of the
MMU and TLB, which is the majority of code in a normal kernel. The Isabelle
theories [18] also contain examples for page table modifications. The main dif-
ference to this theorem is that, while the write still happens in the safe set, and
the safe set is preserved, there are now inconsistent addresses that need to be
flushed before we return to user mode. These could be for the active page table,
but also for an inactive page table, where the need for flushing is observed in
the asids_consistent invariant.

6.3 Context Switch

We have so far shown reduction theorems for simpler reasoning when nothing
interesting happens to the TLB. This section is the opposite: context switching.

14

a page fault handler, the logic can be extended to take this conditional execution
into account, for instance using an exception mechanism or a conditional jump.
In that case, the condition that addresses are mapped can be dropped, and we
arrive at a standard Hoare logic assignment rule.

6.2 Kernel Execution

User execution boils down to standard reasoning. We can show that kernel exe-
cution without virtual memory modifications do as well.

As mentioned in Sect. 5, the safe set for kernel execution is the entire kernel
window, i.e. the virtual addresses that are mapped by the global mappings,
minus the addresses of the page table entries that encode these global mappings.
Since we will need to re-establish this set every time we switch to a di↵erent
page table, and it is always safe to reduce the safe set, we not only remove the
kernel window encoding in the current page table, but also that of of all other
page tables the kernel might switch to and call this set kernel_safe.

Since we fixed the global mappings in mmu_layout, we can give a short,
closed form of translation for addresses in kernel_safe: k_phy_ad vp = Addr vp -

offset. With these, we can formulate a theorem for assignments in kernel mode
that do not touch any of the virtual memory data structures, i.e. when the write
does not take place in any of the addresses covered by kernel_data.

Theorem 4 If the mmu_layout invariants hold, we are in kernel mode, and we
are performing a write in the kernel safe set that does not touch any MMU-
relevant data structures, then the mmu_layout invariants are preserved and the
e↵ect is a simple heap update with known constant address translation.

{|�s. mmu_layout s ^ mode s = Kernel ^ safe_set (kernel_safe s) s ^
asids_consistent s ^ [[lval]] s = bvpc ^ [[rval]] s = bvc ^
Addr vp 2 kernel_safe s ^ k_phy_ad vp /2 kernel_data_area s|}

lval ::= rval
{|�s. mmu_layout s ^ mode s = Kernel ^ safe_set (kernel_safe s) s ^

asids_consistent s ^ heap s (k_phy_ad vp) = bvc|}

Proof. See lemma kernel_safe_assignemnt in [18].

This lemma covers kernel code that is uninteresting for the purposes of the
MMU and TLB, which is the majority of code in a normal kernel. The Isabelle
theories [18] also contain examples for page table modifications. The main dif-
ference to this theorem is that, while the write still happens in the safe set, and
the safe set is preserved, there are now inconsistent addresses that need to be
flushed before we return to user mode. These could be for the active page table,
but also for an inactive page table, where the need for flushing is observed in
the asids_consistent invariant.

6.3 Context Switch

We have so far shown reduction theorems for simpler reasoning when nothing
interesting happens to the TLB. This section is the opposite: context switching.

14

a page fault handler, the logic can be extended to take this conditional execution
into account, for instance using an exception mechanism or a conditional jump.
In that case, the condition that addresses are mapped can be dropped, and we
arrive at a standard Hoare logic assignment rule.

6.2 Kernel Execution

User execution boils down to standard reasoning. We can show that kernel exe-
cution without virtual memory modifications do as well.

As mentioned in Sect. 5, the safe set for kernel execution is the entire kernel
window, i.e. the virtual addresses that are mapped by the global mappings,
minus the addresses of the page table entries that encode these global mappings.
Since we will need to re-establish this set every time we switch to a di↵erent
page table, and it is always safe to reduce the safe set, we not only remove the
kernel window encoding in the current page table, but also that of of all other
page tables the kernel might switch to and call this set kernel_safe.

Since we fixed the global mappings in mmu_layout, we can give a short,
closed form of translation for addresses in kernel_safe: k_phy_ad vp = Addr vp -

offset. With these, we can formulate a theorem for assignments in kernel mode
that do not touch any of the virtual memory data structures, i.e. when the write
does not take place in any of the addresses covered by kernel_data.

Theorem 4 If the mmu_layout invariants hold, we are in kernel mode, and we
are performing a write in the kernel safe set that does not touch any MMU-
relevant data structures, then the mmu_layout invariants are preserved and the
e↵ect is a simple heap update with known constant address translation.

{|�s. mmu_layout s ^ mode s = Kernel ^ safe_set (kernel_safe s) s ^
asids_consistent s ^ [[lval]] s = bvpc ^ [[rval]] s = bvc ^
Addr vp 2 kernel_safe s ^ k_phy_ad vp /2 kernel_data_area s|}

lval ::= rval
{|�s. mmu_layout s ^ mode s = Kernel ^ safe_set (kernel_safe s) s ^

asids_consistent s ^ heap s (k_phy_ad vp) = bvc|}

Proof. See lemma kernel_safe_assignemnt in [18].

This lemma covers kernel code that is uninteresting for the purposes of the
MMU and TLB, which is the majority of code in a normal kernel. The Isabelle
theories [18] also contain examples for page table modifications. The main dif-
ference to this theorem is that, while the write still happens in the safe set, and
the safe set is preserved, there are now inconsistent addresses that need to be
flushed before we return to user mode. These could be for the active page table,
but also for an inactive page table, where the need for flushing is observed in
the asids_consistent invariant.

6.3 Context Switch

We have so far shown reduction theorems for simpler reasoning when nothing
interesting happens to the TLB. This section is the opposite: context switching.

14

a page fault handler, the logic can be extended to take this conditional execution
into account, for instance using an exception mechanism or a conditional jump.
In that case, the condition that addresses are mapped can be dropped, and we
arrive at a standard Hoare logic assignment rule.

6.2 Kernel Execution

User execution boils down to standard reasoning. We can show that kernel exe-
cution without virtual memory modifications do as well.

As mentioned in Sect. 5, the safe set for kernel execution is the entire kernel
window, i.e. the virtual addresses that are mapped by the global mappings,
minus the addresses of the page table entries that encode these global mappings.
Since we will need to re-establish this set every time we switch to a di↵erent
page table, and it is always safe to reduce the safe set, we not only remove the
kernel window encoding in the current page table, but also that of of all other
page tables the kernel might switch to and call this set kernel_safe.

Since we fixed the global mappings in mmu_layout, we can give a short,
closed form of translation for addresses in kernel_safe: k_phy_ad vp = Addr vp -

offset. With these, we can formulate a theorem for assignments in kernel mode
that do not touch any of the virtual memory data structures, i.e. when the write
does not take place in any of the addresses covered by kernel_data.

Theorem 4 If the mmu_layout invariants hold, we are in kernel mode, and we
are performing a write in the kernel safe set that does not touch any MMU-
relevant data structures, then the mmu_layout invariants are preserved and the
e↵ect is a simple heap update with known constant address translation.

{|�s. mmu_layout s ^ mode s = Kernel ^ safe_set (kernel_safe s) s ^
asids_consistent s ^ [[lval]] s = bvpc ^ [[rval]] s = bvc ^
Addr vp 2 kernel_safe s ^ k_phy_ad vp /2 kernel_data_area s|}

lval ::= rval
{|�s. mmu_layout s ^ mode s = Kernel ^ safe_set (kernel_safe s) s ^

asids_consistent s ^ heap s (k_phy_ad vp) = bvc|}

Proof. See lemma kernel_safe_assignemnt in [18].

This lemma covers kernel code that is uninteresting for the purposes of the
MMU and TLB, which is the majority of code in a normal kernel. The Isabelle
theories [18] also contain examples for page table modifications. The main dif-
ference to this theorem is that, while the write still happens in the safe set, and
the safe set is preserved, there are now inconsistent addresses that need to be
flushed before we return to user mode. These could be for the active page table,
but also for an inactive page table, where the need for flushing is observed in
the asids_consistent invariant.

6.3 Context Switch

We have so far shown reduction theorems for simpler reasoning when nothing
interesting happens to the TLB. This section is the opposite: context switching.

14

a page fault handler, the logic can be extended to take this conditional execution
into account, for instance using an exception mechanism or a conditional jump.
In that case, the condition that addresses are mapped can be dropped, and we
arrive at a standard Hoare logic assignment rule.

6.2 Kernel Execution

User execution boils down to standard reasoning. We can show that kernel exe-
cution without virtual memory modifications do as well.

As mentioned in Sect. 5, the safe set for kernel execution is the entire kernel
window, i.e. the virtual addresses that are mapped by the global mappings,
minus the addresses of the page table entries that encode these global mappings.
Since we will need to re-establish this set every time we switch to a di↵erent
page table, and it is always safe to reduce the safe set, we not only remove the
kernel window encoding in the current page table, but also that of of all other
page tables the kernel might switch to and call this set kernel_safe.

Since we fixed the global mappings in mmu_layout, we can give a short,
closed form of translation for addresses in kernel_safe: k_phy_ad vp = Addr vp -

offset. With these, we can formulate a theorem for assignments in kernel mode
that do not touch any of the virtual memory data structures, i.e. when the write
does not take place in any of the addresses covered by kernel_data.

Theorem 4 If the mmu_layout invariants hold, we are in kernel mode, and we
are performing a write in the kernel safe set that does not touch any MMU-
relevant data structures, then the mmu_layout invariants are preserved and the
e↵ect is a simple heap update with known constant address translation.

{|�s. mmu_layout s ^ mode s = Kernel ^ safe_set (kernel_safe s) s ^
asids_consistent s ^ [[lval]] s = bvpc ^ [[rval]] s = bvc ^
Addr vp 2 kernel_safe s ^ k_phy_ad vp /2 kernel_data_area s|}

lval ::= rval
{|�s. mmu_layout s ^ mode s = Kernel ^ safe_set (kernel_safe s) s ^

asids_consistent s ^ heap s (k_phy_ad vp) = bvc|}

Proof. See lemma kernel_safe_assignemnt in [18].

This lemma covers kernel code that is uninteresting for the purposes of the
MMU and TLB, which is the majority of code in a normal kernel. The Isabelle
theories [18] also contain examples for page table modifications. The main dif-
ference to this theorem is that, while the write still happens in the safe set, and
the safe set is preserved, there are now inconsistent addresses that need to be
flushed before we return to user mode. These could be for the active page table,
but also for an inactive page table, where the need for flushing is observed in
the asids_consistent invariant.

6.3 Context Switch

We have so far shown reduction theorems for simpler reasoning when nothing
interesting happens to the TLB. This section is the opposite: context switching.

14

a page fault handler, the logic can be extended to take this conditional execution
into account, for instance using an exception mechanism or a conditional jump.
In that case, the condition that addresses are mapped can be dropped, and we
arrive at a standard Hoare logic assignment rule.

6.2 Kernel Execution

User execution boils down to standard reasoning. We can show that kernel exe-
cution without virtual memory modifications do as well.

As mentioned in Sect. 5, the safe set for kernel execution is the entire kernel
window, i.e. the virtual addresses that are mapped by the global mappings,
minus the addresses of the page table entries that encode these global mappings.
Since we will need to re-establish this set every time we switch to a di↵erent
page table, and it is always safe to reduce the safe set, we not only remove the
kernel window encoding in the current page table, but also that of of all other
page tables the kernel might switch to and call this set kernel_safe.

Since we fixed the global mappings in mmu_layout, we can give a short,
closed form of translation for addresses in kernel_safe: k_phy_ad vp = Addr vp -

offset. With these, we can formulate a theorem for assignments in kernel mode
that do not touch any of the virtual memory data structures, i.e. when the write
does not take place in any of the addresses covered by kernel_data.

Theorem 4 If the mmu_layout invariants hold, we are in kernel mode, and we
are performing a write in the kernel safe set that does not touch any MMU-
relevant data structures, then the mmu_layout invariants are preserved and the
e↵ect is a simple heap update with known constant address translation.

{|�s. mmu_layout s ^ mode s = Kernel ^ safe_set (kernel_safe s) s ^
asids_consistent s ^ [[lval]] s = bvpc ^ [[rval]] s = bvc ^
Addr vp 2 kernel_safe s ^ k_phy_ad vp /2 kernel_data_area s|}

lval ::= rval
{|�s. mmu_layout s ^ mode s = Kernel ^ safe_set (kernel_safe s) s ^

asids_consistent s ^ heap s (k_phy_ad vp) = bvc|}

Proof. See lemma kernel_safe_assignemnt in [18].

This lemma covers kernel code that is uninteresting for the purposes of the
MMU and TLB, which is the majority of code in a normal kernel. The Isabelle
theories [18] also contain examples for page table modifications. The main dif-
ference to this theorem is that, while the write still happens in the safe set, and
the safe set is preserved, there are now inconsistent addresses that need to be
flushed before we return to user mode. These could be for the active page table,
but also for an inactive page table, where the need for flushing is observed in
the asids_consistent invariant.

6.3 Context Switch

We have so far shown reduction theorems for simpler reasoning when nothing
interesting happens to the TLB. This section is the opposite: context switching.

14



       Program Verification in the Presence of TLB-Address Translation        Hira Syeda

a page fault handler, the logic can be extended to take this conditional execution
into account, for instance using an exception mechanism or a conditional jump.
In that case, the condition that addresses are mapped can be dropped, and we
arrive at a standard Hoare logic assignment rule.

6.2 Kernel Execution

User execution boils down to standard reasoning. We can show that kernel exe-
cution without virtual memory modifications do as well.

As mentioned in Sect. 5, the safe set for kernel execution is the entire kernel
window, i.e. the virtual addresses that are mapped by the global mappings,
minus the addresses of the page table entries that encode these global mappings.
Since we will need to re-establish this set every time we switch to a di↵erent
page table, and it is always safe to reduce the safe set, we not only remove the
kernel window encoding in the current page table, but also that of of all other
page tables the kernel might switch to and call this set kernel_safe.

Since we fixed the global mappings in mmu_layout, we can give a short,
closed form of translation for addresses in kernel_safe: k_phy_ad vp = Addr vp -

offset. With these, we can formulate a theorem for assignments in kernel mode
that do not touch any of the virtual memory data structures, i.e. when the write
does not take place in any of the addresses covered by kernel_data.

Theorem 4 If the mmu_layout invariants hold, we are in kernel mode, and we
are performing a write in the kernel safe set that does not touch any MMU-
relevant data structures, then the mmu_layout invariants are preserved and the
e↵ect is a simple heap update with known constant address translation.

{|�s. mmu_layout s ^ mode s = Kernel ^ safe_set (kernel_safe s) s ^
asids_consistent s ^ [[lval]] s = bvpc ^ [[rval]] s = bvc ^
Addr vp 2 kernel_safe s ^ k_phy_ad vp /2 kernel_data_area s|}

lval ::= rval
{|�s. mmu_layout s ^ mode s = Kernel ^ safe_set (kernel_safe s) s ^

asids_consistent s ^ heap s (k_phy_ad vp) = bvc|}

Proof. See lemma kernel_safe_assignemnt in [18].

This lemma covers kernel code that is uninteresting for the purposes of the
MMU and TLB, which is the majority of code in a normal kernel. The Isabelle
theories [18] also contain examples for page table modifications. The main dif-
ference to this theorem is that, while the write still happens in the safe set, and
the safe set is preserved, there are now inconsistent addresses that need to be
flushed before we return to user mode. These could be for the active page table,
but also for an inactive page table, where the need for flushing is observed in
the asids_consistent invariant.

6.3 Context Switch

We have so far shown reduction theorems for simpler reasoning when nothing
interesting happens to the TLB. This section is the opposite: context switching.

14

- Kernel-level assignment
- that doesn't modify page table

29

Reduction Theorems  

a page fault handler, the logic can be extended to take this conditional execution
into account, for instance using an exception mechanism or a conditional jump.
In that case, the condition that addresses are mapped can be dropped, and we
arrive at a standard Hoare logic assignment rule.

6.2 Kernel Execution

User execution boils down to standard reasoning. We can show that kernel exe-
cution without virtual memory modifications do as well.

As mentioned in Sect. 5, the safe set for kernel execution is the entire kernel
window, i.e. the virtual addresses that are mapped by the global mappings,
minus the addresses of the page table entries that encode these global mappings.
Since we will need to re-establish this set every time we switch to a di↵erent
page table, and it is always safe to reduce the safe set, we not only remove the
kernel window encoding in the current page table, but also that of of all other
page tables the kernel might switch to and call this set kernel_safe.

Since we fixed the global mappings in mmu_layout, we can give a short,
closed form of translation for addresses in kernel_safe: k_phy_ad vp = Addr vp -

offset. With these, we can formulate a theorem for assignments in kernel mode
that do not touch any of the virtual memory data structures, i.e. when the write
does not take place in any of the addresses covered by kernel_data.

Theorem 4 If the mmu_layout invariants hold, we are in kernel mode, and we
are performing a write in the kernel safe set that does not touch any MMU-
relevant data structures, then the mmu_layout invariants are preserved and the
e↵ect is a simple heap update with known constant address translation.

{|�s. mmu_layout s ^ mode s = Kernel ^ safe_set (kernel_safe s) s ^
asids_consistent s ^ [[lval]] s = bvpc ^ [[rval]] s = bvc ^
Addr vp 2 kernel_safe s ^ k_phy_ad vp /2 kernel_data_area s|}

lval ::= rval
{|�s. mmu_layout s ^ mode s = Kernel ^ safe_set (kernel_safe s) s ^

asids_consistent s ^ heap s (k_phy_ad vp) = bvc|}

Proof. See lemma kernel_safe_assignemnt in [18].

This lemma covers kernel code that is uninteresting for the purposes of the
MMU and TLB, which is the majority of code in a normal kernel. The Isabelle
theories [18] also contain examples for page table modifications. The main dif-
ference to this theorem is that, while the write still happens in the safe set, and
the safe set is preserved, there are now inconsistent addresses that need to be
flushed before we return to user mode. These could be for the active page table,
but also for an inactive page table, where the need for flushing is observed in
the asids_consistent invariant.

6.3 Context Switch

We have so far shown reduction theorems for simpler reasoning when nothing
interesting happens to the TLB. This section is the opposite: context switching.

14

a page fault handler, the logic can be extended to take this conditional execution
into account, for instance using an exception mechanism or a conditional jump.
In that case, the condition that addresses are mapped can be dropped, and we
arrive at a standard Hoare logic assignment rule.

6.2 Kernel Execution

User execution boils down to standard reasoning. We can show that kernel exe-
cution without virtual memory modifications do as well.

As mentioned in Sect. 5, the safe set for kernel execution is the entire kernel
window, i.e. the virtual addresses that are mapped by the global mappings,
minus the addresses of the page table entries that encode these global mappings.
Since we will need to re-establish this set every time we switch to a di↵erent
page table, and it is always safe to reduce the safe set, we not only remove the
kernel window encoding in the current page table, but also that of of all other
page tables the kernel might switch to and call this set kernel_safe.

Since we fixed the global mappings in mmu_layout, we can give a short,
closed form of translation for addresses in kernel_safe: k_phy_ad vp = Addr vp -

offset. With these, we can formulate a theorem for assignments in kernel mode
that do not touch any of the virtual memory data structures, i.e. when the write
does not take place in any of the addresses covered by kernel_data.

Theorem 4 If the mmu_layout invariants hold, we are in kernel mode, and we
are performing a write in the kernel safe set that does not touch any MMU-
relevant data structures, then the mmu_layout invariants are preserved and the
e↵ect is a simple heap update with known constant address translation.

{|�s. mmu_layout s ^ mode s = Kernel ^ safe_set (kernel_safe s) s ^
asids_consistent s ^ [[lval]] s = bvpc ^ [[rval]] s = bvc ^
Addr vp 2 kernel_safe s ^ k_phy_ad vp /2 kernel_data_area s|}

lval ::= rval
{|�s. mmu_layout s ^ mode s = Kernel ^ safe_set (kernel_safe s) s ^

asids_consistent s ^ heap s (k_phy_ad vp) = bvc|}

Proof. See lemma kernel_safe_assignemnt in [18].

This lemma covers kernel code that is uninteresting for the purposes of the
MMU and TLB, which is the majority of code in a normal kernel. The Isabelle
theories [18] also contain examples for page table modifications. The main dif-
ference to this theorem is that, while the write still happens in the safe set, and
the safe set is preserved, there are now inconsistent addresses that need to be
flushed before we return to user mode. These could be for the active page table,
but also for an inactive page table, where the need for flushing is observed in
the asids_consistent invariant.

6.3 Context Switch

We have so far shown reduction theorems for simpler reasoning when nothing
interesting happens to the TLB. This section is the opposite: context switching.

14

a page fault handler, the logic can be extended to take this conditional execution
into account, for instance using an exception mechanism or a conditional jump.
In that case, the condition that addresses are mapped can be dropped, and we
arrive at a standard Hoare logic assignment rule.

6.2 Kernel Execution

User execution boils down to standard reasoning. We can show that kernel exe-
cution without virtual memory modifications do as well.

As mentioned in Sect. 5, the safe set for kernel execution is the entire kernel
window, i.e. the virtual addresses that are mapped by the global mappings,
minus the addresses of the page table entries that encode these global mappings.
Since we will need to re-establish this set every time we switch to a di↵erent
page table, and it is always safe to reduce the safe set, we not only remove the
kernel window encoding in the current page table, but also that of of all other
page tables the kernel might switch to and call this set kernel_safe.

Since we fixed the global mappings in mmu_layout, we can give a short,
closed form of translation for addresses in kernel_safe: k_phy_ad vp = Addr vp -

offset. With these, we can formulate a theorem for assignments in kernel mode
that do not touch any of the virtual memory data structures, i.e. when the write
does not take place in any of the addresses covered by kernel_data.

Theorem 4 If the mmu_layout invariants hold, we are in kernel mode, and we
are performing a write in the kernel safe set that does not touch any MMU-
relevant data structures, then the mmu_layout invariants are preserved and the
e↵ect is a simple heap update with known constant address translation.

{|�s. mmu_layout s ^ mode s = Kernel ^ safe_set (kernel_safe s) s ^
asids_consistent s ^ [[lval]] s = bvpc ^ [[rval]] s = bvc ^
Addr vp 2 kernel_safe s ^ k_phy_ad vp /2 kernel_data_area s|}

lval ::= rval
{|�s. mmu_layout s ^ mode s = Kernel ^ safe_set (kernel_safe s) s ^

asids_consistent s ^ heap s (k_phy_ad vp) = bvc|}

Proof. See lemma kernel_safe_assignemnt in [18].

This lemma covers kernel code that is uninteresting for the purposes of the
MMU and TLB, which is the majority of code in a normal kernel. The Isabelle
theories [18] also contain examples for page table modifications. The main dif-
ference to this theorem is that, while the write still happens in the safe set, and
the safe set is preserved, there are now inconsistent addresses that need to be
flushed before we return to user mode. These could be for the active page table,
but also for an inactive page table, where the need for flushing is observed in
the asids_consistent invariant.

6.3 Context Switch

We have so far shown reduction theorems for simpler reasoning when nothing
interesting happens to the TLB. This section is the opposite: context switching.

14

a page fault handler, the logic can be extended to take this conditional execution
into account, for instance using an exception mechanism or a conditional jump.
In that case, the condition that addresses are mapped can be dropped, and we
arrive at a standard Hoare logic assignment rule.

6.2 Kernel Execution

User execution boils down to standard reasoning. We can show that kernel exe-
cution without virtual memory modifications do as well.

As mentioned in Sect. 5, the safe set for kernel execution is the entire kernel
window, i.e. the virtual addresses that are mapped by the global mappings,
minus the addresses of the page table entries that encode these global mappings.
Since we will need to re-establish this set every time we switch to a di↵erent
page table, and it is always safe to reduce the safe set, we not only remove the
kernel window encoding in the current page table, but also that of of all other
page tables the kernel might switch to and call this set kernel_safe.

Since we fixed the global mappings in mmu_layout, we can give a short,
closed form of translation for addresses in kernel_safe: k_phy_ad vp = Addr vp -

offset. With these, we can formulate a theorem for assignments in kernel mode
that do not touch any of the virtual memory data structures, i.e. when the write
does not take place in any of the addresses covered by kernel_data.

Theorem 4 If the mmu_layout invariants hold, we are in kernel mode, and we
are performing a write in the kernel safe set that does not touch any MMU-
relevant data structures, then the mmu_layout invariants are preserved and the
e↵ect is a simple heap update with known constant address translation.

{|�s. mmu_layout s ^ mode s = Kernel ^ safe_set (kernel_safe s) s ^
asids_consistent s ^ [[lval]] s = bvpc ^ [[rval]] s = bvc ^
Addr vp 2 kernel_safe s ^ k_phy_ad vp /2 kernel_data_area s|}

lval ::= rval
{|�s. mmu_layout s ^ mode s = Kernel ^ safe_set (kernel_safe s) s ^

asids_consistent s ^ heap s (k_phy_ad vp) = bvc|}

Proof. See lemma kernel_safe_assignemnt in [18].

This lemma covers kernel code that is uninteresting for the purposes of the
MMU and TLB, which is the majority of code in a normal kernel. The Isabelle
theories [18] also contain examples for page table modifications. The main dif-
ference to this theorem is that, while the write still happens in the safe set, and
the safe set is preserved, there are now inconsistent addresses that need to be
flushed before we return to user mode. These could be for the active page table,
but also for an inactive page table, where the need for flushing is observed in
the asids_consistent invariant.

6.3 Context Switch

We have so far shown reduction theorems for simpler reasoning when nothing
interesting happens to the TLB. This section is the opposite: context switching.

14

a page fault handler, the logic can be extended to take this conditional execution
into account, for instance using an exception mechanism or a conditional jump.
In that case, the condition that addresses are mapped can be dropped, and we
arrive at a standard Hoare logic assignment rule.

6.2 Kernel Execution

User execution boils down to standard reasoning. We can show that kernel exe-
cution without virtual memory modifications do as well.

As mentioned in Sect. 5, the safe set for kernel execution is the entire kernel
window, i.e. the virtual addresses that are mapped by the global mappings,
minus the addresses of the page table entries that encode these global mappings.
Since we will need to re-establish this set every time we switch to a di↵erent
page table, and it is always safe to reduce the safe set, we not only remove the
kernel window encoding in the current page table, but also that of of all other
page tables the kernel might switch to and call this set kernel_safe.

Since we fixed the global mappings in mmu_layout, we can give a short,
closed form of translation for addresses in kernel_safe: k_phy_ad vp = Addr vp -

offset. With these, we can formulate a theorem for assignments in kernel mode
that do not touch any of the virtual memory data structures, i.e. when the write
does not take place in any of the addresses covered by kernel_data.

Theorem 4 If the mmu_layout invariants hold, we are in kernel mode, and we
are performing a write in the kernel safe set that does not touch any MMU-
relevant data structures, then the mmu_layout invariants are preserved and the
e↵ect is a simple heap update with known constant address translation.

{|�s. mmu_layout s ^ mode s = Kernel ^ safe_set (kernel_safe s) s ^
asids_consistent s ^ [[lval]] s = bvpc ^ [[rval]] s = bvc ^
Addr vp 2 kernel_safe s ^ k_phy_ad vp /2 kernel_data_area s|}

lval ::= rval
{|�s. mmu_layout s ^ mode s = Kernel ^ safe_set (kernel_safe s) s ^

asids_consistent s ^ heap s (k_phy_ad vp) = bvc|}

Proof. See lemma kernel_safe_assignemnt in [18].

This lemma covers kernel code that is uninteresting for the purposes of the
MMU and TLB, which is the majority of code in a normal kernel. The Isabelle
theories [18] also contain examples for page table modifications. The main dif-
ference to this theorem is that, while the write still happens in the safe set, and
the safe set is preserved, there are now inconsistent addresses that need to be
flushed before we return to user mode. These could be for the active page table,
but also for an inactive page table, where the need for flushing is observed in
the asids_consistent invariant.

6.3 Context Switch

We have so far shown reduction theorems for simpler reasoning when nothing
interesting happens to the TLB. This section is the opposite: context switching.

14

a page fault handler, the logic can be extended to take this conditional execution
into account, for instance using an exception mechanism or a conditional jump.
In that case, the condition that addresses are mapped can be dropped, and we
arrive at a standard Hoare logic assignment rule.

6.2 Kernel Execution

User execution boils down to standard reasoning. We can show that kernel exe-
cution without virtual memory modifications do as well.

As mentioned in Sect. 5, the safe set for kernel execution is the entire kernel
window, i.e. the virtual addresses that are mapped by the global mappings,
minus the addresses of the page table entries that encode these global mappings.
Since we will need to re-establish this set every time we switch to a di↵erent
page table, and it is always safe to reduce the safe set, we not only remove the
kernel window encoding in the current page table, but also that of of all other
page tables the kernel might switch to and call this set kernel_safe.

Since we fixed the global mappings in mmu_layout, we can give a short,
closed form of translation for addresses in kernel_safe: k_phy_ad vp = Addr vp -

offset. With these, we can formulate a theorem for assignments in kernel mode
that do not touch any of the virtual memory data structures, i.e. when the write
does not take place in any of the addresses covered by kernel_data.

Theorem 4 If the mmu_layout invariants hold, we are in kernel mode, and we
are performing a write in the kernel safe set that does not touch any MMU-
relevant data structures, then the mmu_layout invariants are preserved and the
e↵ect is a simple heap update with known constant address translation.

{|�s. mmu_layout s ^ mode s = Kernel ^ safe_set (kernel_safe s) s ^
asids_consistent s ^ [[lval]] s = bvpc ^ [[rval]] s = bvc ^
Addr vp 2 kernel_safe s ^ k_phy_ad vp /2 kernel_data_area s|}

lval ::= rval
{|�s. mmu_layout s ^ mode s = Kernel ^ safe_set (kernel_safe s) s ^

asids_consistent s ^ heap s (k_phy_ad vp) = bvc|}

Proof. See lemma kernel_safe_assignemnt in [18].

This lemma covers kernel code that is uninteresting for the purposes of the
MMU and TLB, which is the majority of code in a normal kernel. The Isabelle
theories [18] also contain examples for page table modifications. The main dif-
ference to this theorem is that, while the write still happens in the safe set, and
the safe set is preserved, there are now inconsistent addresses that need to be
flushed before we return to user mode. These could be for the active page table,
but also for an inactive page table, where the need for flushing is observed in
the asids_consistent invariant.

6.3 Context Switch

We have so far shown reduction theorems for simpler reasoning when nothing
interesting happens to the TLB. This section is the opposite: context switching.

14

a page fault handler, the logic can be extended to take this conditional execution
into account, for instance using an exception mechanism or a conditional jump.
In that case, the condition that addresses are mapped can be dropped, and we
arrive at a standard Hoare logic assignment rule.

6.2 Kernel Execution

User execution boils down to standard reasoning. We can show that kernel exe-
cution without virtual memory modifications do as well.

As mentioned in Sect. 5, the safe set for kernel execution is the entire kernel
window, i.e. the virtual addresses that are mapped by the global mappings,
minus the addresses of the page table entries that encode these global mappings.
Since we will need to re-establish this set every time we switch to a di↵erent
page table, and it is always safe to reduce the safe set, we not only remove the
kernel window encoding in the current page table, but also that of of all other
page tables the kernel might switch to and call this set kernel_safe.

Since we fixed the global mappings in mmu_layout, we can give a short,
closed form of translation for addresses in kernel_safe: k_phy_ad vp = Addr vp -

offset. With these, we can formulate a theorem for assignments in kernel mode
that do not touch any of the virtual memory data structures, i.e. when the write
does not take place in any of the addresses covered by kernel_data.

Theorem 4 If the mmu_layout invariants hold, we are in kernel mode, and we
are performing a write in the kernel safe set that does not touch any MMU-
relevant data structures, then the mmu_layout invariants are preserved and the
e↵ect is a simple heap update with known constant address translation.

{|�s. mmu_layout s ^ mode s = Kernel ^ safe_set (kernel_safe s) s ^
asids_consistent s ^ [[lval]] s = bvpc ^ [[rval]] s = bvc ^
Addr vp 2 kernel_safe s ^ k_phy_ad vp /2 kernel_data_area s|}

lval ::= rval
{|�s. mmu_layout s ^ mode s = Kernel ^ safe_set (kernel_safe s) s ^

asids_consistent s ^ heap s (k_phy_ad vp) = bvc|}

Proof. See lemma kernel_safe_assignemnt in [18].

This lemma covers kernel code that is uninteresting for the purposes of the
MMU and TLB, which is the majority of code in a normal kernel. The Isabelle
theories [18] also contain examples for page table modifications. The main dif-
ference to this theorem is that, while the write still happens in the safe set, and
the safe set is preserved, there are now inconsistent addresses that need to be
flushed before we return to user mode. These could be for the active page table,
but also for an inactive page table, where the need for flushing is observed in
the asids_consistent invariant.

6.3 Context Switch

We have so far shown reduction theorems for simpler reasoning when nothing
interesting happens to the TLB. This section is the opposite: context switching.
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- ARMv7-A manual’s recommended sequence

Context Switch

There are many ways for the OS to implement context switching — our example
shows one where we change to a new address space, i.e. a new page table and
ASID, without flushing the TLB, establishing the conditions of Theorem 3 for
user-level reasoning.

Switching page table roots without flushing is non-trivial, and the ARM
architecture manual [2, Chapter B3.10] even gives a specific sequence of in-
structions to achieve this. The manual uses this sequence, because speculative
execution might otherwise contaminate the new ASID with mappings from the
old page table, i.e. the TLB might still contain entries from the previous user.
Theorem 5 shows that our model is conservative for speculative execution, but
precise enough so we can reason about this sequence and see why it is safe.

The recommended sequence switches to a new user-level page table and ASID
by using a reserved ASID (in this case 0). It first switches to this reserved ASID,
then sets the new page table root, then switches to the ASID for that root, before
it switches to user mode. A real kernel would at this point also restore registers,
which we omit.

Theorem 5 The context switch sequence to a new ASID a and new page table
root r preserves the mmu_layout and ASID snapshot consistency invariants and
establishes the conditions for user-level reasoning, provided that the TLB has no
inconsistent addresses at this point, that the reserved ASID 0 is not used for any
user page table, and that that r is a known page table associated with ASID a.

{|�s. mmu_layout s ^ asids_consistent s ^ mode s = Kernel ^
IC s = ; ^ 0 /2 ran (root_map s) ^ root_map s (Addr r) = bac|}

UpdateASID 0;; UpdateTTBR0 (Const r);; UpdateASID a;; SetMode User
{|�s. mmu_layout s ^ IC s = ; ^ mode s = User ^ asids_consistent s|}

Proof. See lemma context_switch_invariants in [18].

Our previous ISA-level model [17] without ASID page table snapshots was not
strong enough to admit this theorem without flushing the TLB. In particular,
the fact that the TLB does not contain entries for the ASID we are switching to
that are inconsistent with the current page table at that point would either be
lost (making it unsound) or over-approximated (requiring a flush).

For compiler correctness, we would additionally need to know that ASID 0
does not have inconsistent entries for the code and data areas of the kernel,
which is maintained if ASID 0 is used only in the way above. To make this more
explicit, we could add a static set to the program logic for code and data that
must always be consistency, and the condition asids_consistent would maintain
that at least the global kernel mappings are consistent in ASID 0.

This concludes the case study examples for our logic. We have seen that we
can reason about user code, ‘uninteresting’ kernel code, and kernel code that
manipulates paging structures, each at their appropriate level of abstraction.
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{|�s. [[l]] s = bvpc ^ [[r]] s = bvc ^ vp /2 IC s ^ Addr vp ,!s pp ^
P (heap_iset_updates (pp 7! v))|}

l ::= r {|P|}

{|�s. kernel s ^ [[rte]] s = brtc ^ P (root_iset_updates Addr rt)|}
UpdateTTBR0 rte {|P|}

{|�s. kernel s ^ P (asid_pt_snpshot_updates a)|} UpdateASID a {|P|}

{|�s. kernel s ^ P (iset_pt_snpshot_updates f)|} Flush f {|P|}

{|�s. kernel s ^ P (s(|mode := flg|))|} SetMode flg {|P|}

Fig. 4. Hoare Logic rules for commands with TLB e↵ects.

The rule for the command UpdateTTBR0, only available in kernel mode, up-
dates the current page table root to the value of the expression rte. The e↵ect
is modelled by root_iset_update defined in Sect. 4.2.

The UpdateASID command, also only available in kernel mode, sets the new
ASID a, increases the iset using snp_incon, and records a page table snapshot
for the old ASID using new_snp.

Finally, Flush is the instruction that the makes the iset smaller, and removes
mappings in the snapshots of inactive ASIDs, using iset_asid_map_update from
Sect. 4.2.

4.4 Discussion

Our previous work [17] motivated an abstract TLB model that we have extended
and refined here. The program logic uses the (morally) same model, but there
is still a break in logic: the TLB abstraction is on a machine-level ISA model;
the program logic is for a higher-level language with explicit memory access,
intended for languages such as C. The bridge between the two worlds would
be a compiler correctness statement that takes the TLB into account. This may
initially not sound straightforward: the high-level language makes fewer memory
accesses visible than the low-level machine performs. In particular, a compiler
will usually implement a stack for local variables, and memory areas for global
variables, as well as for the code itself. These memory accesses are under address
translation and might be relevant for TLB reasoning.

Sect. 5 and 6 will show that we can ignore the TLB for kernel-level code, if we
can assume that these memory areas (code, stack, globals) are statically known
and that the compiler will not generate additional memory accesses outside these
static areas. This is a reasonable assumption — otherwise kernel code could
never be sure that privileged memory areas such as memory-mapped devices are
not randomly overwritten by compiler-generated accesses. We will then have to
prove that we never remove or change active mappings for these areas (adding
new mappings for e.g. the stack would be fine). For user-level code, we will see
that the issue becomes irrelevant.
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Context Switch

There are many ways for the OS to implement context switching — our example
shows one where we change to a new address space, i.e. a new page table and
ASID, without flushing the TLB, establishing the conditions of Theorem 3 for
user-level reasoning.

Switching page table roots without flushing is non-trivial, and the ARM
architecture manual [2, Chapter B3.10] even gives a specific sequence of in-
structions to achieve this. The manual uses this sequence, because speculative
execution might otherwise contaminate the new ASID with mappings from the
old page table, i.e. the TLB might still contain entries from the previous user.
Theorem 5 shows that our model is conservative for speculative execution, but
precise enough so we can reason about this sequence and see why it is safe.

The recommended sequence switches to a new user-level page table and ASID
by using a reserved ASID (in this case 0). It first switches to this reserved ASID,
then sets the new page table root, then switches to the ASID for that root, before
it switches to user mode. A real kernel would at this point also restore registers,
which we omit.

Theorem 5 The context switch sequence to a new ASID a and new page table
root r preserves the mmu_layout and ASID snapshot consistency invariants and
establishes the conditions for user-level reasoning, provided that the TLB has no
inconsistent addresses at this point, that the reserved ASID 0 is not used for any
user page table, and that that r is a known page table associated with ASID a.

{|�s. mmu_layout s ^ asids_consistent s ^ mode s = Kernel ^
IC s = ; ^ 0 /2 ran (root_map s) ^ root_map s (Addr r) = bac|}

UpdateASID 0;; UpdateTTBR0 (Const r);; UpdateASID a;; SetMode User
{|�s. mmu_layout s ^ IC s = ; ^ mode s = User ^ asids_consistent s|}

Proof. See lemma context_switch_invariants in [18].

Our previous ISA-level model [17] without ASID page table snapshots was not
strong enough to admit this theorem without flushing the TLB. In particular,
the fact that the TLB does not contain entries for the ASID we are switching to
that are inconsistent with the current page table at that point would either be
lost (making it unsound) or over-approximated (requiring a flush).

For compiler correctness, we would additionally need to know that ASID 0
does not have inconsistent entries for the code and data areas of the kernel,
which is maintained if ASID 0 is used only in the way above. To make this more
explicit, we could add a static set to the program logic for code and data that
must always be consistency, and the condition asids_consistent would maintain
that at least the global kernel mappings are consistent in ASID 0.

This concludes the case study examples for our logic. We have seen that we
can reason about user code, ‘uninteresting’ kernel code, and kernel code that
manipulates paging structures, each at their appropriate level of abstraction.
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dates the current page table root to the value of the expression rte. The e↵ect
is modelled by root_iset_update defined in Sect. 4.2.

The UpdateASID command, also only available in kernel mode, sets the new
ASID a, increases the iset using snp_incon, and records a page table snapshot
for the old ASID using new_snp.

Finally, Flush is the instruction that the makes the iset smaller, and removes
mappings in the snapshots of inactive ASIDs, using iset_asid_map_update from
Sect. 4.2.

4.4 Discussion

Our previous work [17] motivated an abstract TLB model that we have extended
and refined here. The program logic uses the (morally) same model, but there
is still a break in logic: the TLB abstraction is on a machine-level ISA model;
the program logic is for a higher-level language with explicit memory access,
intended for languages such as C. The bridge between the two worlds would
be a compiler correctness statement that takes the TLB into account. This may
initially not sound straightforward: the high-level language makes fewer memory
accesses visible than the low-level machine performs. In particular, a compiler
will usually implement a stack for local variables, and memory areas for global
variables, as well as for the code itself. These memory accesses are under address
translation and might be relevant for TLB reasoning.

Sect. 5 and 6 will show that we can ignore the TLB for kernel-level code, if we
can assume that these memory areas (code, stack, globals) are statically known
and that the compiler will not generate additional memory accesses outside these
static areas. This is a reasonable assumption — otherwise kernel code could
never be sure that privileged memory areas such as memory-mapped devices are
not randomly overwritten by compiler-generated accesses. We will then have to
prove that we never remove or change active mappings for these areas (adding
new mappings for e.g. the stack would be fine). For user-level code, we will see
that the issue becomes irrelevant.
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ASID a, increases the iset using snp_incon, and records a page table snapshot
for the old ASID using new_snp.

Finally, Flush is the instruction that the makes the iset smaller, and removes
mappings in the snapshots of inactive ASIDs, using iset_asid_map_update from
Sect. 4.2.

4.4 Discussion

Our previous work [17] motivated an abstract TLB model that we have extended
and refined here. The program logic uses the (morally) same model, but there
is still a break in logic: the TLB abstraction is on a machine-level ISA model;
the program logic is for a higher-level language with explicit memory access,
intended for languages such as C. The bridge between the two worlds would
be a compiler correctness statement that takes the TLB into account. This may
initially not sound straightforward: the high-level language makes fewer memory
accesses visible than the low-level machine performs. In particular, a compiler
will usually implement a stack for local variables, and memory areas for global
variables, as well as for the code itself. These memory accesses are under address
translation and might be relevant for TLB reasoning.

Sect. 5 and 6 will show that we can ignore the TLB for kernel-level code, if we
can assume that these memory areas (code, stack, globals) are statically known
and that the compiler will not generate additional memory accesses outside these
static areas. This is a reasonable assumption — otherwise kernel code could
never be sure that privileged memory areas such as memory-mapped devices are
not randomly overwritten by compiler-generated accesses. We will then have to
prove that we never remove or change active mappings for these areas (adding
new mappings for e.g. the stack would be fine). For user-level code, we will see
that the issue becomes irrelevant.
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Context Switch

There are many ways for the OS to implement context switching — our example
shows one where we change to a new address space, i.e. a new page table and
ASID, without flushing the TLB, establishing the conditions of Theorem 3 for
user-level reasoning.

Switching page table roots without flushing is non-trivial, and the ARM
architecture manual [2, Chapter B3.10] even gives a specific sequence of in-
structions to achieve this. The manual uses this sequence, because speculative
execution might otherwise contaminate the new ASID with mappings from the
old page table, i.e. the TLB might still contain entries from the previous user.
Theorem 5 shows that our model is conservative for speculative execution, but
precise enough so we can reason about this sequence and see why it is safe.

The recommended sequence switches to a new user-level page table and ASID
by using a reserved ASID (in this case 0). It first switches to this reserved ASID,
then sets the new page table root, then switches to the ASID for that root, before
it switches to user mode. A real kernel would at this point also restore registers,
which we omit.

Theorem 5 The context switch sequence to a new ASID a and new page table
root r preserves the mmu_layout and ASID snapshot consistency invariants and
establishes the conditions for user-level reasoning, provided that the TLB has no
inconsistent addresses at this point, that the reserved ASID 0 is not used for any
user page table, and that that r is a known page table associated with ASID a.
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Our previous ISA-level model [17] without ASID page table snapshots was not
strong enough to admit this theorem without flushing the TLB. In particular,
the fact that the TLB does not contain entries for the ASID we are switching to
that are inconsistent with the current page table at that point would either be
lost (making it unsound) or over-approximated (requiring a flush).

For compiler correctness, we would additionally need to know that ASID 0
does not have inconsistent entries for the code and data areas of the kernel,
which is maintained if ASID 0 is used only in the way above. To make this more
explicit, we could add a static set to the program logic for code and data that
must always be consistency, and the condition asids_consistent would maintain
that at least the global kernel mappings are consistent in ASID 0.

This concludes the case study examples for our logic. We have seen that we
can reason about user code, ‘uninteresting’ kernel code, and kernel code that
manipulates paging structures, each at their appropriate level of abstraction.
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Context Switch

There are many ways for the OS to implement context switching — our example
shows one where we change to a new address space, i.e. a new page table and
ASID, without flushing the TLB, establishing the conditions of Theorem 3 for
user-level reasoning.

Switching page table roots without flushing is non-trivial, and the ARM
architecture manual [2, Chapter B3.10] even gives a specific sequence of in-
structions to achieve this. The manual uses this sequence, because speculative
execution might otherwise contaminate the new ASID with mappings from the
old page table, i.e. the TLB might still contain entries from the previous user.
Theorem 5 shows that our model is conservative for speculative execution, but
precise enough so we can reason about this sequence and see why it is safe.

The recommended sequence switches to a new user-level page table and ASID
by using a reserved ASID (in this case 0). It first switches to this reserved ASID,
then sets the new page table root, then switches to the ASID for that root, before
it switches to user mode. A real kernel would at this point also restore registers,
which we omit.

Theorem 5 The context switch sequence to a new ASID a and new page table
root r preserves the mmu_layout and ASID snapshot consistency invariants and
establishes the conditions for user-level reasoning, provided that the TLB has no
inconsistent addresses at this point, that the reserved ASID 0 is not used for any
user page table, and that that r is a known page table associated with ASID a.

{|�s. mmu_layout s ^ asids_consistent s ^ mode s = Kernel ^
IC s = ; ^ 0 /2 ran (root_map s) ^ root_map s (Addr r) = bac|}

UpdateASID 0;; UpdateTTBR0 (Const r);; UpdateASID a;; SetMode User
{|�s. mmu_layout s ^ IC s = ; ^ mode s = User ^ asids_consistent s|}

Proof. See lemma context_switch_invariants in [18].

Our previous ISA-level model [17] without ASID page table snapshots was not
strong enough to admit this theorem without flushing the TLB. In particular,
the fact that the TLB does not contain entries for the ASID we are switching to
that are inconsistent with the current page table at that point would either be
lost (making it unsound) or over-approximated (requiring a flush).

For compiler correctness, we would additionally need to know that ASID 0
does not have inconsistent entries for the code and data areas of the kernel,
which is maintained if ASID 0 is used only in the way above. To make this more
explicit, we could add a static set to the program logic for code and data that
must always be consistency, and the condition asids_consistent would maintain
that at least the global kernel mappings are consistent in ASID 0.

This concludes the case study examples for our logic. We have seen that we
can reason about user code, ‘uninteresting’ kernel code, and kernel code that
manipulates paging structures, each at their appropriate level of abstraction.
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and refined here. The program logic uses the (morally) same model, but there
is still a break in logic: the TLB abstraction is on a machine-level ISA model;
the program logic is for a higher-level language with explicit memory access,
intended for languages such as C. The bridge between the two worlds would
be a compiler correctness statement that takes the TLB into account. This may
initially not sound straightforward: the high-level language makes fewer memory
accesses visible than the low-level machine performs. In particular, a compiler
will usually implement a stack for local variables, and memory areas for global
variables, as well as for the code itself. These memory accesses are under address
translation and might be relevant for TLB reasoning.

Sect. 5 and 6 will show that we can ignore the TLB for kernel-level code, if we
can assume that these memory areas (code, stack, globals) are statically known
and that the compiler will not generate additional memory accesses outside these
static areas. This is a reasonable assumption — otherwise kernel code could
never be sure that privileged memory areas such as memory-mapped devices are
not randomly overwritten by compiler-generated accesses. We will then have to
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new mappings for e.g. the stack would be fine). For user-level code, we will see
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structions to achieve this. The manual uses this sequence, because speculative
execution might otherwise contaminate the new ASID with mappings from the
old page table, i.e. the TLB might still contain entries from the previous user.
Theorem 5 shows that our model is conservative for speculative execution, but
precise enough so we can reason about this sequence and see why it is safe.

The recommended sequence switches to a new user-level page table and ASID
by using a reserved ASID (in this case 0). It first switches to this reserved ASID,
then sets the new page table root, then switches to the ASID for that root, before
it switches to user mode. A real kernel would at this point also restore registers,
which we omit.

Theorem 5 The context switch sequence to a new ASID a and new page table
root r preserves the mmu_layout and ASID snapshot consistency invariants and
establishes the conditions for user-level reasoning, provided that the TLB has no
inconsistent addresses at this point, that the reserved ASID 0 is not used for any
user page table, and that that r is a known page table associated with ASID a.

{|�s. mmu_layout s ^ asids_consistent s ^ mode s = Kernel ^
IC s = ; ^ 0 /2 ran (root_map s) ^ root_map s (Addr r) = bac|}

UpdateASID 0;; UpdateTTBR0 (Const r);; UpdateASID a;; SetMode User
{|�s. mmu_layout s ^ IC s = ; ^ mode s = User ^ asids_consistent s|}

Proof. See lemma context_switch_invariants in [18].

Our previous ISA-level model [17] without ASID page table snapshots was not
strong enough to admit this theorem without flushing the TLB. In particular,
the fact that the TLB does not contain entries for the ASID we are switching to
that are inconsistent with the current page table at that point would either be
lost (making it unsound) or over-approximated (requiring a flush).

For compiler correctness, we would additionally need to know that ASID 0
does not have inconsistent entries for the code and data areas of the kernel,
which is maintained if ASID 0 is used only in the way above. To make this more
explicit, we could add a static set to the program logic for code and data that
must always be consistency, and the condition asids_consistent would maintain
that at least the global kernel mappings are consistent in ASID 0.

This concludes the case study examples for our logic. We have seen that we
can reason about user code, ‘uninteresting’ kernel code, and kernel code that
manipulates paging structures, each at their appropriate level of abstraction.
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Fig. 4. Hoare Logic rules for commands with TLB e↵ects.

The rule for the command UpdateTTBR0, only available in kernel mode, up-
dates the current page table root to the value of the expression rte. The e↵ect
is modelled by root_iset_update defined in Sect. 4.2.

The UpdateASID command, also only available in kernel mode, sets the new
ASID a, increases the iset using snp_incon, and records a page table snapshot
for the old ASID using new_snp.

Finally, Flush is the instruction that the makes the iset smaller, and removes
mappings in the snapshots of inactive ASIDs, using iset_asid_map_update from
Sect. 4.2.

4.4 Discussion

Our previous work [17] motivated an abstract TLB model that we have extended
and refined here. The program logic uses the (morally) same model, but there
is still a break in logic: the TLB abstraction is on a machine-level ISA model;
the program logic is for a higher-level language with explicit memory access,
intended for languages such as C. The bridge between the two worlds would
be a compiler correctness statement that takes the TLB into account. This may
initially not sound straightforward: the high-level language makes fewer memory
accesses visible than the low-level machine performs. In particular, a compiler
will usually implement a stack for local variables, and memory areas for global
variables, as well as for the code itself. These memory accesses are under address
translation and might be relevant for TLB reasoning.

Sect. 5 and 6 will show that we can ignore the TLB for kernel-level code, if we
can assume that these memory areas (code, stack, globals) are statically known
and that the compiler will not generate additional memory accesses outside these
static areas. This is a reasonable assumption — otherwise kernel code could
never be sure that privileged memory areas such as memory-mapped devices are
not randomly overwritten by compiler-generated accesses. We will then have to
prove that we never remove or change active mappings for these areas (adding
new mappings for e.g. the stack would be fine). For user-level code, we will see
that the issue becomes irrelevant.
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- update root register to root r, then 
- update ASID register to ASID a 

- ARMv7-A manual’s recommended sequence

Context Switch

There are many ways for the OS to implement context switching — our example
shows one where we change to a new address space, i.e. a new page table and
ASID, without flushing the TLB, establishing the conditions of Theorem 3 for
user-level reasoning.

Switching page table roots without flushing is non-trivial, and the ARM
architecture manual [2, Chapter B3.10] even gives a specific sequence of in-
structions to achieve this. The manual uses this sequence, because speculative
execution might otherwise contaminate the new ASID with mappings from the
old page table, i.e. the TLB might still contain entries from the previous user.
Theorem 5 shows that our model is conservative for speculative execution, but
precise enough so we can reason about this sequence and see why it is safe.

The recommended sequence switches to a new user-level page table and ASID
by using a reserved ASID (in this case 0). It first switches to this reserved ASID,
then sets the new page table root, then switches to the ASID for that root, before
it switches to user mode. A real kernel would at this point also restore registers,
which we omit.

Theorem 5 The context switch sequence to a new ASID a and new page table
root r preserves the mmu_layout and ASID snapshot consistency invariants and
establishes the conditions for user-level reasoning, provided that the TLB has no
inconsistent addresses at this point, that the reserved ASID 0 is not used for any
user page table, and that that r is a known page table associated with ASID a.

{|�s. mmu_layout s ^ asids_consistent s ^ mode s = Kernel ^
IC s = ; ^ 0 /2 ran (root_map s) ^ root_map s (Addr r) = bac|}

UpdateASID 0;; UpdateTTBR0 (Const r);; UpdateASID a;; SetMode User
{|�s. mmu_layout s ^ IC s = ; ^ mode s = User ^ asids_consistent s|}

Proof. See lemma context_switch_invariants in [18].

Our previous ISA-level model [17] without ASID page table snapshots was not
strong enough to admit this theorem without flushing the TLB. In particular,
the fact that the TLB does not contain entries for the ASID we are switching to
that are inconsistent with the current page table at that point would either be
lost (making it unsound) or over-approximated (requiring a flush).

For compiler correctness, we would additionally need to know that ASID 0
does not have inconsistent entries for the code and data areas of the kernel,
which is maintained if ASID 0 is used only in the way above. To make this more
explicit, we could add a static set to the program logic for code and data that
must always be consistency, and the condition asids_consistent would maintain
that at least the global kernel mappings are consistent in ASID 0.

This concludes the case study examples for our logic. We have seen that we
can reason about user code, ‘uninteresting’ kernel code, and kernel code that
manipulates paging structures, each at their appropriate level of abstraction.

15

{|�s. [[l]] s = bvpc ^ [[r]] s = bvc ^ vp /2 IC s ^ Addr vp ,!s pp ^
P (heap_iset_updates (pp 7! v))|}

l ::= r {|P|}

{|�s. kernel s ^ [[rte]] s = brtc ^ P (root_iset_updates Addr rt)|}
UpdateTTBR0 rte {|P|}

{|�s. kernel s ^ P (asid_pt_snpshot_updates a)|} UpdateASID a {|P|}

{|�s. kernel s ^ P (iset_pt_snpshot_updates f)|} Flush f {|P|}

{|�s. kernel s ^ P (s(|mode := flg|))|} SetMode flg {|P|}

Fig. 4. Hoare Logic rules for commands with TLB e↵ects.

The rule for the command UpdateTTBR0, only available in kernel mode, up-
dates the current page table root to the value of the expression rte. The e↵ect
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The UpdateASID command, also only available in kernel mode, sets the new
ASID a, increases the iset using snp_incon, and records a page table snapshot
for the old ASID using new_snp.

Finally, Flush is the instruction that the makes the iset smaller, and removes
mappings in the snapshots of inactive ASIDs, using iset_asid_map_update from
Sect. 4.2.

4.4 Discussion

Our previous work [17] motivated an abstract TLB model that we have extended
and refined here. The program logic uses the (morally) same model, but there
is still a break in logic: the TLB abstraction is on a machine-level ISA model;
the program logic is for a higher-level language with explicit memory access,
intended for languages such as C. The bridge between the two worlds would
be a compiler correctness statement that takes the TLB into account. This may
initially not sound straightforward: the high-level language makes fewer memory
accesses visible than the low-level machine performs. In particular, a compiler
will usually implement a stack for local variables, and memory areas for global
variables, as well as for the code itself. These memory accesses are under address
translation and might be relevant for TLB reasoning.

Sect. 5 and 6 will show that we can ignore the TLB for kernel-level code, if we
can assume that these memory areas (code, stack, globals) are statically known
and that the compiler will not generate additional memory accesses outside these
static areas. This is a reasonable assumption — otherwise kernel code could
never be sure that privileged memory areas such as memory-mapped devices are
not randomly overwritten by compiler-generated accesses. We will then have to
prove that we never remove or change active mappings for these areas (adding
new mappings for e.g. the stack would be fine). For user-level code, we will see
that the issue becomes irrelevant.
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must always be consistency, and the condition asids_consistent would maintain
that at least the global kernel mappings are consistent in ASID 0.

This concludes the case study examples for our logic. We have seen that we
can reason about user code, ‘uninteresting’ kernel code, and kernel code that
manipulates paging structures, each at their appropriate level of abstraction.
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accesses visible than the low-level machine performs. In particular, a compiler
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- Operations — 
- update root register to root r, then 
- update ASID register to ASID a 

- ARMv7-A manual’s recommended sequence

Context Switch

There are many ways for the OS to implement context switching — our example
shows one where we change to a new address space, i.e. a new page table and
ASID, without flushing the TLB, establishing the conditions of Theorem 3 for
user-level reasoning.

Switching page table roots without flushing is non-trivial, and the ARM
architecture manual [2, Chapter B3.10] even gives a specific sequence of in-
structions to achieve this. The manual uses this sequence, because speculative
execution might otherwise contaminate the new ASID with mappings from the
old page table, i.e. the TLB might still contain entries from the previous user.
Theorem 5 shows that our model is conservative for speculative execution, but
precise enough so we can reason about this sequence and see why it is safe.

The recommended sequence switches to a new user-level page table and ASID
by using a reserved ASID (in this case 0). It first switches to this reserved ASID,
then sets the new page table root, then switches to the ASID for that root, before
it switches to user mode. A real kernel would at this point also restore registers,
which we omit.

Theorem 5 The context switch sequence to a new ASID a and new page table
root r preserves the mmu_layout and ASID snapshot consistency invariants and
establishes the conditions for user-level reasoning, provided that the TLB has no
inconsistent addresses at this point, that the reserved ASID 0 is not used for any
user page table, and that that r is a known page table associated with ASID a.

{|�s. mmu_layout s ^ asids_consistent s ^ mode s = Kernel ^
IC s = ; ^ 0 /2 ran (root_map s) ^ root_map s (Addr r) = bac|}

UpdateASID 0;; UpdateTTBR0 (Const r);; UpdateASID a;; SetMode User
{|�s. mmu_layout s ^ IC s = ; ^ mode s = User ^ asids_consistent s|}

Proof. See lemma context_switch_invariants in [18].

Our previous ISA-level model [17] without ASID page table snapshots was not
strong enough to admit this theorem without flushing the TLB. In particular,
the fact that the TLB does not contain entries for the ASID we are switching to
that are inconsistent with the current page table at that point would either be
lost (making it unsound) or over-approximated (requiring a flush).

For compiler correctness, we would additionally need to know that ASID 0
does not have inconsistent entries for the code and data areas of the kernel,
which is maintained if ASID 0 is used only in the way above. To make this more
explicit, we could add a static set to the program logic for code and data that
must always be consistency, and the condition asids_consistent would maintain
that at least the global kernel mappings are consistent in ASID 0.

This concludes the case study examples for our logic. We have seen that we
can reason about user code, ‘uninteresting’ kernel code, and kernel code that
manipulates paging structures, each at their appropriate level of abstraction.
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4.4 Discussion

Our previous work [17] motivated an abstract TLB model that we have extended
and refined here. The program logic uses the (morally) same model, but there
is still a break in logic: the TLB abstraction is on a machine-level ISA model;
the program logic is for a higher-level language with explicit memory access,
intended for languages such as C. The bridge between the two worlds would
be a compiler correctness statement that takes the TLB into account. This may
initially not sound straightforward: the high-level language makes fewer memory
accesses visible than the low-level machine performs. In particular, a compiler
will usually implement a stack for local variables, and memory areas for global
variables, as well as for the code itself. These memory accesses are under address
translation and might be relevant for TLB reasoning.

Sect. 5 and 6 will show that we can ignore the TLB for kernel-level code, if we
can assume that these memory areas (code, stack, globals) are statically known
and that the compiler will not generate additional memory accesses outside these
static areas. This is a reasonable assumption — otherwise kernel code could
never be sure that privileged memory areas such as memory-mapped devices are
not randomly overwritten by compiler-generated accesses. We will then have to
prove that we never remove or change active mappings for these areas (adding
new mappings for e.g. the stack would be fine). For user-level code, we will see
that the issue becomes irrelevant.
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