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 The Internet of Things (IoT) is character-
ized as a broad network of several physical entities, 
such as embedded systems, softwares, electronics, 
and electrical machinery. It provides an integra-
tion platform to these subsystems for exchanging 
information and interacting with the continuously 
changing physical surroundings. Due to the con-
vergent nature, the concept of IoT System-on-Chip 
(SoC) devices has been made realizable and they 
are widely being used in a variety of applications, 
ranging from consumer electronic devices, such 
as tele-operated health-care units and autono-
mous vehicles, to safety critical domains, such as 
tele-surgical robotics, space travel and smart disas-
ter response and evacuation. However, these SoC 
devices contain analog and sensor circuitry and 
there is a dire need for efficient mixed-signal verifi-
cation methodologies. Usually, the methodologies 
used for their functional verification are dynamic 
and mostly depend on the effectiveness and rigor 
of testing procedures. However, their modeling 

must rely on specialized mathemati-
cal and theoretical basis for consist-
ent verification.

Traditionally, the analog and sen-
sor circuitry of SoC is analyzed using 
the state-space models, i.e., capturing 
the behavior of different components 
by appropriate differential equations 

and then solving these differential equations to 
obtain the required design constraints. However, 
as the complexity and parallelism of the contin-
uous components in an SoC increases, the state-
space models become inefficient and in certain 
cases impossible to capture. Various transfor-
mation techniques, such as the Laplace and an 
exponential transforms, are used to convert the 
state-space models to the corresponding transfer 
function models in order to analyze various design 
metrics. Specifically, the Laplace transform, which 
is an integral transform method, is widely used 
to convert the time varying signals and contin-
uous models to their corresponding s-domain 
representations while analyzing linear analog cir-
cuits. This transformation provides a very compact 
representation of the overall behavior of the given 
time varying signals and continuous models. The 
Laplace transform theory allows us to solve state-
space models using simple algebraic techniques 
as the transformation allows us to convert the 
integration and differentiation functions from the 
time-domain to multiplication and division func-
tions in the s-domain.

The analog components of SoC are usually 
analyzed using computer-based testing or simu-
lation methods, where the main idea is to deduce 

Editor’s note:
This article presents an approach to extend mathematical formal analysis 
towards verification of linear analog circuits.
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the validity of a property by observing its behavior 
for some test cases. Whereas, both state-space and 
transfer function models of continuous compo-
nents, based on differential equation algebra and 
the Laplace transform methods, respectively, are 
analyzed using computer simulations, comput-
er-based numerical techniques, or symbolic meth-
ods. However, results obtained via these traditional 
methods cannot be termed as 100% accurate due 
to the approximations introduced by using com-
puter arithmetics, such as floating or fixed point 
numbers, for constructing computer-based models 
of the continuous physical components. Moreover, 
the circuits are analyzed for some specific test cases 
only since exhaustive simulation is not possible due 
to the continuous nature of inputs and even the 
simulations for a subset of possible test cases may 
take several days. For example, numerical methods 
cannot ascertain an accurate value of the improper 
integral of the Laplace transform as there is always 
a limited number of iterations allowed depend-
ing on the available memory and computational 
resources. Due to these limitations, more rigorous 
and accurate analysis techniques for analyzing con-
tinuous components of an SoC are actively being 
sought out and formal verification, i.e., a comput-
er-based mathematical analysis technique, offers a 
promising solution.

In the past couple of decades, formal verification 
methods [1] have been successfully used for the pre-
cise analysis of a variety of software, hardware, and 
physical systems. The main principle behind formal 
analysis of a system is to construct a computer-based 
mathematical model of the given system and for-
mally verify, within a computer, that this model meets 
rigorous specifications of intended behavior. Given 
the extensive usage of SoC in safety critical applica-
tions, there is a dire need of using formal methods 
for their analysis. However, the frequent involvement 
of complex-valued physical quantities, ordinary dif-
ferential equations and the Laplace transformation 
in their analysis are the main limiting factors in this 
direction. The automatic state-based formal meth-
ods, such as model checking, SMT solvers, and auto-
matic theorem provers cannot be used to model and 
analyze the true SoC models due to their inability to 
model continuous systems. This is the main reason 
why most of the formal verification work about SoC 
utilizes their abstracted discrete models. In [2], con-
formance checking techniques have been presented 

to show the equivalence between the specified and 
implemented transfer function of analog circuits. In 
these techniques, the verification ideas are primarily 
based on the discretization of the s-domain transfer 
functions to the z-domain using the bilinear transfor-
mation, which raises issues, like the error analysis 
of transfer function coefficients and the state-space 
explosion when the inherited discretization of the 
design is encoded for larger models. Model check-
ing [1] has also been used to formally verify con-
tinuous components of SoC but the entire model 
checking-based techniques work with the abstrac-
tion of continuous dynamics because of the inability 
of these methods to model and analyze continuous 
systems in their true form. Thus, despite the inher-
ent soundness of formal verification methods, such 
analysis cannot be termed as absolutely accurate.

We propose to use higher-order-logic theorem 
proving [1] for formally verifying transfer func-
tion models of linear analog components of SoC. 
Higher-order logic is a system of deduction with a 
precise semantics and, due to its high expressive-
ness, can be used to describe any mathematical 
relationship, including the state-space and transfer 
function models of continuously varying analog 
components of SoC devices and their desired trans-
fer function specifications. Their equivalence can 
then be verified within the sound core of a theorem 
prover. Due to the high expressibility of higher-or-
der logic, the proposed approach is very flexible 
in terms of analyzing a variety of SoC devices and 
transfer functions.

In this paper, as a first step toward the proposed 
direction, we develop a generic methodology for 
the verification of transfer functions of linear analog 
circuits. We mainly extend our existing work on the 
formalization of the Laplace transform theory [3] by 
formally verifying the Laplace transforms of impor-
tant trigonometric functions, such as exponential 
and sines/cosines functions. These functions are 
extensively required for verifying many continuous 
aspects of SoC, such as the voltage analysis of analog 
components. In addition, they are the fundamental 
entities in geometric control theory, which is com-
monly used for modeling the feedback-based con-
trol components of SoC as well as for the reasoning 
of security of overall systems. For the application of 
our methodology to the linear analog circuit portion 
of SoC, we also formalize the well-known Kirchhoff’s 
voltage and current laws (commonly known as KVL 
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and KCL) and a few basic components of analog 
circuits, like resistor, inductor, and capacitor. Based 
on these results, transfer function models of a wide 
range of linear analog circuits of an SoC device can 
be formally verified within the sound core of a high-
er-order-logic theorem prover and the paper presents 
a stepwise methodology for this purpose.

Related Work
Denman et al. [4] proposed a functional verifica-

tion approach for analog circuits using MetiTarski, 
which is an automated theorem prover for real-valued 
trigonometric functions. The behavioral model of 
the analog circuit is transformed into its closed form 
solution by using the inverse Laplace (invlaplace) 
function of Maple and an inequality relating the 
closed form solution with the required property is 
fed to MetiTarski, which in turn determines if the ine-
quality holds and in this case also generates the cor-
responding formal proof. A similar approach is also 
proposed in [5] for the verification of analog circuits 
using MetiTarski in the presence of noise and process 
variation by introducing stochastic modeling. Tiwari 
et al. [6] proposed to use piecewise interval device 
modeling for analog circuits and these models were 
used to verify DC-analysis properties using SAT solv-
ers. Besides verifying the DC-analysis related prop-
erties, formal verification methods have also been 
used in the context of verifying transient properties 
using traditional model checking [7].

However, all the above-mentioned techniques do 
not aim for the transfer function analysis and deal 
only with the real-valued analog quantities compro-
mising the complex-valued solution of the mode-
ling differential equations. However, the complete 
solution of the modeling differential equation must 
also include the imaginary part, which provides the 
phase information and also helps in analyzing the 
steady-state behavior of the circuit in functional ver-
ification [8]. Symbolic methods, provided by Maple 
and Mathematica, are based on algorithms that con-
sider the improper integral of the Laplace transform 
as the continuous analog of the power series, i.e., the 
integral is discretized to summation and the com-
plex exponentials are sampled. Moreover, the usage 
of computer algebra algorithms, which are unver-
ified (cf. [4] p. 3), for calculating the closed form 
solution of the behavioral model also compromises 
on the accuracy of the analysis.

These formal and semiformal techniques have also 
been used for verifying some basic constituent com-
ponents and building blocks of analog circuits, like 
operational amplifier (op-amp) [4], oscillators [4], 
op-amp integrator [5], phase locked-loop [9], and a 
frequency domain equalizer [10]. The proposed tech-
nique is generic enough to cater for the verification 
of all these components and their arbitrary combina-
tions. For illustration purpose, we present the verifi-
cation of Sallen-Key low-pass filters, which are quite 
compatible in complexity to the existing formally ver-
ified circuits.

Formalization of Laplace Transform
In this section, we present a brief overview of our 

formalization of the Laplace transform theory using 
the HOL-Light theorem prover [3]. Mathematically, 
the Laplace transform is a complex function defined 
for a function f, which can be either real or com-
plex-valued, as follows:

	​ F​(s)​ = ​∫ 
0
​ ∞ ​ f​(t)​​ ​e​​ −st​ dt,  s ∈ ℂ.​� (1)

The Laplace transform function can be formally 
defined as

Definition 1: Laplace Transform

In the above definition, the function laplace 
accepts a complex number s and a complex-valued 
function f. It returns a complex number represent-
ing the Laplace transform of f. The limit of improper 
integral of laplace transform is modeled by using the 
lim at_posinfinity function of HOL-Light [11].

We have also verified some of the classical prop-
erties of the Laplace transform, provided in Table 1, 
which play a vital role in the analysis of linear analog 
circuits.

Proposed Methodology
The proposed methodology for the formal verifi-

cation of transfer functions of linear analog circuits 
of an SoC is shown in Figure 1. The inputs required 
for the proposed verification methodology are (A) a 
structural view of the given analog circuit of SoC rep-
resenting the connections of its sub-components, (B) 
the modeling differential equation of the given circuit 
relating its input and output quantities in the time 
domain, and (C) the transfer function representing 
the required behavior in the s-domain. The first step in 



33September/October 2017

the proposed methodology is to translate the structural 
representation of the given circuit to its corresponding 
higher-order-logic function using the component defi-
nitions available in the formalized analog library. This 
provides us with our implementation model as shown 
in Figure 1. The next step in the proposed methodology 
is to formalize the given modeling differential equation 
and the transfer function in higher-order logic to get 
the formal differential equation based specification 
and the formal transfer function based specification, 
respectively. These translations can be done based 
on the available multivariable calculus formalizations 
in HOL-Light. The next step is to formally verify the 
implication between the implementation model and 
the formal differential equation based specification of 
the given circuit, i.e., A → B. This verification can be 
done in a very straightforward way based on the cir-
cuit simplifier functions of formalized analog library 
and some simple arithmetic reasoning. The next step 
in the proposed methodology is to verify that the dif-
ferential equation specification of the given circuit 
implies the given transfer function specification, i.e.,  
B → C, using the formalized Laplace transform the-
ory and arithmetic reasoning. The two implications 
verified in the last two steps also imply that the given 
structural view of the circuit implies the given transfer 
function-based specification, which concludes the for-
mal verification of the desired result within the sound 
core of the theorem prover. Once the transfer function 
verification is done, circuit behavior at a specific input 

voltage can also be verified by using the formalized 

Laplace transforms of commonly used analog func-

tions available in our analog library.

The distinguishing features of this methodology 

include the higher confidence in the verification 

results due to the usage of pure complex and real 

number data-types for modeling the given circuit 

and the usage of theorem proving for the verifica-

tion. It is important to note that, just like any other 

verification approach, the proposed methodology 

requires the circuit and its desired behavior to be 

known a priori and it just allows us to formally verify 

that they correspond to one another.

Figure 1. Proposed methodology for the formal 
verification of linear analog circuits.

 
Table 1  Formalization of Laplace transform properties.
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Formalization of Analog Library
In this section, we explain our formalization of 

the various analog components, circuit simplifica-
tion rules and analog functions.

Analog Components and Circuit Simplification 
Rules

We begin by formalizing the voltage and current 
expressions for a resistor, capacitor, and inductor, 
which are the most commonly used analog circuit 
components, as the following higher-order-logic 
functions:

Definition 2: Resistor, Inductor, and Capacitor

where (λx. f(x)) represents a lambda abstraction 
function that accepts a variable x and returns f(x). 
The functions i and v represents the time-dependent 
current and voltage, respectively. While the variables 
R, L, and C represent the resistance, inductance, and 
the capacitance of their respective components, 
respectively. The function vector_derivative is 
used for formalizing the differentiation of complex 
voltage and current. Whereas, the function inte-
gral is used for integration over the vector space. 
The variables Io and Vo are used in the definitions of 
the inductance and capacitance to model the initial 
current in the inductor and the initial voltage across 
the capacitor, respectively.

The KVL and KCL state that the directed sum of 
all the voltage drops around any closed network 
(loop) of an electrical circuit and the directed sum 
of all the branch currents leaving an electrical node 
is zero, respectively. Mathematically:

	​​  ∑ 
k=1

​ 
n
 ​​V​ k​​​ = 0,  ​ ∑ 

k=1
​ 

n
 ​​I​ k​​​ = 0​� (2)

where Vk and Ik represent the voltage drops across 
the kth component in a loop and the current leaving 
the kth branch in a node, respectively. Their formal-
ization is as follows:

Definition 3: Kirchhoff’s Voltage and Current Law

The function kvl accepts a list V, which represents 
the behavior of time-dependent voltages in the given 
circuit and a time variable t. It returns the predicate 
that guarantees that the sum of all the voltages in the 
loop is zero. Similarly, the function kcl accepts a list 
I, which represents the behavior of time-dependent 
currents and a time variable t and returns the 
predicate that guarantees that the sum of all the cur-
rents leaving the node is zero. Based on the proposed 
methodology, given in Figure 1, the above-mentioned 
definitions can be used to develop formal models of a 
wide range of linear analog circuit implementations.

Analog Functions
In order to facilitate the formal analysis of linear 

analog circuits using the formalized Laplace trans-
form theory, as depicted in Figure 1, we illustrate the 
process of verifying the Laplace transforms of some 
commonly used analog signals, such as sine, cosine, 
exponential decay, and exponential growth. These 
functions are presented in their mathematical form 
in Table 2, while their formalized form can be found 
in [12]. As mentioned earlier, these formalizations 
are very useful in verifying the transfer functions of 
linear analog circuits. Moreover, these functions can 
be used to capture the dimensional model of an SoC 
in order to reason about the dimensional consist-
ency and invariability using theorem proving.

Application: Sallen-Key Low-Pass Filters
In order to illustrate the practical effectiveness 

and utilization of the proposed methodology for 
verifying real-world analog circuits, we have veri-
fied the transfer functions of first- and second-order 
Sallen-Key low-pass filters in this section. Sallen-Key 
is one of the most widely used filter topologies and 
Sallen-Key low-pass filters are extensively being used 
in numerous applications, such as analog-to-digital 
converters, radio transmitters, audio crossover, and 
telephone lines. They are also used as the basic 
building blocks of other higher-order low-pass filters. 
The main motivation behind choosing Sallen-Key fil-
ters as an application for our work is the enormous 
usage of filters in IoT devices, particularly while 
identifying devices and accessing their information.
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We will explain the verification of second-order 
Sallen-Key low-pass filter, depicted in Figure 2, in 
detail. Its modeling differential equation and transfer 
function are as follows:

​​R​ 1​​​C​ 1​​​R​ 2​​​C​ 2​​ ​ 
​d​​ 2​​v​ out​​​(t)​

 ______ 
d​t​​ 2​

 ​  + ​C​ 2​​​(​R​ 1​​ + ​R​ 2​​)​ ​ 
d​v​ out​​​(t)​

 _____ 
dt

 ​  + ​v​ out​​​(t)​ = ​v​ in​​​(t)​​�(3)

	​​ 
​V​ 

out
​​​(s)​
 _____ 

​V​ 
in
​​​(s)​

 ​  = ​   1  ___________________   
​R​ 1​​ ​C​ 1​​ ​R​ 2​​ ​C​ 2​​ ​s​​ 2​ + ​C​ 2​​ ​(​R​ 1​​ + ​R​ 2​​)​ s + 1

 ​​.� (4)

By using our formal analog library definitions, 
the implementation model for the second-order low-
pass filter is obtained as follows:

Definition 4: Implementation of Second-Order  
LP Filter

where Va represents the voltage at the node joining 
R1, R2, and C1 and Vb represents the voltage at non-
inverting input of the op-amp in Figure 2. The first 
conjunct represents the node joining R1, R2, and C1 
using the formalized KCL, whereas the second con-
junct represents the node at the noninverting input 
of the op-amp. In the given circuit, the op-amp is 
being used in the negative-feedback configuration. 
The third conjunct in the above definition represents 
this negative-feedback configured op-amp.

The next step is to formalize the differential equa-
tion and the required transfer function of the given 
second-order low-pass filter as follows:

Definition 5: Differential Equation of Second-Order 
LP Filter

Definition 6: Transfer Function of Second-Order  
LP Filter

where the function diff_eq_lhs is used to formalize 
the left-hand side of a differential equation. Then, 
the following theorem representing the implication 
between the implementation and the formal differen-
tial equation specification can be verified:

Theorem 1: Implementation Implies Differential 
Equation

In the above theorem, the first four assumptions 
ensure that the resistor’s and the capacitor’s values in 
the given circuit must be greater than zero, which is 
the necessary condition for the circuits to exhibit the 
behavior of (3). In the next three assumptions, the 
differentiable function is used to ensure the differen-
tiability of the input–output and the nodal voltage of 
the circuit which is also a necessary condition. The 
proof of Theorem 1 is based on the function defini-
tions along with some multivariable arithmetic rea-
soning and is thus very straightforward.

Next, we verify the implication between differential 
equation and transfer function specification as follows:

Theorem 2: Differential Equation Implies Transfer 
Function

The above theorem is proven by using the functions 
and theorems of the formalized Laplace transform 
and multivariable calculus theories. This concludes 
the formal verification of the transfer function of the 
second-order Sallen-Key low-pass filter. In a similar 

Figure 2. Second-order Sallen-Key 
low-pass filter.
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way, we have also verified the transfer function of 
the first-order low-pass filter and the corresponding 
proof details can be found in [12].

The usefulness of our proposed formalization is 
that it greatly facilitates verifying the transfer func-
tion of analog circuits using higher-order-logic the-
orem proving, as the analog circuit designers do 
not need to go into the subtle details of the Laplace 
transform mathematics. The foundational Laplace 
transform and analog circuit library formalization 
had to be done in an interactive way, due to the 
undecidable nature of higher-order logic, and took 
around 5000 lines of HOL-Light code and approxi-
mately 800 man-hours. The main challenge in this 
formalization is the enormous amount of user inter-
vention required due to the undecidable nature of 
the higher-order logic. Moreover, we had to develop 
the formal reasoning for the correctness of many 
proof goals ourselves as detailed proof scripts of 
these properties are usually not available in math-
ematical texts. Utilizing this work, the proof script 
corresponding to the Sallen-Key low-pass filters ver-
ification consists of approximately 650 lines of HOL-
Light code [12] and the proof process took just a 
couple of hours by a proficient HOL-Light user, who 
was quite familiar with the working of the above-men-
tioned formalization of the Laplace transform. This 
kind of straightforward verification clearly indicates 
the effectiveness of our core formalizations of the 
Laplace transforms and analog components. It is 
important to note that all of the assumptions have 
to be explicitly mentioned along with the theorems 
in order to prove them in HOL-Light. For instance, 

the positive values of the circuit 
components and differentiability 
of the voltages are often ignored 
in the analog circuit design litera-
ture but have been explicitly indi-
cated in our analysis. Similarly, 
the poles of the given circuit can 
also be explicitly observed from 
the formally verified theorem. 
Moreover, we have been able to 
capture the continuous models 
of analog circuits completely in 
our framework thus eliminating 
the basic limitation of discre-
tized models in the existing for-
mal verification techniques for 
analog circuits.

This paper advocates the usage of higher- 
order-logic theorem proving for verifying the transfer 
functions of linear analog circuits for SoC devices. 
Due to the high expressiveness of the underlying 
logic, we can formally model the structure of the 
given analog circuit and the differential equation 
depicting its behavior in its true form. The formalized 
Laplace transform method can then be used in a the-
orem prover to deduce the transfer function of the 
given circuit from this equation. The inherent sound-
ness of theorem proving guarantees correctness of 
analysis and ensures the availability of all precondi-
tions of the analysis as assumptions of the formally 
verified theorems. To the best of our knowledge, 
these features are not shared by any other existing 
computerized analog circuit verification technique 
and thus, the proposed approach can be very use-
ful for the analysis of linear analog circuits used in 
safety-critical domains. Based on this paper, we are 
able to conduct the transfer function verification of 
first- and second-order Sallen-Key low-pass filters in 
a very straightforward way.

Our formalization can also be built upon to for-
malize the inverse Laplace transform function and 
its associated properties, which can be very useful 
in analyzing the behavior of analog circuits in the 
time-domain. Moreover, circuits whose transfer 
functions have been verified by our proposed tech-
nique can be added as formalized components in 
the formalized Analog Library and then can be used 
to facilitate the verification of more complex circuits 
used in the domains of signal processing, wireless 

 
Table 2  Formalized Laplace transform of commonly used analog 
signals.
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communication, controls, and optics. Moreover, in 
order to reduce the manual verification effort, ded-
icated simplifiers can be developed for simplifying 
the proof goals involved in the verification of transfer 
functions for analog circuits. Our methodology can 
also be integrated with the traditional verification 
tools, such as Simulink and SCADE, by classifying 
the analog components of the given SoC into criti-
cal and noncritical components. Noncritical com-
ponents can be verified by simulation techniques 
whereas the transfer function of critical parts can 
be modeled and verified using theorem proving. 
After the correct reasoning of the critical parts, the 
complete system can be integrated in the simula-
tion framework to verify the complete system with 
greater confidence.� 
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